JPS5826993A - Multiple tank type heat accumulating device - Google Patents

Multiple tank type heat accumulating device

Info

Publication number
JPS5826993A
JPS5826993A JP56124531A JP12453181A JPS5826993A JP S5826993 A JPS5826993 A JP S5826993A JP 56124531 A JP56124531 A JP 56124531A JP 12453181 A JP12453181 A JP 12453181A JP S5826993 A JPS5826993 A JP S5826993A
Authority
JP
Japan
Prior art keywords
heat
tank
temperature
chamber
central
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56124531A
Other languages
Japanese (ja)
Inventor
Keiichi Yasukawa
安川 敬一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56124531A priority Critical patent/JPS5826993A/en
Publication of JPS5826993A publication Critical patent/JPS5826993A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To restrict the temperature descending rate of a central tank at a low level by a method wherein the central tank, at the center of the laminated tanks, is heated to a high temperature at first, and then heat at a high temperature is accumulated in the outside tanks sequentially. CONSTITUTION:An outer frame 1, an intermediate frame 3 and a central frame 2 are constituted by an insulative material respectively, therefore, insulation of multiple layers is constituted with respect to the central tank N. The change of temperature distributions with respect to the coordinate of time generates the relation of the slopes of the temperature between each tanks as follows; (the temperature of tank A) < (the temperature of tank B) < (the temperature of the central tank N). The tank, neighboring the atmosphere, is the tank A having relatively low temperature, accordingly, the temperature difference is small and a heat loss may be reduced, while the high-temperature conditon of the central tank N may be kept as it is for a long period of time in result.

Description

【発明の詳細な説明】 本発明は、太陽熱エネルギー、地熱、又は、工場廃熱等
を有効に蓄熱しようとする装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for effectively storing solar thermal energy, geothermal heat, factory waste heat, or the like.

一般に、太陽熱エネルギー等を集熱して使用する場合、
天候・時間・又は熱源の稼動状況等によって様々に変動
し、熱の供給が一定せず、これがため需要側において非
常に使いにくいものとなっていた。
Generally, when collecting and using solar thermal energy,
The supply of heat varies depending on the weather, time of day, operating status of the heat source, etc., and is not constant, making it extremely difficult to use on the demand side.

そこで従来から、この様な問題を解消する方法として、
系統内に一時熱を蓄積する蓄熱槽を設けてきた。
Therefore, as a conventional method to solve such problems,
A heat storage tank has been installed in the system to temporarily store heat.

しかしながら、従来゛の蓄熱槽にあっては、集熱装置等
より、インプットされる温度が高温の場合でも、又低温
の場合でも、同一蓄熱槽内に単一蓄熱方式で貯えるよう
にしているため、蓄熱温度が平均化されてしまい、せっ
かくの高温域での麹回収の場合、それを有効に生かすこ
とは出来なかった。
However, in conventional heat storage tanks, regardless of whether the input temperature is high or low from a heat collection device, it is stored in the same heat storage tank using a single heat storage method. However, the heat storage temperature was averaged out, and when recovering koji in a high temperature range, it was not possible to make effective use of it.

所で、最近の太陽熱エネルギーの集熱装置は9次第に、
高温熱回収の方向に発展をとげつつあり。
By the way, recent solar thermal energy collectors are
Progress is being made in the direction of high-temperature heat recovery.

工場廃熱等においても、高温熱回収技術が進展し。High-temperature heat recovery technology is also progressing for factory waste heat.

一方、需要側の要請も9発電又は大規模産業用リサイク
ル等えの高度利用のため2次第に蓄熱槽よりの熱のアウ
トプットも高温の熱の安定的供給を要求してくる様にな
ると、これに対応出来る蓄熱槽の開発が必要となってき
た。
On the other hand, demands from the demand side are also increasing, as the heat output from thermal storage tanks gradually demands a stable supply of high-temperature heat for advanced use such as power generation or large-scale industrial recycling. It has become necessary to develop a heat storage tank that can handle this.

そこで、この様な要請に応えるため、高温域での回収熱
エネルギーは、その高温のままでの蓄熱を。
Therefore, in order to meet these demands, the recovered thermal energy in the high temperature range is stored at that high temperature.

低温域での回収の場合には、高温蓄熱に混入することな
しに、低温蓄熱として別個に分配し、しかもそれが同一
蓄熱槽内において共存しながら、熱が蓄積されている様
な状態の蓄熱槽の開発が望まれている所である。
In the case of recovery in a low-temperature range, the heat storage is distributed separately as low-temperature heat storage without being mixed with high-temperature heat storage, and moreover, it coexists in the same heat storage tank while storing heat. This is where the development of tanks is desired.

そうすれば、エクセルギー効率の向上も図られ。This will also improve exergy efficiency.

理想的な蓄熱槽となる。It becomes an ideal heat storage tank.

この様な条件を満すものとして9本多重槽型蓄熱装置が
考案さ、れた訳である。
A nine-tube multi-tank heat storage device was devised to satisfy these conditions.

現在までのこの様な熱分配の機能をもち、高温部・低温
部を別々に蓄熱しようとする考え方の蓄熱装置としては
、ヒートパイプが挿入された熱容量の異なる蓄熱槽群を
並列直線的に並べ、熱源番こ近い方より順に高温化を図
かろうとするものであるが、これは、蓄熱槽を別々につ
くるのであるからコスト高となり、空間的にも場所をと
り、又9時間軸に対する熱損失は従来の蓄熱槽と変らず
、この面よりみるならばその対応はなんらの進展もして
いないといえる。
Until now, heat storage devices that have this kind of heat distribution function and are designed to store heat separately in high-temperature and low-temperature regions have been constructed by linearly arranging groups of heat storage tanks with different heat capacities into which heat pipes are inserted. This method attempts to increase the temperature in order from the nearest heat source, but this is expensive because the heat storage tanks are made separately, takes up a lot of space, and the heat source is The loss is the same as that of conventional heat storage tanks, and from this perspective, it can be said that no progress has been made in dealing with it.

そこで9本発明においては、並列直線的に並べられてい
る蓄熱槽群を同心軸状の多重槽型に槽を積み重ねること
により、中心槽を初づ高温化し、ついで中間槽群を2次
に外側の槽の順に高温の熱蓄積を図って行こうとするも
のである。
Therefore, in the present invention, by stacking the heat storage tanks arranged in parallel and linearly in a concentric multi-tank type, the center tank is heated to high temperature first, and then the intermediate tank group is moved to the outer side. The idea is to accumulate high-temperature heat in the order of the tanks.

そこでは積み重ねられる槽の枠組に断熱材を使用するこ
とにより、結果的に多重層断熱を構成することになり、
蓄熱槽全体的の時間経過にともなう温度分布状態は、中
心槽の温度〉中間槽群の温度〉外側の槽の温度、という
温度勾配となり、外系との直接的な温度差は小さくなり
、中心槽の時間軸に対する温度降下率を低く押えること
が出来る。
By using insulation material in the framework of stacked tanks, the result is a multilayer insulation structure.
The temperature distribution state of the entire heat storage tank over time becomes a temperature gradient: temperature of the center tank>temperature of the intermediate tanks>temperature of the outer tanks, and the direct temperature difference with the outside system becomes small, It is possible to keep the temperature drop rate of the tank low over time.

熱のインプットの体制は、熱源より送給される熱流体の
流路を、中心種部分に見合う分を眼とした渦巻型の流路
となし、その眼及び渦巻型の流路のそれぞれの各所にお
いて、ヒートパイプにより各種との間の熱的な接続を図
かったものである。
The heat input system is such that the flow path of the thermal fluid sent from the heat source is a spiral-shaped flow path with an eye corresponding to the central seed part, and each part of the eye and the spiral-shaped flow path is In this case, heat pipes were used to establish thermal connections between various types of equipment.

以下、主要な構成を第1図及び第2図を用いて説明する
The main configuration will be explained below using FIGS. 1 and 2.

第1図は本発明における多重槽型蓄熱装置の断面図であ
り、第2図は熱流部T部分の水平断面図である。即ち、
渦巻型の流路をもつ熱流部Tの上部に多重槽型の蓄熱部
Sを設置し2両者間を伝熱素子としてヒートパイプを用
いて熱的な結合を図ったものである。
FIG. 1 is a sectional view of a multi-tank heat storage device according to the present invention, and FIG. 2 is a horizontal sectional view of a heat flow section T. That is,
A multi-tank type heat storage section S is installed above a heat flow section T having a spiral flow path, and a heat pipe is used as a heat transfer element between the two to achieve thermal coupling.

蓄熱部Sの外形を構成する外枠1は、鉄板又はFRP等
で2円筒形、樽形2球形等につくられており、断熱材′
でよく保温されている。
The outer frame 1 constituting the outer shape of the heat storage section S is made of iron plate or FRP, etc. in the shape of two cylinders, two barrels, two spheres, etc.
It is well insulated.

その外枠lの中央部に、任意の大きさで、断熱・耐圧・
耐熱性をもった中心枠2をおき、外枠lと中心枠2との
間を断熱性のある中間枠3によって分割する。
Insulated, pressure-resistant,
A heat-resistant central frame 2 is placed, and the outer frame 1 and the central frame 2 are divided by a heat-insulating intermediate frame 3.

ここで中心枠2によって出来る中央部分を中心槽Nと呼
ぶこととし、外枠lと中間枠3との間の槽を槽A、中間
枠3と中心枠2との間を槽Bと呼ぶこととする。
Here, the central portion formed by the central frame 2 will be referred to as the central tank N, the tank between the outer frame 1 and the intermediate frame 3 will be referred to as the tank A, and the space between the intermediate frame 3 and the central frame 2 will be referred to as the tank B. shall be.

中間枠3は、中心枠2との間で任意数を増加させること
が出来、槽C9槽り、−・・・・・・・・を形成し、容
積的には、中心槽N(−・・・・・・〈中間槽B〈外側
槽Aの容積比となる様に構成する。
The intermediate frame 3 can be increased in arbitrary number with the center frame 2, forming a tank C9, -..., and in terms of volume, the center tank N (-... ...Constructed so that the volume ratio of the intermediate tank B and the outer tank A is the same.

但し、これらの各枠は同心軸状に形成されるものとする
However, each of these frames shall be formed in the shape of a concentric shaft.

そして、外枠1の底面部に断熱材で囲まれた適当な大き
さの円筒形の熱流部Tの外枠4を密着させるか、又は切
り離した状態で設置する。
Then, the outer frame 4 of the cylindrical heat flow section T of an appropriate size surrounded by a heat insulating material is placed in close contact with the bottom surface of the outer frame 1, or is installed in a separated state.

外枠4内に筒形の断熱材の壁5Nでもって、中心槽Nに
見合う室N′を形成し。さらにその外周部に壁5Bでも
って、槽Bに見合う室B′を。そして、壁5Bと外枠4
との間を室A′として槽Aに見合うものとする。
A chamber N' corresponding to the central tank N is formed in the outer frame 4 with a cylindrical heat insulating wall 5N. Furthermore, a chamber B' corresponding to tank B is formed by a wall 5B on its outer periphery. And wall 5B and outer frame 4
The space between them is designated as chamber A', which corresponds to tank A.

槽Aと室A′を連結するヒートバイブ鍜群を各々のヒー
トパイプの蒸発部は下の熱流部T内に、凝縮部は上の蓄
熱部S内に突出させる。
In the heat vibrator group connecting the tank A and the chamber A', the evaporating part of each heat pipe projects into the lower heat flow part T, and the condensing part projects into the upper heat storage part S.

この場合、ヒートパイプは撓曲してもその機能の変化は
受けないのであるから蓄熱部Sと熱流部Tとの断面積の
大きさが異なってもよい。
In this case, since the function of the heat pipe does not change even if it is bent, the cross-sectional areas of the heat storage section S and the heat flow section T may be different in size.

ここで用うるヒートパイプは (1)高密度、小温度差での熱輸送の機能C)熱流ダイ
オードとしての機能 (3)熱流束変換の機能 等をもつものとし、さらに熱媒体との熱的結合を強める
ために凝縮部では、星型フイ、ン8.さらにそのフィン
の先端部に筒形の煙突状のフィン9を付加する。これに
より蓄熱部S内の蓄熱媒体の自然対流の促進を図り、熱
伝達の向上を促がす。
The heat pipe that can be used here has the following functions: (1) heat transport function with high density and small temperature difference; C) function as a heat flow diode; and (3) heat flux conversion function. In order to strengthen the bond, star-shaped fins are used in the condensing section8. Furthermore, a cylindrical chimney-like fin 9 is added to the tip of the fin. This promotes natural convection of the heat storage medium within the heat storage section S, thereby promoting improvement in heat transfer.

蒸発部においては、スパイラルフィン又は円板型フィン
7等を付着し、熱源より送給される熱流体10との接触
面積の拡大を図る。
In the evaporation section, spiral fins or disk-shaped fins 7 or the like are attached to increase the contact area with the thermal fluid 10 supplied from the heat source.

太陽熱エネルギー、地熱、工場廃熱等を熱源として。Heat sources include solar thermal energy, geothermal heat, and factory waste heat.

熱流体lOは熱流部Tの室N′に属する適当な位置に設
けられた筒11を通して適当な流速をもって送り込まれ
る。そこでは、筒11を囲んで熱流体lOを一方向にの
み流す様な開口をもった案内板13があり。
The thermal fluid IO is sent through a cylinder 11 provided at an appropriate position belonging to the chamber N' of the heat flow section T at an appropriate flow rate. There, there is a guide plate 13 surrounding the cylinder 11 and having an opening that allows the thermal fluid IO to flow in only one direction.

さらにその背中台に、縦細長の間隙又は吐出管14Nを
任意数、壁5Nに縦に並べ、室B′にむけて開口してお
く、シたがって、送給される熱流体10は、壁5Nに沿
って、フィン7に平行に流れ9輪形を描きながら室B′
に流出していくこととなる。
Further, on the back stand, an arbitrary number of elongated gaps or discharge pipes 14N are arranged vertically on the wall 5N and opened toward the chamber B'. 5N, flowing parallel to the fin 7 and drawing a nine-ring shape, the chamber B'
This will lead to leakage.

室B′には吐出管14Nと背中台に、流路を塞ぐ遮蔽板
15Bを挾んで室A′に開口する吐出管148がある。
In the chamber B', there is a discharge pipe 14N and a discharge pipe 148 on the back that opens into the chamber A' by sandwiching a shielding plate 15B that blocks the flow path.

室A′には吐出管14Bの背中台に、遮蔽板15Aを挾
んで廃山口12を外枠4に設ける。
In the chamber A', a waste outlet 12 is provided on the outer frame 4 on the back of the discharge pipe 14B with a shielding plate 15A in between.

よって、熱流体10の熱流部T内における流れは。Therefore, the flow of the thermal fluid 10 in the heat flow section T is as follows.

全体的に俯敵する時、それは室N′を眼とする渦巻流を
形成することになり、最終的には室A′の廃山口12よ
り低温の熱流体10’  として廃山されることになる
When they are completely opposed, they will form a spiral flow with chamber N' as the eye, and will eventually be abandoned as a thermal fluid 10' at a lower temperature than the abandoned mountain entrance 12 of chamber A'. Become.

蓄熱部Sの槽A、槽B、中心・槽Nは1個々に見ればそ
れぞれ各々の独立した蓄熱槽であるから、各個に、任意
の蓄熱熱媒体を封入すればよい。
When viewed individually, the tanks A, B, and center/tank N of the heat storage section S are independent heat storage tanks, so any heat storage medium may be filled in each one.

それは同一の蓄熱媒体2例えば、水を封入してよいし、
異なった蓄熱媒体2例えば槽Aには水、槽Bには油等の
沸点の高い物質、中心槽Nには、パラフィン等の潜熱蓄
熱媒体を封入して、アウトプットには各々のを熱交換器
でとり出す様にしてもよい。
It may contain the same heat storage medium 2, for example water,
Different heat storage media 2 For example, tank A is filled with water, tank B is filled with a substance with a high boiling point such as oil, and the central tank N is filled with a latent heat storage medium such as paraffin, and each is heat exchanged in the output. You can also take it out in a container.

又、外枠l内部全面にわたって、又は中心槽N部分のみ
を鉄板等で耐圧性の強化を図り、即ち、圧力容器となし
、ここに高圧熱水として蓄熱することも出来る。
In addition, it is also possible to strengthen the pressure resistance over the entire inside of the outer frame L or only in the central tank N portion with iron plates or the like, that is, to make it into a pressure vessel, where heat can be stored as high-pressure hot water.

この場合は、サキュームレータ等により保有水の攪拌を
行い、熱伝達の促進をさらに図かることが望ましい。
In this case, it is desirable to agitate the retained water using a suction generator or the like to further promote heat transfer.

特に、熱流部T内に送給される熱流体10が高温の排ガ
ス又は、蒸気等である場合番こは、蓄熱部Sとの間に温
度差が充分とれるのであるから、高圧飽和熱水の形で蓄
熱することは、蒸気としてアウトプットすることが出来
、需要側よりみれば、非常に有利な使用形態となる。
In particular, when the thermal fluid 10 fed into the heat flow section T is high-temperature exhaust gas or steam, there is a sufficient temperature difference between it and the heat storage section S. Storing heat in the form of heat can be output as steam, which is a very advantageous form of use from the demand side.

第1図の断面図の実施例は、槽A槽Bに共通した蓄熱熱
媒体として水を用い。中心槽Nを断熱された圧力容器で
構成し、高圧熱水蓄熱を図かる例を示している。
In the embodiment shown in the cross-sectional view of FIG. 1, water is used as a heat storage medium common to tanks A and B. This figure shows an example in which the central tank N is configured with an insulated pressure vessel to store heat in high-pressure hot water.

槽A、槽B間はもぐり連通管17により連結し、槽Aに
は給水管16.槽B)こは温水のアウトプットのための
道管18を設置する。
Tank A and tank B are connected by a hollow communication pipe 17, and tank A has a water supply pipe 16. Tank B) A pipe 18 for hot water output is installed.

中心槽Nには給水管19.蒸気取出管20を設ける。The central tank N has a water supply pipe 19. A steam extraction pipe 20 is provided.

この場合、槽A、槽Bは従来の水蓄熱槽と同じ概念でよ
いが、中心槽Nは熱のインプットに、スチーム、アキュ
ームレータ、の場合のノズルよりの蒸気の噴出に替えて
、ヒートバイブロN群よりの放熱によるのであるが、そ
れは蓄熱の応答過程が異なるだけで、結果としての高圧
熱水蓄熱の状態は変らないのであるから、従来のアキュ
ームレータに準じた減圧弁、安全弁等その他の装備を付
加させなければならない。
In this case, tanks A and B may have the same concept as conventional water heat storage tanks, but the central tank N uses heat vibro N for heat input instead of steam or steam ejection from a nozzle in the case of an accumulator. This is due to heat dissipation from the group, but since the response process of heat storage is only different and the resulting state of high-pressure hot water heat storage does not change, other equipment such as pressure reducing valves and safety valves similar to conventional accumulators should be installed. must be added.

次に、この様な構成よりなる多重槽型蓄熱装置の機能、
稼動状況及び効果について説明する。
Next, the functions of the multi-tank heat storage device with such a configuration,
The operating status and effects will be explained.

太陽熱エネルギー、地熱、工場廃熱等を熱源として送給
される熱流体10は、熱流部Tの室N′の適当な位置に
設けられた筒11を通して初づ室N′に流入し、案内板
13による一方向への誘導にしたがって。
Thermal fluid 10, which is supplied using solar thermal energy, geothermal heat, factory waste heat, etc. as a heat source, first flows into chamber N' through a tube 11 provided at an appropriate position in chamber N' of heat flow section T, and passes through the guide plate. Following guidance in one direction by 13.

室N′内を筒形の壁5Nに沿って流れることになり。It flows inside the chamber N' along the cylindrical wall 5N.

その壁に沿って、ヒートバイブロN群が突出していると
するならば、ヒートバイブロN群の蒸発部は中心槽Nの
温度より熱流体10の温度が高ければ、熱を吸収し、中
心槽Nに熱を放出する。
If the Heat Vibro N group protrudes along the wall, the evaporation part of the Heat Vibro N group will absorb heat if the temperature of the thermal fluid 10 is higher than the temperature of the central tank N. releases heat.

この時の熱伝達を促進させるのが9円板型フィン7等で
あり、星型フィン8及び煙突状のフィン9である。
The nine disc-shaped fins 7 and the like, the star-shaped fins 8 and the chimney-shaped fins 9 promote heat transfer at this time.

送給される熱流体10の温度が中心槽Nより低い場合か
、又は熱源よりの送給が停止した場など、ヒートパイプ
は熱流ダイオードとして、の機能を果し。
When the temperature of the supplied thermal fluid 10 is lower than the central tank N, or when the supply from the heat source is stopped, the heat pipe functions as a heat flow diode.

熱の中心槽Nへの伝達は不能であり、又、逆に中心槽N
の熱を、熱流部Tに向かって逆放出することもない。常
に熱は熱流部Tより蓄熱部Sに向かって、一方的にのみ
流れることになる。
Transfer of heat to the central tank N is impossible;
The heat is not released back toward the heat flow section T. Heat always flows in one direction from the heat flow section T toward the heat storage section S.

そして9次の室B/、さらにその次の室A′は熱流体I
Oの流路を、室N′を眼とした渦巻型に形成されている
のであるから、それぞれにヒートバイブロB群6A群が
突出しているならば、ヒートパイプの伝熱素子としての
機能は室N′における場合と同様に作用し、熱流体10
自体は9次第に熱量・温度を低下させながら、室A′の
廃山口12に至り低温の熱流体lO′として廃山される
ことになる。これは並列直線的に蓄熱槽を並べる方式よ
りも空間的に小さな場所で、かつ、熱流体10の流路を
渦巻型に長くとれ。
The ninth-order chamber B/ and the next chamber A' are the thermal fluid I.
Since the flow path of O is formed in a spiral shape with the chamber N' as the eye, if the heat vibro B group and 6A group protrude from each, the function of the heat pipe as a heat transfer element is limited to the chamber N'. Acting in the same way as in N', the thermal fluid 10
While gradually reducing the amount of heat and temperature, the fuel itself reaches the waste pile port 12 of chamber A' and is discarded as a low-temperature thermal fluid lO'. This requires a smaller space than the method of arranging heat storage tanks in parallel and straight lines, and the flow path of the thermal fluid 10 can be made longer in a spiral shape.

それに見合う多重槽型の蓄熱部Sと熱的に結合している
のであるから熱流体lOの高温より低温までの有効利用
の温度範囲を広くとれることになる。
Since it is thermally coupled with a corresponding multi-tank type heat storage section S, it is possible to widen the temperature range for effective use of the thermal fluid 1O from high temperature to low temperature.

ヒートパイプの熱流束変換の機能は、熱流部Tに送給さ
れる熱流体IOが、温度は高いが熱流束は小さいといっ
た場合、特に廃ガスの場合など、この様な状況が当初よ
り予想されるシステムへの利用の場合は、蒸発部の面積
を大にすることにより。
The heat flux conversion function of the heat pipe is such that when the thermal fluid IO sent to the heat flow section T has a high temperature but a low heat flux, such a situation is expected from the beginning, especially when it is waste gas. When used in systems where

出入の熱流束のバランスを保たせるか、さらには。Is it possible to maintain a balance between the inflow and outflow heat fluxes?

高熱流束として蓄熱部Sに放熱させることも考えられる
It is also possible to cause the heat storage section S to radiate heat as a high heat flux.

次に、蓄熱部Sでの効果の面を考えるならば、各種間に
同一蓄熱熱媒体が使用されている場合は。
Next, considering the effect in the heat storage section S, if the same heat storage medium is used for each type.

容積的に中心槽Nが最も小さく、かつ、初期の高温を保
持している熱流体10よりの熱が伝達されるのであるか
ら、高熱流束が中心槽Nでは受けられることになり、中
心槽Nの高温えの立上りは速かになされることになる。
Since the center tank N is the smallest in terms of volume and the heat from the thermal fluid 10 that maintains the initial high temperature is transferred, a high heat flux is received in the center tank N. The high temperature of N will rise quickly.

そして次第に、槽B、槽Aの順で高温化されていくこと
になるのである。
Then, the temperature gradually increases in the order of tank B and tank A.

これは熱源が間数的であり、供給熱量も不安定であると
いう前提条件を考えれば、平均的な温度の蓄熱ではなく
、中心槽Nがまづ高温化されることの、需要側から見た
場合の利益は大きなものがある。
Considering the preconditions that the heat source is variable and the amount of heat supplied is unstable, this is because from the demand side, the central tank N is first heated to a high temperature, rather than storing heat at an average temperature. There are big profits if you do.

さらに、蓄熱部Sの時間経過にともなう温度低下の問題
を考えてみる時、外枠1.中間枠3.中心枠2.は各々
の断熱材で構成されているのであるから、中心槽Nに対
しては多重層断熱を構成することになる。そして9時間
軸に対する温度分布状態の変化は、槽Aの温度〈槽Bの
温度く中心槽Nの温度、といった温度勾配の関係が各種
間に生ずる。
Furthermore, when considering the problem of temperature drop in the heat storage section S over time, the outer frame 1. Intermediate frame 3. Center frame 2. are composed of respective heat insulating materials, so the central tank N is constructed with multi-layer heat insulation. The change in the temperature distribution state with respect to the nine time axes is caused by a temperature gradient relationship between the various types, such as the temperature of tank A < the temperature of tank B and the temperature of central tank N.

外系と直接隣接するのは、温度の相対的に低い槽Aであ
り、したがって温度差は小さく熱損失も少くなくなり、
一方中心槽Nの高温状態は長時間温存される結果となる
Directly adjacent to the external system is tank A, which has a relatively low temperature, so the temperature difference is small and heat loss is small.
On the other hand, the high temperature state of the central tank N results in being maintained for a long time.

この様な蓄熱体制が確立されれば、従来の蓄熱装置では
熱源より変動のはげしい排ガス、熱水、蒸気等の供給が
ある場合、それに対応出来ず、その一部しか蓄熱に利用
されず残りの大部分の熱エネルギーは相変らず廃熱とし
て外系へ捨て去っていたものを大幅に改善することが出
来、しかもエクセルギー的効率の向上も図かれる結果と
なり実用的効果は非常に大なるものがある。
If such a heat storage system is established, conventional heat storage devices will not be able to cope with the supply of exhaust gas, hot water, steam, etc. that fluctuates more than the heat source, and only a portion of it will be used for heat storage, while the remaining Most of the thermal energy is still discarded as waste heat to the outside system, but this can be significantly improved, and the exergy efficiency is also improved, resulting in a very large practical effect. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は多重槽型蓄熱装置の断面図である。 第2図は多重槽型蓄熱装置の熱流部T部分の水平断面図
である。 特許出願人  安 川 敬 −醪
FIG. 1 is a sectional view of a multiple tank type heat storage device. FIG. 2 is a horizontal sectional view of the heat flow section T of the multi-tank heat storage device. Patent applicant Takashi Yasukawa - Moromi

Claims (1)

【特許請求の範囲】 (1)蓄熱部Sは、外枠lを鉄板又はF’RP等を円筒
形・樽形・球形等につくり断熱材でよく保温し。 その中央部に、断熱、耐圧、耐熱性をもった中心枠2を
おき、外枠lと中心枠2の間を断熱性のある中間枠3に
よって分割したものであり、中間枠3は任意数増加させ
ることが出来、各枠は同心軸状をこ形成されるものとす
る。 (2)熱流部Tは、断熱材で囲まれた円筒形の外枠4内
に、筒形の壁5N、壁5B、をおき、中心槽Nに見合う
室N′、槽Bに見合う室B′、槽Aに見合う室Iを形成
し、室N′内に熱流体10を送給する筒Uを設け、案内
板13で囲み、その背中合に吐出管14N等を壁5Nに
設け、室B′では吐出管14Nの背中合に遮蔽板158
を挾んで吐出管14Bを壁5Bに設け、室A′では吐出
管148の背中合に、遮蔽板に5Aを挾んで廃出口12
を外枠4に設けることにより、室N′を眼とする渦巻型
の熱流体10の流路を形成したものである。 ■)熱流部Tの上部に蓄熱部Sを密着又は切離した状態
で設置する。 (4)  中心槽Nと室N′を結んで任意数のヒートバ
イブロN群を、槽Bと室B′を結兄でヒート・ζ゛イブ
6B群、槽Aと室A′とを連結するヒートバイブ転群を
各々のヒートパイプの蒸発部は下の熱流部T内に凝縮部
は上の蓄熱部S内に突出させる。 6)蓄熱部Sの槽A、槽B、中心槽N内には、各個に任
意の蓄熱熱媒体を封入する。それは同一の蓄熱熱媒体で
あってもよい。 (6)蓄熱部Sの外枠l内部全面にわたって、又は中心
槽N部分のみを鉄板等で耐圧性の強化を図り。 ここに高圧熱水としての蓄熱を図かることが出来る。
[Claims] (1) The heat storage section S has an outer frame l made of iron plate or F'RP in a cylindrical, barrel, or spherical shape, and well insulated with heat insulating material. A central frame 2 with heat insulation, pressure resistance, and heat resistance is placed in the center, and the outer frame 1 and the center frame 2 are divided by intermediate frames 3 with heat insulation properties, and the number of intermediate frames 3 is arbitrary. The number of frames can be increased, and each frame is formed with concentric shafts. (2) The heat flow section T has a cylindrical wall 5N and a wall 5B in a cylindrical outer frame 4 surrounded by a heat insulating material, and a chamber N' corresponding to the central tank N and a chamber B corresponding to the tank B. ', a chamber I corresponding to the tank A is formed, a cylinder U for feeding the thermal fluid 10 is provided in the chamber N', it is surrounded by a guide plate 13, a discharge pipe 14N etc. are installed on the wall 5N behind it, and the chamber In B', a shielding plate 158 is placed behind the discharge pipe 14N.
A discharge pipe 14B is installed on the wall 5B by sandwiching the discharge pipe 148.
By providing this in the outer frame 4, a spiral-shaped flow path for the thermal fluid 10 with the chamber N' as the eye is formed. (2) Install the heat storage section S on the upper part of the heat flow section T, either in close contact with it or in a separated state. (4) Connect an arbitrary number of Heat Vibro N groups by connecting central tank N and chamber N', connect Heat Vibro 6B group by connecting tank B and chamber B', and connect tank A and chamber A' by connecting the central tank N and chamber N'. The evaporating part of each heat pipe in the heat vibrator group protrudes into the lower heat flow part T, and the condensing part protrudes into the upper heat storage part S. 6) In the tank A, tank B, and center tank N of the heat storage section S, an arbitrary heat storage heat medium is sealed in each one. It may be the same thermal storage medium. (6) Strengthen the pressure resistance over the entire inside of the outer frame l of the heat storage section S or only at the central tank N portion with iron plates or the like. Here, heat can be stored as high-pressure hot water.
JP56124531A 1981-08-08 1981-08-08 Multiple tank type heat accumulating device Pending JPS5826993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56124531A JPS5826993A (en) 1981-08-08 1981-08-08 Multiple tank type heat accumulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56124531A JPS5826993A (en) 1981-08-08 1981-08-08 Multiple tank type heat accumulating device

Publications (1)

Publication Number Publication Date
JPS5826993A true JPS5826993A (en) 1983-02-17

Family

ID=14887775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56124531A Pending JPS5826993A (en) 1981-08-08 1981-08-08 Multiple tank type heat accumulating device

Country Status (1)

Country Link
JP (1) JPS5826993A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091289U (en) * 1983-11-26 1985-06-22 倉敷造機株式会社 Automatic pipe cleaning device
CN103335551A (en) * 2013-07-19 2013-10-02 机械工业第六设计研究院有限公司 Layered heat accumulation water tank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091289U (en) * 1983-11-26 1985-06-22 倉敷造機株式会社 Automatic pipe cleaning device
JPH0231187Y2 (en) * 1983-11-26 1990-08-22
CN103335551A (en) * 2013-07-19 2013-10-02 机械工业第六设计研究院有限公司 Layered heat accumulation water tank
CN103335551B (en) * 2013-07-19 2014-12-31 机械工业第六设计研究院有限公司 Layered heat accumulation water tank

Similar Documents

Publication Publication Date Title
CN107250706B (en) Thermal energy storage and heat exchanger
CN100445686C (en) Mixed heat accumulation method and device for hightemperature and inclined temperature layer in melting salt
AU2015363808A1 (en) High temperature thermal energy storage, a method of building and a method of operating said storage
CN106409357B (en) A kind of reactor with the discharge of passive residual heat of nuclear core
CN106839847A (en) Phase-change energy storage device
AU2010249928A1 (en) Thermal energy storage apparatus
WO2022194247A1 (en) Integrated passive reactor
WO2023231300A1 (en) High-temperature heat exchange and heat storage unit, structure, and device
CN102748795A (en) Phase-change heat accumulation and supply device
CN107101247A (en) A kind of portable regenerative apparatus
CN101672524A (en) Electric heating energy-storage recycling system
AU2016281723B2 (en) High temperature synthesis for power production and storage
CN101046289B (en) Steam generator
CN104596335A (en) Heat storing device and heat circulating method of pulsating heat pipes
CN201043869Y (en) High-temperature thermocline mixed heat accumulation device in molten salt
JPS5826993A (en) Multiple tank type heat accumulating device
CN109386972A (en) A kind of multiple tank fused salt hold over system of compressed gas and pump for liquid salts coupling driving
CN215112517U (en) Combined cycle cogeneration system based on heat storage
CN112648874B (en) Heat storage and release device based on cascaded phase transition tube bank
CN210980405U (en) Two-stage circular ring baffling type solar phase change energy storage device
CN104654896B (en) The combination segmentation hot open-loop control system of charge and discharge of thermophore
CN215114120U (en) Heat storage device applied to cogeneration
RU2094709C1 (en) Peak heat-electric power plant with heat storage built around phase transitions
JPS5872885A (en) Latent heat accumulator
CN115985526A (en) Heat pipe type fuel element, reactor core, operation method and application thereof