JPS5826762B2 - Coaxial cable manufacturing method - Google Patents

Coaxial cable manufacturing method

Info

Publication number
JPS5826762B2
JPS5826762B2 JP54093182A JP9318279A JPS5826762B2 JP S5826762 B2 JPS5826762 B2 JP S5826762B2 JP 54093182 A JP54093182 A JP 54093182A JP 9318279 A JP9318279 A JP 9318279A JP S5826762 B2 JPS5826762 B2 JP S5826762B2
Authority
JP
Japan
Prior art keywords
insulator
temperature
cooling water
water tank
outermost layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54093182A
Other languages
Japanese (ja)
Other versions
JPS5618316A (en
Inventor
文博 芦谷
真一 古川
幸康 根岸
敏行 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP54093182A priority Critical patent/JPS5826762B2/en
Publication of JPS5618316A publication Critical patent/JPS5618316A/en
Publication of JPS5826762B2 publication Critical patent/JPS5826762B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は同軸ケーブルの製造方法に関するものである。[Detailed description of the invention] The present invention relates to a method of manufacturing a coaxial cable.

第1図に同軸ケーブルの一例として海底同軸ケーブルの
構造を、第2図に従来の海底同軸ケーブル用絶縁体の製
造方法の概略を示す。
FIG. 1 shows the structure of a submarine coaxial cable as an example of a coaxial cable, and FIG. 2 schematically shows a conventional method for manufacturing an insulator for submarine coaxial cables.

図にかいて1は内部導体、2は絶縁体、3は外部導体、
4は外被、5は押出し成形機、6は冷却水槽である。
In the figure, 1 is the inner conductor, 2 is the insulator, 3 is the outer conductor,
4 is a jacket, 5 is an extrusion molding machine, and 6 is a cooling water tank.

同軸ケーブル用絶縁体の製造に釦いては、絶縁体2は冷
却水槽6の冷却水によって絶縁体の外層から連続的に固
化してゆく。
When manufacturing an insulator for a coaxial cable, the insulator 2 is continuously solidified from the outer layer by cooling water in a cooling water tank 6.

絶縁体の最外層が固化を開始してから、絶縁体全体が固
化を終了する1での間、絶縁体の外層に固化層が形成さ
れ、方、絶縁体の内層は溶融状態となっている。
During the period from when the outermost layer of the insulator begins to solidify to when the entire insulator finishes solidifying, a solidified layer is formed on the outer layer of the insulator, while the inner layer of the insulator is in a molten state. .

溶融状態で押出された絶縁体が冷却されるとき、冷却に
よる固化層の体積収縮量が冷却による溶融層の体積収縮
量よりも小さければボイドが発生するが、固化層、溶融
層、両層の体積収縮量が等しければボイドは発生しない
When an insulator extruded in a molten state is cooled, voids will occur if the volumetric contraction of the solidified layer due to cooling is smaller than the volumetric contraction of the molten layer. If the amount of volumetric shrinkage is equal, no voids will occur.

固化層、溶融層両層の体積収縮量を等しくするためには
絶縁体全体が固化する1での間、絶縁体内の温度差を小
さくする必要がある。
In order to equalize the amount of volumetric contraction of both the solidified layer and the molten layer, it is necessary to reduce the temperature difference within the insulator during step 1 when the entire insulator is solidified.

したがって、第1に、絶縁体最外層が固化を開始した時
刻にかいて、絶縁体最内層と最外層との温度差TDが臨
界値T8をこえないこと、第2に絶縁体全体が固化する
1での間、絶縁体の最外層の温度と最内層の温度の差が
大きくならないことが必要である。
Therefore, firstly, the temperature difference TD between the innermost insulator layer and the outermost layer does not exceed the critical value T8 at the time when the outermost insulator layer starts solidifying, and secondly, the entire insulator is solidified. 1, it is necessary that the difference in temperature between the outermost layer and the innermost layer of the insulator does not become large.

な釦TDの臨界値T8 については、絶縁体の固化層の
体積収縮量と溶融層の体積収縮量が等しくなるような冷
却条件に卦いて、絶縁体の最外層が固化を開始した時刻
に訃ける絶縁体内の温度差(絶縁体最外層の温度と最内
層の温度との差)TDを、TDの臨界値T8 と定義す
る。
Regarding the critical value T8 of button TD, it is assumed that under cooling conditions such that the amount of volumetric contraction of the solidified layer of the insulator is equal to the amount of volumetric contraction of the molten layer, the temperature at which the outermost layer of the insulator starts solidifying is The temperature difference TD within the insulator (difference between the temperature of the outermost layer and the temperature of the innermost layer of the insulator) is defined as the critical value T8 of TD.

T8は絶縁体の密度、絶縁体の体積収縮率、絶縁体のヤ
ング率卦よび絶縁体の外径によって異なる。
T8 varies depending on the density of the insulator, the volume shrinkage rate of the insulator, the Young's modulus of the insulator, and the outer diameter of the insulator.

T8を実現可能とする製造条件については後に記述する
Manufacturing conditions that make T8 possible will be described later.

第2図に示した従来の製造方法を用して海底同軸ケーブ
ル用絶縁体を製造する場合の絶縁体内の温度分布を第3
図に示す。
The temperature distribution inside the insulator when manufacturing an insulator for submarine coaxial cables using the conventional manufacturing method shown in Figure 2 is shown in Figure 3.
As shown in the figure.

Aは絶縁体と中心導体の境界の温度、Bは絶縁体最外層
の温度、Cは冷却時間に対する冷却水槽の水温分布、T
1.T2゜T3.T4.T5はそれぞれ第1.2.3.
4.5冷却水槽の水温である。
A is the temperature at the boundary between the insulator and the center conductor, B is the temperature at the outermost layer of the insulator, C is the water temperature distribution in the cooling water tank with respect to the cooling time, T
1. T2゜T3. T4. T5 is No. 1, 2, 3, respectively.
4.5 Water temperature of cooling water tank.

toは絶縁体全体が固化を終了する1での時間、t8は
絶縁体全体が固化を終了した時点から絶縁体が冷却水槽
を出る時点までの時間(冷却時間−16)である。
to is the time at 1 when the entire insulator finishes solidifying, and t8 is the time from when the entire insulator finishes solidifying to when the insulator leaves the cooling water tank (cooling time - 16).

Toは絶縁体が固化を開始する温度である。To is the temperature at which the insulator begins to solidify.

TDは絶縁体最外層の温度B−Toとなった時刻に釦け
る絶縁体内の温度差(A−B)である。
TD is the temperature difference (A-B) inside the insulator that is turned on at the time when the temperature of the outermost layer of the insulator reaches B-To.

従来の海底同軸ケーブル用絶縁体の製造方法にかいては
、溶融状態の絶縁体2を押出し成形機5から中心導体1
のうえに押出して被覆した後、2槽以上の冷却水槽6を
用いて室温に1で連続的に徐冷する方法が用いられてい
たため、次のような欠点があった。
In the conventional manufacturing method of insulators for submarine coaxial cables, a molten insulator 2 is passed from an extrusion molding machine 5 to a center conductor 1.
The conventional method used was to extrude and coat the material on top of the material and then slowly cool it continuously to room temperature using two or more cooling water tanks 6, which had the following drawbacks.

第1に第1冷却水槽から第2冷却水槽、釦よび第2冷却
水槽から第3冷却水槽に移る際に、絶縁体内の温度差(
A−B)が一時増加するため、ボイドが発生しやすくな
る。
First, when moving from the first cooling water tank to the second cooling water tank, and from the second cooling water tank to the third cooling water tank, there is a
A-B) increases temporarily, making voids more likely to occur.

第2に製造速度を高速化すると、絶縁体最外層は第2冷
却水槽以降の冷却水槽で固化を開始するようになるため
、絶縁体最外層の温度BfJ″−Tc に達した時の絶
縁体内の温度差TDがその臨界値T8以上となってボイ
ドが発生する。
Second, if the manufacturing speed is increased, the outermost layer of the insulator will start to solidify in the cooling water tanks after the second cooling water tank, so when the temperature of the outermost layer of the insulator reaches BfJ''-Tc, When the temperature difference TD becomes greater than the critical value T8, voids occur.

第3にT8(絶縁体全体が固化を終了した時点から絶縁
体の冷却が終了した時点1での時間)が全冷却時間の5
0%を占め、絶縁体の製造に必要以上の時間を要する。
Thirdly, T8 (the time from the time when the entire insulator has finished solidifying to the time when cooling of the insulator has finished) is 5 of the total cooling time.
0%, and it takes more time than necessary to manufacture the insulator.

本発明は上記の欠点を改善するために提案されたもので
ある。
The present invention has been proposed to improve the above-mentioned drawbacks.

本発明は同軸ケーブル用絶縁体の製造方法に訃いて、絶
縁体で被覆されたコアを、最外層が固化した時点以降に
かける絶縁体内の温度差がその臨界値以下となるような
冷却水槽で、絶縁体全体が固化する1で冷却し、次にそ
の後の水槽で室温に1で急冷することを特徴とし、その
目的は絶縁体と中心導体との間のボイドの発生を抑制す
ること、卦よび絶縁体製造の高速化を可能とすること釦
よび絶縁体製造時間を短縮化することにある。
The present invention is based on a method of manufacturing an insulator for coaxial cables, in which a core covered with an insulator is heated in a cooling water bath such that the temperature difference within the insulator after the time when the outermost layer is solidified is below its critical value. , is characterized by cooling at 1 to solidify the entire insulator, and then rapidly cooling to room temperature in a water bath at 1, the purpose of which is to suppress the generation of voids between the insulator and the central conductor. Another object of the present invention is to shorten the manufacturing time of buttons and insulators.

次に本発明の実施例を図面について説明する。Next, embodiments of the present invention will be described with reference to the drawings.

第4図は本発明の一実施例であって、1は中心導体、2
は絶縁体、5は押出し成形機、7は徐冷水槽、8は急冷
水槽である。
FIG. 4 shows an embodiment of the present invention, in which 1 is the center conductor, 2
5 is an insulator, 5 is an extrusion molding machine, 7 is a slow cooling water tank, and 8 is a quenching water tank.

これを動作するには、押出し成形機5から押出される絶
縁体の樹脂温度TRと冷却水温度T7゜T8:bよび徐
冷水槽Tで絶縁体2を冷却する時間を以下のように設定
する。
To operate this, the resin temperature TR of the insulator extruded from the extrusion molding machine 5, the cooling water temperature T7°T8:b, and the time for cooling the insulator 2 in the slow cooling water tank T are set as follows. .

絶縁体の樹脂温度TRは170〜220℃、冷却水温度
T7は75〜100°Cの範囲の温度を選定するカー、
絶縁体最外層が固化を開始する時刻にふ・ける絶縁体内
の温度差TDが臨界値T8 を越えないような条件に設
定しなければならない。
The resin temperature TR of the insulator is 170 to 220°C, and the cooling water temperature T7 is 75 to 100°C.
Conditions must be set so that the temperature difference TD within the insulator at the time when the outermost layer of the insulator begins to solidify does not exceed a critical value T8.

第5図は密度0.92〜0.94?/crAの低密度ポ
リエチレンを用いて絶縁体外径46間、中心導体外径1
27nrILの海底同軸ケーブルを製造する場合のTD
の臨界値T8(絶縁体の固化層の体積収縮量と溶融層の
体積収縮量を等しくするために必要な絶縁体最外層の固
化開始時刻にふ・ける絶縁体内の温度差)と絶縁体の樹
脂温度TR1徐冷水槽の冷却水温度T7の関係を示す。
Figure 5 shows a density of 0.92 to 0.94? /crA low density polyethylene with an insulator outer diameter of 46 and a center conductor outer diameter of 1.
TD when manufacturing 27nrIL submarine coaxial cable
critical value T8 (temperature difference inside the insulator at the time when the outermost layer of the insulator starts solidifying, which is necessary to equalize the amount of volumetric contraction of the solidified layer of the insulator and the amount of volumetric contraction of the molten layer) The relationship between the resin temperature TR1 and the cooling water temperature T7 of the slow cooling water tank is shown.

図中の実線は、絶縁体最外層が固化を開始する時刻に釦
ける絶縁体内の温度差TDが臨界値T8 と等しくなる
ような条件(絶縁体の樹脂温度TRと冷却水温度T7
)を示す。
The solid line in the figure indicates the conditions under which the temperature difference TD within the insulator at the time when the outermost layer of the insulator starts solidifying is equal to the critical value T8 (resin temperature TR of the insulator and cooling water temperature T7).
) is shown.

実線左上の斜線で示した条件ではT8〉TDとなって、
ボイドは発生しな−。
Under the conditions indicated by the diagonal line on the upper left of the solid line, T8>TD,
No voids occur.

実線右下の条件ではT8〈TDとなってボイドが発生す
る。
Under the condition at the bottom right of the solid line, T8<TD, and a void occurs.

したがって、絶縁体の樹脂温度TRと冷却水温度T7と
は、第5図にかいて両者の交点が斜線で示した範囲に入
るように設定すればよho例えば、絶縁体の樹脂温度T
R=194℃とし次場合には、第5図に◎印で示すよう
に、徐冷水槽の冷却水温度TR≧94℃とすれば、ボイ
ドの発生しない条件が得られる。
Therefore, the resin temperature TR of the insulator and the cooling water temperature T7 should be set so that the intersection of the two falls within the shaded range in FIG. 5. For example, the resin temperature T of the insulator
In the case where R=194° C., as shown by the mark ◎ in FIG. 5, if the temperature of the cooling water in the slow cooling water tank TR≧94° C., a condition in which no voids occur can be obtained.

なふ・第5図で○印1.×印は実験結果を示したもので
、○印はボイドの発生しなかった製造条件、X印はボイ
ドの発生した製造条件である。
Nafu・○ mark 1 in Figure 5. The x marks indicate the experimental results, the ○ marks indicate manufacturing conditions in which voids did not occur, and the X marks indicate manufacturing conditions in which voids occurred.

急冷水槽の冷却水温度T8は、冷却終了時の絶縁体コア
の温度を室温に1で低減するために、5〜30’Cの温
度であることが望ましい。
The cooling water temperature T8 of the quenching water tank is desirably a temperature of 5 to 30'C in order to reduce the temperature of the insulator core by 1 to room temperature at the end of cooling.

絶縁体は徐冷水槽で少なくとも25分以上冷却されるよ
うにする。
The insulator is cooled in a slow cooling water bath for at least 25 minutes.

以上のように設定した条件(絶縁体の樹脂温度TR1冷
却水槽の冷却水温度T7s TBsyよび絶縁体を徐冷
水槽で冷却する時間)を用いると、絶縁体内の温度分布
は第6図のようになる。
Using the conditions set above (insulator resin temperature TR1, cooling water temperature T7s TBsy in the cooling water tank, and time for cooling the insulator in the slow cooling water tank), the temperature distribution inside the insulator will be as shown in Figure 6. Become.

第6図は本発明の実施例であって、絶縁体の樹脂温度を
194℃、徐冷水槽の冷却水温度を95℃、急冷水槽の
冷却水温度を15℃、絶縁体を徐冷水槽中で30分冷却
するように設定して、43mm1m底同軸ケーブル用絶
縁体を冷却した場合の絶縁体内の温度分布を示す。
FIG. 6 shows an embodiment of the present invention, in which the resin temperature of the insulator is 194°C, the cooling water temperature of the slow cooling water tank is 95°C, the cooling water temperature of the rapid cooling water tank is 15°C, and the insulator is placed in the slow cooling water tank. The figure shows the temperature distribution inside the insulator when the insulator for a 43 mm 1 m bottom coaxial cable is cooled by setting the insulator to cool for 30 minutes.

Aは絶縁体と中心導体の境界の温度、Bは絶縁体最外層
の温度、Cは冷却水槽の水温である。
A is the temperature at the boundary between the insulator and the center conductor, B is the temperature at the outermost layer of the insulator, and C is the water temperature in the cooling water tank.

冷却水槽は徐冷水槽(冷却水温度T7)と急冷水槽(冷
却水温度T8)の2槽から戒っている。
The cooling water tank consists of two tanks: a slow cooling water tank (cooling water temperature T7) and a rapid cooling water tank (cooling water temperature T8).

また実線A、B、Cは製造速度V1で製造する場合の温
度分布、点線A’ I B’ jC′は製造速度v2(
v2〉■1)で製造する場合の温度分布である。
In addition, solid lines A, B, and C represent temperature distribution when manufacturing at manufacturing speed V1, and dotted lines A' I B'jC' represent manufacturing speed v2 (
This is the temperature distribution when manufacturing according to v2>■1).

絶縁体2は絶縁体全体が固化される1で徐冷水槽7で冷
却された後、急冷水槽8で室温に1で急冷される。
The insulator 2 is cooled in an annealing water tank 7 at 1, where the entire insulator is solidified, and then rapidly cooled to room temperature in a quenching water tank 8 at 1.

本発明は以上のように、絶縁体最外層の温度Bは徐冷さ
れるため、絶縁体全体が固化される1での間の絶縁体内
の温度差(A−B)は小さくすることができる。
As described above, in the present invention, since the temperature B of the outermost layer of the insulator is slowly cooled, the temperature difference (A-B) within the insulator between 1 and 1 when the entire insulator is solidified can be made small. .

また絶縁体全体が固化した後は、絶縁体2が急冷水槽8
ですみやかに室温に1で冷却されるため、絶縁体全体が
固化を終了した時点から絶縁体が冷却水槽を出る時点1
での時間(冷却時間−19)は短かくすることができる
Furthermore, after the entire insulator is solidified, the insulator 2 is cooled in the quenching water tank 8.
Since the insulator is quickly cooled to room temperature at 1, the time at which the insulator leaves the cooling water tank is 1 after the entire insulator has finished solidifying.
The time at (cooling time - 19) can be shortened.

さらに、製造速度v1からv2に高速化しても、絶縁体
最外層は常に徐冷水槽で固化するので、絶縁体最外層が
固化を開始する時点に釦ける絶縁体内の温度差TDが臨
界値T8以上となることはないから、絶縁体2と中心導
体1との間にボイドは発生しない。
Furthermore, even if the manufacturing speed is increased from v1 to v2, the outermost layer of the insulator is always solidified in the slow cooling water tank, so the temperature difference TD inside the insulator at the time the outermost layer of the insulator starts solidifying is the critical value T8. Since this will not happen, no void will occur between the insulator 2 and the center conductor 1.

な釦、第4図の実施例の徐冷水槽7は、冷却水温度T7
釦よびT7から約5℃ずつ低い水温を有する2〜3ケの
水槽に分割することも可能である。
button, the slow cooling water tank 7 of the embodiment shown in FIG. 4 has a cooling water temperature of T7.
It is also possible to divide the tank into 2-3 tanks with water temperatures approximately 5° C. lower from button and T7.

この場合、絶縁体最外層の温度Bが常に第1番目の徐冷
水槽で固化を開始するように、各水槽の冷却水温度を設
定する必要がある。
In this case, it is necessary to set the cooling water temperature of each water tank so that the temperature B of the outermost layer of the insulator always starts solidification in the first slow cooling water tank.

以上説明したように、最外層が固化した時点に釦ける絶
縁体内の温度差TDが臨界値T8を越えな−ような温度
分布を与える水温T7を有する第1゛水槽で絶縁体全体
が固化する1で徐冷し、次にT7 より50℃以上低い
水温T8を有する第2水槽で急冷するような製造法を実
施することにより、絶縁体全体が固化する1での間のA
、B間の温度差が大きくならず、また絶縁体全体が固化
した後の冷却時間を短縮できるうえ、製造速度を高速化
しても絶縁体最外層が固化した時刻に釦ける絶縁体内の
温度差TDを一定に保つことができるため、絶縁体2の
肉厚が厚いケーブルを製造する場合にも、冷却水槽を長
くすることなく、−かつ製造速度を高速化して、ボイド
を発生せずに絶縁体を冷却できるという利点がある。
As explained above, the entire insulator is solidified in the first water tank, which has a water temperature T7 that provides a temperature distribution such that the temperature difference TD within the insulator does not exceed the critical value T8 when the outermost layer solidifies. By carrying out a manufacturing method in which the insulator is slowly cooled in step 1 and then rapidly cooled in a second water tank having a water temperature T8 that is 50°C or more lower than T7, the entire insulator solidifies.
, B does not become large, and the cooling time after the entire insulator has solidified can be shortened, and even if the manufacturing speed is increased, the temperature difference inside the insulator will be reduced at the time when the outermost layer of the insulator is solidified. Since the TD can be kept constant, even when manufacturing a cable with a thick insulator 2, it is possible to insulate without creating voids without increasing the length of the cooling water tank and increasing the manufacturing speed. It has the advantage of cooling the body.

なか本発明は、同軸ケーブルだけでなく、例えば電カケ
ープルのように、芯線に絶縁体を被覆するケーブルの製
造方法に応用することができる。
The present invention can be applied not only to coaxial cables but also to methods of manufacturing cables in which the core wire is coated with an insulator, such as electric cables.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は海底同軸ケーブルの構造、第2図は従来の海底
同軸ケーブル用絶縁体の製造方法の概略、第3図は従来
の製造方法に釦ける冷却水槽の水温分布と′冷却中の絶
縁体内の温度分布、第4図は本発明の実施例の概略、第
5図は絶縁体最外層が固化を開始した時刻に釦ける絶縁
体内の温度差TDの臨界値T8 と絶縁体の樹脂温度T
R1冷却水温度T7との関係、第6図は本発明の実施例
に釦ける絶縁体内の温度分布である。 1・・・中心導体、2・・・絶縁体、3・・・外部導体
、4・・・外被、5・・・押出し成形機、6・・・冷却
水槽、I・・・徐冷水槽、8・・・急冷水槽。
Figure 1 shows the structure of a submarine coaxial cable, Figure 2 shows an outline of the conventional manufacturing method for insulators for submarine coaxial cables, and Figure 3 shows the water temperature distribution in the cooling water tank and insulation during cooling according to the conventional manufacturing method. Temperature distribution inside the body, Fig. 4 is an outline of an embodiment of the present invention, and Fig. 5 shows the critical value T8 of the temperature difference TD within the insulator and the resin temperature of the insulator at the time when the outermost layer of the insulator starts solidifying. T
The relationship between R1 and cooling water temperature T7 is shown in FIG. 6, which shows the temperature distribution inside the insulator according to the embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Center conductor, 2... Insulator, 3... Outer conductor, 4... Outer cover, 5... Extrusion molding machine, 6... Cooling water tank, I... Annealing water tank , 8...Quick cooling water tank.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁体で被覆されたコアを、最外層が固化した時点
以降に釦ける前記の絶縁体の最外層と最内層との温度差
が、前記の絶縁体の臨界値以下となるような水温に設定
した水槽で、前記の絶縁体全体力固化する1で冷却し、
ついでその後の水槽で室温に1で伶却することを特徴と
する同軸ケーブルの製造方法。
1. The core covered with an insulator is heated to a water temperature such that the temperature difference between the outermost layer and the innermost layer of the insulator after the outermost layer solidifies is equal to or less than the critical value of the insulator. Cool the entire insulator in a set water tank to solidify it,
A method for producing a coaxial cable, which is then cooled to room temperature in a water tank.
JP54093182A 1979-07-24 1979-07-24 Coaxial cable manufacturing method Expired JPS5826762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54093182A JPS5826762B2 (en) 1979-07-24 1979-07-24 Coaxial cable manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54093182A JPS5826762B2 (en) 1979-07-24 1979-07-24 Coaxial cable manufacturing method

Publications (2)

Publication Number Publication Date
JPS5618316A JPS5618316A (en) 1981-02-21
JPS5826762B2 true JPS5826762B2 (en) 1983-06-04

Family

ID=14075426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54093182A Expired JPS5826762B2 (en) 1979-07-24 1979-07-24 Coaxial cable manufacturing method

Country Status (1)

Country Link
JP (1) JPS5826762B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05176828A (en) * 1991-12-26 1993-07-20 Harakawa Kagu Kk Chair seat

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020270A (en) * 1973-06-26 1975-03-04
JPS53100486A (en) * 1977-02-15 1978-09-01 Showa Electric Wire & Cable Co Method of cooling extrusion coated electric wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020270A (en) * 1973-06-26 1975-03-04
JPS53100486A (en) * 1977-02-15 1978-09-01 Showa Electric Wire & Cable Co Method of cooling extrusion coated electric wire

Also Published As

Publication number Publication date
JPS5618316A (en) 1981-02-21

Similar Documents

Publication Publication Date Title
US3532783A (en) Method of molding bonded messenger cable
US3849192A (en) Method of applying and cooling low density polyethylene cable insulation
US1862947A (en) Manufacture of articles from thermoplastic materials
JPS5826762B2 (en) Coaxial cable manufacturing method
US3085303A (en) Method and means for continuous casting employing compartmented molds
FR2336774A1 (en) Insulating cable sleeving without orientation - produced by suspending extrusion covered core as catenary cooling and reheating
JPS60180017A (en) Method of producing high foamable material insulated wire
JPS5919805B2 (en) Rapid molding method for plastic film
JPH0618087B2 (en) Extruded stretched insulated wire
JP2901289B2 (en) How to connect the power cable
JPH0424133B2 (en)
JPH07101965B2 (en) Cross-linked polyethylene insulation cable connection method
JPH05242748A (en) Manufacture of power cable
JPS6314819B2 (en)
JPS6044985A (en) Method of producing sleeve for connecting branch cable
JPH052936A (en) Manufacture of power cable
JPS639068Y2 (en)
JPH02276115A (en) Manufacture of foam plastic insulated wire
JPH035028B2 (en)
JPS5810254Y2 (en) Continuous cable crosslinking equipment
FI71035B (en) TELECOMMUNICATIONS CABLE RETAIL METHOD FOER TILLVERKNING AV DENSAMMA
CA1047213A (en) Making of high voltage cable with thick envelope
SU691938A1 (en) Method of making windings for electromagnets
JPS6116144B2 (en)
JP2938474B2 (en) Method for manufacturing foamed insulated core of communication cable