JPS5827077A - Proximity fuse - Google Patents

Proximity fuse

Info

Publication number
JPS5827077A
JPS5827077A JP56126472A JP12647281A JPS5827077A JP S5827077 A JPS5827077 A JP S5827077A JP 56126472 A JP56126472 A JP 56126472A JP 12647281 A JP12647281 A JP 12647281A JP S5827077 A JPS5827077 A JP S5827077A
Authority
JP
Japan
Prior art keywords
signal
antenna
threshold
detector
radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56126472A
Other languages
Japanese (ja)
Inventor
Hideo Yamane
山根 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56126472A priority Critical patent/JPS5827077A/en
Publication of JPS5827077A publication Critical patent/JPS5827077A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To enable accurate action of a proximity fuse by continuously varying the threshold of a detector contrasting to an AGC output voltage of a radar in a guided flying object. CONSTITUTION:When a guided flying object is launched, a transmitter 7 emits radio waves to a target airplane 2 from a radar antenna 9 through a duplex DX8 at an appropriate timing and the reflected waves enter a receiver 10 via the antenna 9. Then, corresponding to the output voltage of an AGC11, the threshold of a detector 19 of a proximity fuse varies continuously. Subsequently, a transmitter 14 emits radio waves through the DX1 and an antenna 12 and when the target airplane comes into the radio waves, the reflected waves pass through a DX16 and mixed 17 with a part of transmitted signals to form Doppler signals. Those signals exceeding the threshold of the detector 19 trigger a detonation circuit 20, causing a warhead 23 to explode.

Description

【発明の詳細な説明】 この発明蝶肪導飛しよう体の近接信管に係り。[Detailed description of the invention] This invention relates to a butterfly-guided proximity fuse for the body.

詳しくは酵導飛しよう体自身に目Ja機を追尾するレー
ダ装置金偏え、この装置が受1gする目標機からの反射
信号の大きさに対応させて弾Mを起爆させる信号を出力
するしきい値を変化させるようにした近接イぎ管を提案
するものである。
In detail, there is a radar device that tracks the aircraft directly to the aircraft itself, and this device outputs a signal that detonates the bullet M in response to the magnitude of the reflected signal from the target aircraft that it receives. This paper proposes a proximity tube that changes the threshold value.

最近では、誘導飛しよう体の目標となる対称は戦闘機、
爆S機、9対地ミサイル、地対地ミサイル等、多橿多様
であり、@波的に見た大きさ、すなわち有効反射面積も
大幅に異なっている。有効反射面積の大きい目標から反
射さnて受信する信号のレベルは大きいが、−万、有効
反射面積の小さな目標から0反射されて受信すル信号の
レベルは小さい。このため、近接信管が起爆信号を発生
させる時期を正確にするKlri。
Recently, the targets of guided flying vehicles are fighter jets,
There are a wide variety of missiles, including Explosive S aircraft, 9 ground-to-ground missiles, and surface-to-surface missiles, and their sizes in terms of waves, that is, their effective reflection areas, also differ greatly. The level of the signal reflected from a target with a large effective reflection area and received is high, but the level of the signal reflected and received from a target with a small effective reflection area is small. For this reason, Klri precisely determines when the proximity fuse will generate the detonation signal.

受信する目標からの信号の大きさに対応させて起爆信号
を出力する信号レベルを、決めるしきいMを変化させる
必要がある。
It is necessary to change the threshold M that determines the signal level at which the detonation signal is output in accordance with the magnitude of the received signal from the target.

従来の銹導飛しよう体に備えられていた近接信管は、起
爆信号を出力する信号レベルを決めるしきφ値が固定で
あったため、受信する信号レペルガ大きい目標、す座わ
ち有効反射面積の大きな目標に対して蝶目標が近接信管
のビームを横切る前に動作し、−万、受信するイぎ号し
ベルガ小さい目標、すなわち有効反射面積の小ざい目標
に対しては、目標が、近接信管のビームを横切っても、
所定のしきI/hNを超えなめため。
Proximity fuzes installed in conventional flight vehicles have a fixed threshold φ value that determines the signal level for outputting the detonation signal. Before the target crosses the beam of the proximity fuze, the butterfly operates and receives a signal. Even if you cross the beam,
To exceed the predetermined threshold I/hN.

動作しないという欠点があった。The drawback was that it didn't work.

この発明は以上の様な従来の欠点を改善するためになさ
れたもので以下に詳述する。
This invention was made to improve the above-mentioned conventional drawbacks, and will be described in detail below.

第1図において、(1)は酵導飛しょう体、(2)は目
#!機、(3)は訪導飛しょう体il+に装備され、目
標機12)を追尾するレーダ装aL、 +41はレーダ
装置13)のアンテナのビーム、(5)はレーダ装置(
3)と目標機(2)を結ぶ細目s、 +61は近接信号
のアンテナのビ丈ムであり、近接信y;2>r作動する
しきい値は、レーダ装置13)が受信する目標機(2)
からの反射信号の大きさに対応して、変化する様になっ
ている。すなわちレーダ装置(3)が受信する目標機(
2)からの反射信号が大きい場合は、近接信管のしき%
Aglを高(設定し、−万、受信電力が小さい場合には
、近接信管のしきi値を低く設定するようL/cfll
lき、目II機12)からの受信電力すなわち目m磯の
大きさに影響されずに目標機(21を検知する時点を一
定にすることが可能となる。
In Figure 1, (1) is a fermentation flywheel, (2) is an eye #! (3) is the radar system aL installed on the visiting aircraft IL+ and tracks the target aircraft 12), +41 is the beam of the antenna of the radar device 13), and (5) is the radar device (
3) and the target aircraft (2), +61 is the beam length of the antenna for the proximity signal, and the threshold for operating the proximity signal y;2>r is the target aircraft (2) received by the radar device 13). 2)
It changes depending on the magnitude of the reflected signal from the In other words, the target aircraft (
2) If the reflected signal from
Set Agl to high (-10,000, set L/cfll to set the threshold i value of the proximity fuze low when the received power is low.
It becomes possible to keep the time point at which the target aircraft (21) is detected constant without being affected by the received power from the second aircraft (12), that is, the size of the second aircraft (21).

次にこの発明を実現する一具体例を示す、第2図におい
て、(7)は鍔導飛しょう体(1)に装備され、目標機
(2)を追尾するレーダ装置(3)の第1の送信器、1
8)は送受信信号を分離する第1のデユープレクサ、−
91はwi波を放射及び目標機(21からの反射信号を
受信するレーダアンチ九〇〇に受信部すを周波数変換及
び信号処理する受信器。
Next, in FIG. 2, which shows a specific example of realizing the present invention, (7) is the first radar device (3) that is equipped on the flange guidance aircraft (1) and tracks the target aircraft (2). transmitter, 1
8) is a first duplexer that separates transmitting and receiving signals, -
91 is a receiver that performs frequency conversion and signal processing on the receiver section of the radar anti-900 that emits Wi-waves and receives reflected signals from the target aircraft (21).

011は受イl!r器(1(Iの出力音一定にする様に
働(AGCで、このAGC箪圧はレーダ装置13)の受
信信号の大きさに対応したものである。021は近接信
管のアンテナ、側は細゛力を等しく分配する電力分配器
、0aFi@2rv送信器、 (151!第2F)、a
la、 u#の電力の一部を取出す結合器、(至)は送
信及び受信信号を分離する第2のデユープレクサ、aη
は受信信号と結合器a9からの送信出方の一部を混合し
てドツプラ信号全作り出すミキサ、αaは所定の帯域1
lliを持った増幅器、器は外部より可変できるしきめ
値を待った検波器で、入力するtg号がこのしきい11
N?越えると、信号を出方する。
011 is accepted! 021 is the antenna of the proximity fuse, and the side is the antenna of the proximity fuze. Power divider that equally distributes narrow power, 0aFi@2rv transmitter, (151! 2nd F), a
la, a combiner that takes out part of the power of u#, (to) a second duplexer that separates the transmitted and received signals, aη
is a mixer that mixes the received signal and a part of the transmission output from combiner a9 to produce the entire Doppler signal, αa is a predetermined band 1
The amplifier with lli is a detector that waits for a threshold value that can be changed externally, and the input tg signal is at this threshold value of 11.
N? Once you cross it, a signal will be emitted.

coは検波器a9の出方を受けて起爆信号を発生させる
起爆回路、 2N+は弾頭の安全性を維持するための安
全装置、のけ起爆信号を受けて炸烈する弾頭である。
CO is the detonation circuit that generates the detonation signal in response to the output of the detector A9, 2N+ is the safety device to maintain the safety of the warhead, and the warhead explodes upon receiving the detonation signal.

このような!lII成において銹導飛しよう体山氷発射
されると送信器(イ)+71 u過当な時期に第1のデ
ユープレクサ(8)ヲ通ってレーダアンテナ(9)から
、目標@(2)に向って電flヲ放射する。目標機(2
1によって0反射された電波は再び、レーダアンテナ(
9)で受信される。次いで第1のデユープレクサ+81
で送受分離されて、受信4叫に入る。
like this! When a flying object is launched at the time of II formation, the transmitter (A) +71 u passes through the first duplexer (8) at the appropriate time and is sent from the radar antenna (9) toward the target @ (2). Emit electricity. Target aircraft (2
The radio waves reflected by 1 are again sent to the radar antenna (
9). Then the first duplexer +81
The transmission and reception are separated at , and the reception goes into 4 calls.

ここで入力された信号は9周波数変換及び信号処理され
る6また。  AGCQlは受信器u1の出力が一足に
なるように動作する。ここでAGCQllの出力電圧は
、目標機(2層1らの反射信号め大きさに比例したもの
であり、近接信管の検波器+11のしきい値はこのAB
QIDの出力層圧に対応して連続的に変化するようにな
る。
The input signal is subjected to 9 frequency conversion and 6 signal processing. AGCQl operates so that the output of receiver u1 becomes one pair. Here, the output voltage of AGCQll is proportional to the magnitude of the reflected signal from the target aircraft (layer 2 1, etc.), and the threshold value of the detector +11 of the proximity fuze is this AB
It changes continuously in response to the output layer pressure of the QID.

その後、近接信管の第2の送信i 141は、結合器1
訳第2のデユープレクサ(1G、電力分配器IJ全全通
てアンテナa3から、*St放射する。目標e121が
アンテナ[12+のビーム内に入ると放射された信号は
、S導飛しよう体+11と目標機(21の相対速度に比
例したドツプラ周波数偏移を受けて。
Then, the second transmission i 141 of the proximity fuze is sent to coupler 1
*St is radiated from the antenna a3 through the second duplexer (1G, power divider IJ).When the target e121 enters the beam of the antenna [12+, the radiated signal is connected to the S-guiding body +11. subject to a Doppler frequency shift proportional to the relative speed of the target aircraft (21).

受信される。受信された信号は、第2のデユープレクサ
(161を通ってミキサ面で結合器aシに1って取出さ
れた送信出力の一部の信号と、混合されて、ドラグラ信
号となり1次いで増幅器aaで増幅される。増幅された
信号は、レーダ装置(3)のAGCGIIの出力電圧に
対応したしきい[1待っ検波器+IIK入り、しきvh
fIlと比較され、このしきi値を越えると信号を出力
する。この出方された信号によって起爆回路■は起爆信
号を作り。
Received. The received signal passes through the second duplexer (161) and is mixed with a part of the signal of the transmission output taken out by the coupler a on the mixer side to form a dragler signal, which is then output to the amplifier aa. The amplified signal is sent to the threshold [1 standby detector + IIK input, threshold vh corresponding to the output voltage of AGCGII of the radar device (3)].
It is compared with fIl and outputs a signal if this threshold i value is exceeded. Based on this output signal, the detonator circuit ■ generates a detonation signal.

安全装rIL1211を経由して9弾頭に送り9弾頭鉋
を烈させる。
It is sent to the 9th warhead via the safety equipment rIL1211 and the 9th warhead is fired.

以上説明したようKこの発明によれば検波器a■ノシき
い[iレーダ装置+3112)AGC(111+2)出
7[圧に対応させて、連続的に変化させることKjリア
ンテナQ21のビームを目m機(2)が横切る時にのみ
、確実に近接信管を作動させることができる。この結果
、*頭■の威力も効果的に利用可能となる。
As explained above, according to the present invention, the detector (a) is continuously changed in accordance with the pressure of the detector a (radar device + 3112) AGC (111 + 2) output (7). Only when aircraft (2) crosses can the proximity fuse be reliably activated. As a result, the power of *head■ can also be used effectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、肪導飛しよう体及び目標機の関係をボす状態
図、第2図にこの発明の原理Yr実現する近接信管の構
成図であり、+1)は誘導飛しよう体、 +21F1目
標機、(3)はレーダ装置、+41はアンテナのビーム
、(5)はレーダ装flH31と目標機12)を結ぶ細
目線、(6)は近接信管のアンテナのビーム。 (7)はレーダ装置13)の送信器(イ)e +81は
デユープレクサ(イ)、 +91#′iレーダアンテナ
、 [1(Iは受信器、 onはAGc、α2はアンテ
ナ、 (13は電力分配器、 (14+は送信器!03
. (ISti結合器、 (1G+はデユープレクサ(
ロ)。 (171はミキサ、・a8は増幅器、 (IIは外部エ
リ可変できるしき9櫃を待った検波器、■は起爆回路。 ahは安全装置、のは弾頭である。 なお1図中同一あるいは相当部分には同一符号を付して
示しである。 代理人  葛 野 信 −
Fig. 1 is a state diagram showing the relationship between a fat guided flying object and a target aircraft, and Fig. 2 is a configuration diagram of a proximity fuze that realizes the principle of this invention. +1) is a guided flying object, +21F1 target (3) is the radar equipment, +41 is the antenna beam, (5) is the narrow line of sight connecting the radar equipment flH31 and the target aircraft (12), and (6) is the antenna beam of the proximity fuze. (7) is the transmitter (a) e of the radar device 13) +81 is the duplexer (a), +91#'i radar antenna, [1 (I is the receiver, on is AGc, α2 is the antenna, (13 is the power distribution (14+ is the transmitter!03
.. (ISti coupler, (1G+ is duplexer (
B). (171 is a mixer, ・a8 is an amplifier, (II is a detector that waits for the 9th column that can be externally variable, ■ is a detonator circuit. ah is a safety device, and 1 is a warhead. Note that the same or equivalent parts in Figure 1) are indicated with the same reference numerals. Agent Shin Kuzuno -

Claims (1)

【特許請求の範囲】[Claims] 訪導飛しよう体に装備され、銹導飛しよう体自身、また
は他の電波放射器から、41を放射して、!目標機から
の反射波を受信することにより信管を作動させる近接信
管において、n導飛しよう体自身に目lik機を追尾す
るレーダ装置金偏え、このレーダ装置が受信する信号レ
ベルに応じて、起爆信号を発生させる信号レベルを変え
るように構成したこと全特徴とする近接信管。
Equipped with the ``Visual Flying Body'' and emitting 41 from the ``Visiting Flying Body'' itself or other radio wave emitters,! In the proximity fuse, which activates the fuze by receiving reflected waves from the target aircraft, a radar device that tracks the aircraft is attached to the flying object itself, and depending on the signal level received by this radar device, A proximity fuse characterized by being configured to change the signal level that generates the detonation signal.
JP56126472A 1981-08-12 1981-08-12 Proximity fuse Pending JPS5827077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56126472A JPS5827077A (en) 1981-08-12 1981-08-12 Proximity fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56126472A JPS5827077A (en) 1981-08-12 1981-08-12 Proximity fuse

Publications (1)

Publication Number Publication Date
JPS5827077A true JPS5827077A (en) 1983-02-17

Family

ID=14936058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56126472A Pending JPS5827077A (en) 1981-08-12 1981-08-12 Proximity fuse

Country Status (1)

Country Link
JP (1) JPS5827077A (en)

Similar Documents

Publication Publication Date Title
US4232609A (en) Proximity fuse
US20070085727A1 (en) Methods and systems for leakage cancellation in radar equipped munitions
US7652615B2 (en) Methods and systems providing an adaptive threshold for a beam sharpened pulse radar
US3945008A (en) Electronic proximity fuse having multiple Doppler frequency channels
US20060103570A1 (en) Methods and systems for controlling a height of munition detonation
US6834591B2 (en) Proximity fuze
US3918059A (en) Chaff discrimination system
US2703399A (en) Apparatus for guiding and detonating missiles
US4121214A (en) Proximity fuze jammer
US4135452A (en) Time delay computer using fuze doppler for air-to-air missiles
US3113305A (en) Semi-active proximity fuze
US4214534A (en) Command fuzing system
US4457475A (en) Method for destroying targets and a projectile for carrying out the method
JPS5827077A (en) Proximity fuse
US4968980A (en) Electronic proximity fuse responsive to two signals
US3774213A (en) Method for determining the closest point of approach
US3924234A (en) Automatic active/passive fuze system
US4192235A (en) Radiant-energy controlled proximity fuze
JPH0462398A (en) Proximity fuse
JPH04123000U (en) proximity fuze
JPS59122981A (en) Proximity fuse
JPS61160074A (en) Proximity fuse
JPS5932879A (en) Proximity fuse for guided flying body
JPS6166098A (en) Proximity fuse
JP3020368B2 (en) Proximity fuse device