JPS5826742B2 - Transesterification reaction method - Google Patents

Transesterification reaction method

Info

Publication number
JPS5826742B2
JPS5826742B2 JP51056660A JP5666076A JPS5826742B2 JP S5826742 B2 JPS5826742 B2 JP S5826742B2 JP 51056660 A JP51056660 A JP 51056660A JP 5666076 A JP5666076 A JP 5666076A JP S5826742 B2 JPS5826742 B2 JP S5826742B2
Authority
JP
Japan
Prior art keywords
reaction
dmt
temperature
transesterification
rectification column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51056660A
Other languages
Japanese (ja)
Other versions
JPS52142035A (en
Inventor
哲志 羽原
平六 菅沼
寛幸 池内
昭春 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP51056660A priority Critical patent/JPS5826742B2/en
Publication of JPS52142035A publication Critical patent/JPS52142035A/en
Publication of JPS5826742B2 publication Critical patent/JPS5826742B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明はジメチルテレフタレートとエチレングリコール
とのエステル交換反応により、ビス−βヒドロキシエチ
ルテレフタレートおよび/またはその低重合体を得るた
めの改良された工業的なエステル交換反応方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved industrial transesterification process for obtaining bis-β-hydroxyethyl terephthalate and/or its low polymers by transesterification of dimethyl terephthalate and ethylene glycol. .

さらに詳しくは、本発明はジメチルテレフタレートとエ
チレングリコールとのエステル交換反応において特定化
合物を特定量存在せしめて反応を行なう方法に関する。
More specifically, the present invention relates to a method of carrying out a transesterification reaction between dimethyl terephthalate and ethylene glycol in the presence of a specific amount of a specific compound.

ジメチルテレフタレート(以下DMTという)とエチレ
ングリコール(以下EGという)とを反応させビス−β
−ヒドロキシエチルテレフタレートおよび/またはその
低重合体(以下BHTという)を得る通常のエステル交
換反応方法においては、DMTの蒸気発生量が多く、こ
れに起因してエステル交換反応速度が遅くなるという問
題点がある。
Dimethyl terephthalate (hereinafter referred to as DMT) and ethylene glycol (hereinafter referred to as EG) are reacted to form bis-β.
- In the usual transesterification method for obtaining hydroxyethyl terephthalate and/or its low polymer (hereinafter referred to as BHT), there is a problem that a large amount of DMT vapor is generated, which slows down the transesterification reaction rate. There is.

すなわち、DMTの蒸気発生量が多L・と反応液から発
生するメタノールを除去するための精留塔で、特に精留
塔下部でDMTが凝縮、固化して精留塔を詰らせ反応容
器の異常な圧力上昇および反応液の突沸が起こる等操業
運転上極めて好ましくない現象が起こる。
In other words, it is a rectification column that generates a large amount of DMT vapor and removes methanol generated from the reaction solution. DMT condenses and solidifies especially at the bottom of the rectification column, clogging the rectification column and causing damage to the reaction vessel. Extremely unfavorable phenomena occur during operation, such as an abnormal pressure rise and bumping of the reaction liquid.

そしてこのような現象は、例えば回分式エステル交換反
応方法において低反応率(50%以下)の混合物を19
0℃以上の高温で加熱するような反応初期に特に顕著で
ある。
And this phenomenon occurs, for example, when a mixture with a low reaction rate (50% or less) is converted into 19% in a batch transesterification method.
This is particularly noticeable at the early stage of the reaction when heating is performed at a high temperature of 0°C or higher.

このため反応率50%以下の比較的低反応率領域ではD
MTに起因する精留塔詰りか生じないような遅い昇温速
度とする必要があり、低反応率領域ではEGの沸点以下
の温度をとらざるを得ない。
Therefore, in a relatively low reaction rate region of 50% or less, D
It is necessary to set the temperature increase rate so slow that only clogging of the rectification column occurs due to MT, and in the low reaction rate region, the temperature must be kept below the boiling point of EG.

従って、通常の回分式エステル交換反応方法では反応速
度が遅く、BHTの生産性を向上させることは困難であ
る。
Therefore, in the conventional batch transesterification method, the reaction rate is slow and it is difficult to improve the productivity of BHT.

前記したDMTとEGの回分式エステル交換反応方法の
問題点を解決することを目的として、反応前の反応容器
にまずEGの全量を供給し、次いでDMTを特定割合で
供給して反応させる方法(特公昭5O−15785)が
提案されている。
In order to solve the problems of the above-mentioned batch transesterification method of DMT and EG, we have developed a method in which the entire amount of EG is first supplied to the reaction vessel before the reaction, and then DMT is supplied at a specific ratio for reaction ( Special Publication No. 5O-15785) has been proposed.

この方法は反応前の反応容器に所定量のDMTとEGの
全量を供給して反応させる従来法に較べて反応初期のD
MTの存在割合が少ないため、精留塔へ蒸気となって上
昇するDMTが少ない。
Compared to the conventional method in which a predetermined amount of DMT and the entire amount of EG are supplied to the reaction vessel before the reaction, the DMT at the initial stage of the reaction is
Since the proportion of MT present is small, less DMT rises to the rectification column as vapor.

このため精留塔の詰りか発生せず、反応初期からECの
沸点近くの温度で反応を行なうことができ、このため反
応速度を比較的大きくすることが可能である。
Therefore, only clogging of the rectification column occurs, and the reaction can be carried out at a temperature close to the boiling point of EC from the initial stage of the reaction, making it possible to increase the reaction rate relatively.

しかしながら、反応前にEGを全量供給した後DMTを
連続的に供給する該方法では、反応の後半を除き高温下
で遊離ECが多量に存在するためエーテル化反応が進行
し、ジエチレングリコール(以下DEGという)の副生
が多くなり生成りHTから得られるポリマーの軟化点を
低下させる欠点がある。
However, in this method where DMT is continuously supplied after supplying the entire amount of EG before the reaction, the etherification reaction proceeds due to the presence of a large amount of free EC at high temperatures except in the latter half of the reaction, and diethylene glycol (hereinafter referred to as DEG) ), which has the disadvantage of lowering the softening point of the polymer obtained from HT.

さらに反応速度についても反応初期のDMTの濃度が低
いため未だ不充分で、さらに高い反応速度で反応を行な
う改善された方法が必要である。
Furthermore, the reaction rate is still insufficient due to the low concentration of DMT at the initial stage of the reaction, and there is a need for an improved method to carry out the reaction at an even higher reaction rate.

本発明の目的はかかる従来公知のDMTとEGのエステ
ル交換反応の欠点を改善することにある。
The object of the present invention is to improve the drawbacks of the conventionally known transesterification reaction of DMT and EG.

すなわち、本発明の第一の目的はエステル交換反応速度
が犬で生産性の良好なりHTの製造方法を提供すること
であり、第二の目的はDMTの凝縮、固化による精留塔
の詰りを防ぎ反応液の突沸等がない安定した操業管理が
可能なエステル交換反応方法の提供にある。
That is, the first object of the present invention is to provide a method for producing HT that has a good transesterification reaction rate and good productivity, and the second object is to provide a method for producing HT that can reduce the clogging of the rectification column due to condensation and solidification of DMT. An object of the present invention is to provide a transesterification reaction method that enables stable operational management without bumping of a reaction solution.

さらに第三の目的は、従来から用いられてきた回分式ま
たは連続式反応装置をそのまま用いることにより経済的
に高品位のBHTを製造する方法を提供することにある
A third object is to provide a method for economically producing high-grade BHT by using conventionally used batch or continuous reactors as they are.

本発明者らは上記目的を達成するため鋭意研究した結果
、DMTとEGとのエステル交換反応の際少量の特定化
合物を存在せしめることによって反応速度が向上するこ
とを見いだし本発明に到達した。
As a result of intensive research to achieve the above object, the present inventors have discovered that the reaction rate can be improved by making a small amount of a specific compound present during the transesterification reaction between DMT and EG, and have arrived at the present invention.

すなわち、本発明はDMTとEGとを反応させるに際し
、該エステル交換反応を50〜20000p、P、m(
対ジメチルテレフタレート)のメチルエチルテレンタレ
ート(以下METという)および/またはジエチルテレ
フタレート(以下DETという)の存在下で行なうこと
を特徴とするエステル交換反応の方法である。
That is, in the present invention, when reacting DMT and EG, the transesterification reaction is carried out at 50 to 20,000 p, P, m (
This is a transesterification method characterized in that it is carried out in the presence of methyl ethyl terelentalate (hereinafter referred to as MET) and/or diethyl terephthalate (hereinafter referred to as DET) of dimethyl terephthalate.

METおよび/またはDETの存在量はDMTに対して
50〜20000p、plmの範囲とする必要があり、
150〜8000p、p、mの範囲がより好ましい。
The abundance of MET and/or DET should be in the range of 50 to 20000 p, plm relative to DMT,
The range of 150 to 8000 p, p, m is more preferable.

METおよび/またはDETの存在量をDMTに対して
50〜20000p、plmの範囲とすることにより、
DMTとEGのエステル交換反応において昇温速度を大
きくした場合でも精留塔でのDMTの凝縮、固化現象を
抑制もしくは解消することができる。
By setting the abundance of MET and/or DET in the range of 50 to 20000 p, plm relative to DMT,
Even when the temperature increase rate is increased in the transesterification reaction of DMT and EG, the condensation and solidification phenomenon of DMT in the rectification column can be suppressed or eliminated.

この理由は定かではないが、METおよび/′またはD
ETが存在することによりDMTの蒸気化速度が抑制さ
れるか、または気化したDMTが精留塔で凝縮され液化
状態で反応液中にたたき落され、精留塔で固化する割合
が少なくなることなどによるためと考えられる。
The reason for this is unclear, but MET and /' or D
The presence of ET suppresses the vaporization rate of DMT, or the vaporized DMT is condensed in the rectification column and knocked down into the reaction liquid in a liquefied state, reducing the proportion of solidification in the rectification column. This is thought to be due to factors such as.

従って本発明の方法においては反応温度を高く設定でき
この結果、反応速度を高くすることができる。
Therefore, in the method of the present invention, the reaction temperature can be set high, and as a result, the reaction rate can be increased.

DMTに対するMETおよび/またはDETの存在量が
50 p、 p1m未満では上記した精留塔でのDMT
の凝縮、固化現象を抑制する効果は発現せす、また20
000p、pomをこえるとエステル交換反応が阻害さ
れる。
If the amount of MET and/or DET relative to DMT is less than 50 p, p1m, the DMT in the above-mentioned rectification column is
The effect of suppressing the condensation and solidification phenomenon is expressed, and 20
If it exceeds 000p, pom, the transesterification reaction will be inhibited.

METおよび/またはDETを反応系に存在させる手段
としては反応前のDMTとEGの混合系または反応初期
の系に添加しても、反応前のDMT中に均一に存在させ
ておいてもよい。
As a means for making MET and/or DET exist in the reaction system, they may be added to the mixed system of DMT and EG before the reaction or the system at the initial stage of the reaction, or they may be allowed to exist uniformly in the DMT before the reaction.

METおよび/またはDETを反応前のDMTに均一に
存在させる場合、混合物を不活性気流下、140〜18
0℃の温度で0.5〜720時間溶融貯蔵を行なっても
よい。
When MET and/or DET are homogeneously present in DMT before reaction, the mixture is heated to 140 to 18
Melt storage may be carried out at a temperature of 0° C. for 0.5 to 720 hours.

エステル交換反応温度は140〜280℃の範囲が好ま
しい。
The transesterification reaction temperature is preferably in the range of 140 to 280°C.

また反応圧力は−500mRHg〜3、 Okg/cv
tG圧とすることができるが、大気圧下、精留塔の圧損
外の圧力を含む0.02〜0.30kg/cntG圧と
するのが好ましい。
Also, the reaction pressure is -500mRHg~3, Okg/cv
Although the pressure can be set to tG pressure, it is preferably set to 0.02 to 0.30 kg/cntG pressure under atmospheric pressure, including the pressure outside the pressure loss of the rectification column.

反応に供するEG/DMTのモル比は1.2〜2.0の
範囲が好ましく、1.35〜1.80の範囲がより好ま
しい。
The molar ratio of EG/DMT used in the reaction is preferably in the range of 1.2 to 2.0, more preferably in the range of 1.35 to 1.80.

DMTとEGのエステル交換反応装置への供給方法はど
のような方法でもよく、例えば (1)mとDMTを反応前に同時に一度に供給する方法
、 (2)EGを反応前に供給し、DMT−u叉応中連続し
て供給する方法、 (3)一部のEGを反応前に供給し、残りのEGとDM
Tとを反応中に連続的に供給して反応する方法、 (4)一部のBHTを反応前に貯留させ、EGとDMT
とを連続的に供給する方法、 (5)完全混合槽式連続エステル交換反応方法、(6)
塔式連続エステル交換反応方法、 等の公知の方法を採用することができる。
Any method may be used to supply DMT and EG to the transesterification reactor, such as (1) a method in which m and DMT are simultaneously supplied before the reaction, (2) a method in which EG is supplied before the reaction and DMT - Continuous supply method during reaction (3) A part of EG is supplied before the reaction, and the remaining EG and DM
(4) A method in which a portion of BHT is stored before the reaction, and EG and DMT are reacted by continuously supplying T during the reaction.
(5) complete mixing tank continuous transesterification method; (6)
A known method such as a column-type continuous transesterification method can be employed.

エステル交換反応で発生するメタノールおよびエタノー
ルは精留塔においてDMTやEG等から分留し、塔頂部
から留出した後全縮器で冷却して取り出す。
Methanol and ethanol generated in the transesterification reaction are fractionated from DMT, EG, etc. in a rectification column, distilled from the top of the column, and then cooled and taken out in a total condenser.

本発明の方法に用いられるエステル交換反応触媒として
は公知の化合物が使用できるが、酢酸マンガン、酢酸亜
鉛、酢酸コバルト、酢酸カルシウム、酢酸マグネシウム
、二酸化アンチモン等の単独または組み合わせが好まし
い。
As the transesterification catalyst used in the method of the present invention, known compounds can be used, but manganese acetate, zinc acetate, cobalt acetate, calcium acetate, magnesium acetate, antimony dioxide, etc. alone or in combination are preferred.

添加剤としては、酸化チタン、カオリナイト、タルク、
クレイ、シリカ、アルミナ等の公知の外部粒子をエステ
ル交換反応前、反応中の任意の段階、あるいは反応終了
後の反応生成物に添加することができる。
Additives include titanium oxide, kaolinite, talc,
Known external particles such as clay, silica, alumina, etc. can be added to the reaction product before the transesterification reaction, at any stage during the reaction, or after the reaction is complete.

またエステル交換反応中〜反応終了後の任意の段階で着
防剤としてリン酸、リン酸トリメチル、亜リン酸等の公
知のリン化合物を添加することができる。
Moreover, known phosphorus compounds such as phosphoric acid, trimethyl phosphate, and phosphorous acid can be added as anti-fouling agents at any stage from during the transesterification reaction to after the completion of the reaction.

本発明の方法で得られたBHTは引き続いて行なう重縮
合反応によ’)DEGが少なく、軟化点の低下がなく繊
維、フィルム、樹脂成形用として優れたポリエチレンテ
レフタレートとすることができる。
Due to the subsequent polycondensation reaction, the BHT obtained by the method of the present invention has low DEG content and no decrease in softening point, and can be made into polyethylene terephthalate, which is excellent for molding fibers, films, and resins.

なおエステル交換反応後は重合度を高めるために初期重
合を行なうのが望ましい。
Note that after the transesterification reaction, it is desirable to perform initial polymerization in order to increase the degree of polymerization.

本発明の方法はDMTおよびEGのほか、25モル%以
下の共重合成分を使用するエステル交換反応方法にもも
ちろん適用することができる。
The method of the present invention can of course be applied to transesterification methods using not more than 25 mol % of copolymer components in addition to DMT and EG.

前記共重合成分としてはイソフタル酸ジメチルエステル
、5−スルホソジウムイソフタル酸ジメチルエステル、
フタル酸ジメチルエステル、イソフタル酸ジエチルエス
テル、フタル酸ジエチルエステル、2・6−ナフタリン
酸ジメチルエステル、1・4−シクロヘキサンジメタツ
ール、バラヒドロオキシ安息香酸メチルエステル、アジ
ピン酸、セバシン酸等のジカルボン酸エステルおよび/
またはジカルボン酸、■・4−ブタンジオール、プロピ
レンクリコール、1・6−ヘキサンジオール等ノアルキ
レングリコール等がある。
The copolymerization components include isophthalic acid dimethyl ester, 5-sulfosodium isophthalic acid dimethyl ester,
Dicarboxylic acids such as phthalic acid dimethyl ester, isophthalic acid diethyl ester, phthalic acid diethyl ester, 2,6-naphthalic acid dimethyl ester, 1,4-cyclohexane dimetatool, rosehydroxybenzoic acid methyl ester, adipic acid, sebacic acid, etc. ester and/or
Alternatively, there are dicarboxylic acids, noalkylene glycols such as (1).4-butanediol, propylene glycol, and 1.6-hexanediol.

本発明で得られる優れた効果を列挙すると次のとおりで
ある。
The excellent effects obtained by the present invention are listed below.

(1)反応中DMTの凝縮、固化に起因する精留塔の詰
りを回避することができ安定した操業管理ができる。
(1) Clogging of the rectification column caused by condensation and solidification of DMT during the reaction can be avoided, and stable operational management can be achieved.

(2)反応初期の反応液の温度を高く設定することがで
き、反応速度を高くできる。
(2) The temperature of the reaction solution at the initial stage of the reaction can be set high, and the reaction rate can be increased.

(3)反応時間が短縮されるのでDECの副生が減少し
、高品位のポリエステルを得るために有用なりHTが生
産性よく得られる。
(3) Since the reaction time is shortened, the by-product of DEC is reduced, and HT, which is useful for obtaining high-grade polyester, can be obtained with high productivity.

以下に実施例をあげて本発明を詳述する。The present invention will be explained in detail with reference to Examples below.

実施例 1 第1図に示す実験装置を用いて500mAのガラス製三
つロフラスコ1に300Sl’のDMTと1632のE
G(対DMTモル比1.70)、酢酸コバルト4水塩0
.075P1酢酸カルシウム1水塩0、06 P、およ
び第1表に記したごと<DMTに対してMETを所定量
添加し、反応液12とした。
Example 1 Using the experimental apparatus shown in FIG. 1, 300 Sl' of DMT and 1632 E of
G (molar ratio to DMT 1.70), cobalt acetate tetrahydrate 0
.. A predetermined amount of MET was added to 075P1 calcium acetate monohydrate 0, 06 P, and DMT as shown in Table 1 to obtain reaction solution 12.

攪拌はモーター3を駆動し、攪拌軸11を回転させて半
月型具で行なった。
Stirring was carried out using a half-moon type tool by driving the motor 3 and rotating the stirring shaft 11.

反応温度は145℃から235℃まで22.5℃/hr
の割合で温度コントローラー5を作動させマントルヒー
ター2で4時間かげて、一定速度で加熱昇温させた。
Reaction temperature is 22.5℃/hr from 145℃ to 235℃
The temperature controller 5 was operated at a rate of 1, and the temperature was raised at a constant rate by heating with the mantle heater 2 for 4 hours.

反応系から発生したメタノールおよび少量のエタノール
は、ガラス製精留塔(充てん塔)6で精留され、塔頂部
から留去させ、水冷式分縮器付分配器(矢印は冷却水流
)γにて分配し、一部は還流、一部は留出させた。
Methanol and a small amount of ethanol generated from the reaction system are rectified in a glass rectification column (packed column) 6, distilled off from the top of the column, and sent to a water-cooled decentralizer-equipped distributor (arrow indicates cooling water flow) γ. A portion was refluxed and a portion was distilled off.

留出メタノールは全縮器8(矢印は冷却水流)にて冷却
し、メスシリンダー9に補集した。
The distilled methanol was cooled in a total condenser 8 (the arrow indicates a cooling water flow) and collected in a graduated cylinder 9.

反応液温度は記録計4により、一方精留塔温度は下段、
中段、塔頂の各部について記録計10でそれぞれ記録し
、塔頂部温度がメタノールの沸点65℃を保つように分
配器γで還流量をコントロールした。
The temperature of the reaction liquid is measured by the recorder 4, while the temperature of the rectifying column is measured by the lower stage.
Recordings were made using a recorder 10 for each part of the middle stage and the top of the column, and the reflux amount was controlled by a distributor γ so that the temperature of the top of the column was maintained at the boiling point of methanol, 65°C.

この場合の還流比はほぼ1.0で行なった。The reflux ratio in this case was approximately 1.0.

エステル交換反応中、DMTの凝縮、固化による精留塔
への詰りの評価は第2図に示すようにフラスコ1と精留
塔6の下部におけるDMTの凝縮、固化状態を観察する
ことにより行なった。
During the transesterification reaction, clogging of the rectification tower due to condensation and solidification of DMT was evaluated by observing the state of condensation and solidification of DMT in the lower part of flask 1 and rectification tower 6, as shown in Figure 2. .

第2図Aはガラス内表面の一部にわずかにDMTが凝縮
付着する程度、Bは充てん物の一部およびガラス内表面
の約半分にDMTが凝縮付着する程度、Cは充てん物の
一部およびガラス内表面の全体にDMTが凝縮付着する
程度、Dはガラス内表面全体と充てん物全体および充て
ん物の下方へDMTが凝縮、固化し精留塔が大部分閉塞
する程度をそれぞれ示し、本発明で好適とする範囲はA
とBである。
Figure 2 A shows the degree to which DMT is slightly condensed and adhered to a part of the inner surface of the glass, B shows the degree to which DMT condenses and adheres to a part of the filling and about half of the inner surface of the glass, and C shows a part of the filling. and D indicates the degree to which DMT condenses and adheres to the entire inner surface of the glass, and D indicates the degree to which DMT condenses and solidifies on the entire inner surface of the glass, the entire filling, and below the filling, and the rectification column is mostly clogged. The preferred range for the invention is A
and B.

なおりMTの精留塔への詰りの評価は、エステル交換反
応中にDMTが最も凝縮、固化するときの状態を観察し
第2図に従ってランク付けした。
The clogging of the rectification column with NaoriMT was evaluated by observing the state when DMT was most condensed and solidified during the transesterification reaction and ranking according to Figure 2.

またその時点でのメタノール留出量から求めた反応率、
精留塔下段温度を第1表に示すとともに、反応終了時の
反応率、生成りHTのDEG含量も併せて第1表に示し
た。
In addition, the reaction rate determined from the amount of methanol distilled at that time,
Table 1 shows the temperature at the bottom of the rectification column, as well as the reaction rate at the end of the reaction and the DEG content of the produced HT.

第1表中実験番号1.2.11は本発明の方法の効果を
明らかにするための比較水準である。
Experiment number 1.2.11 in Table 1 is a comparison level for clarifying the effect of the method of the present invention.

なお反応終点は235℃に到達してから反応液を15分
間同一温度に保った※※後とした。
The end point of the reaction was determined after reaching 235°C and keeping the reaction solution at the same temperature for 15 minutes**.

この実験の結果より、DMTに対して50〜20000
ppmのMETを添加させたエステル交換反応では、精
留塔下部の詰りか最も多い状態のときでもランクA−B
であり、またこのときの精留塔下段温度は70〜75℃
と低く、安定して精留操作が行なえた。
From the results of this experiment, 50 to 20,000 for DMT.
In the transesterification reaction in which ppm of MET is added, the rank is A-B even when the bottom of the rectification tower is clogged.
, and the temperature at the bottom of the rectification column at this time is 70 to 75°C.
This allowed the rectification operation to be carried out stably.

また反応終了時の反応率は97.1%〜99.1%であ
り、問題なかった。
Moreover, the reaction rate at the end of the reaction was 97.1% to 99.1%, and there was no problem.

一方、実験番号1及び2ではDMTに対するMETの添
加量が50ppmより少なかったので、精留塔詰り状態
がランクCと悪く、精留塔下段温度も92〜94℃と高
く、精留効率が落ちて不安定な精留操作となった。
On the other hand, in Experiments Nos. 1 and 2, the amount of MET added to DMT was less than 50 ppm, so the clogging of the rectification column was poor at rank C, and the temperature at the bottom of the rectification column was high at 92-94℃, resulting in a decrease in rectification efficiency. This resulted in unstable rectification operation.

すなわち、精留塔の大部分が閉塞する状態(ランクD)
までの余裕が少ない状態であり、昇温速度が限界に近い
状態となった。
In other words, most of the rectification column is blocked (rank D)
There was little margin for this, and the temperature increase rate was close to its limit.

また実験番号11ではDMTに対するMETの添加量が
20000ppmを越える量であったので、反応阻害が
生じ、反応終了時の到達反応率が95.1%と低くなっ
た。
Furthermore, in Experiment No. 11, since the amount of MET added to DMT exceeded 20,000 ppm, reaction inhibition occurred and the reaction rate reached at the end of the reaction was as low as 95.1%.

実施例 2 実施例1と同じ装置条件でMETおよび/またはDET
添加量を変えて実験を行ない実施例1と同様の方法で評
価した結果を第2表に示す。
Example 2 MET and/or DET under the same equipment conditions as Example 1
Table 2 shows the results of experiments conducted with different amounts added and evaluated in the same manner as in Example 1.

第2表中実験番号12は本発明で規定したMETおよび
/またはDETの添加量下限以下の比較水準を示したも
のである。
Experiment No. 12 in Table 2 shows a comparative level below the lower limit of the amount of MET and/or DET added according to the present invention.

この実験結果より、実験番号13〜18ではDMTに対
するMETおよび/またはDET添加量を、両化合物の
合計量で50〜20000ppmとしたため精留塔の詰
り状態はランクA−Bであり、またそのときの精留塔下
段温度も70〜74℃と低く、安定して精留が行なえた
From this experiment result, in experiment numbers 13 to 18, the amount of MET and/or DET added to DMT was 50 to 20,000 ppm in total of both compounds, so the clogging state of the rectification column was rank A-B. The temperature at the bottom of the rectifying column was also as low as 70 to 74°C, allowing stable rectification.

実験番号12ではDMTに対するMETおよび/または
DET添加量が40ppmと少なかったので精留塔詰り
状態がランクCと悪く、また精留塔下段温度が92℃と
高くなり精留効率が低くなるとともに、昇温速度が限界
に近い状態となった。
In Experiment No. 12, the amount of MET and/or DET added to DMT was as small as 40 ppm, so the clogging of the rectification column was poor at rank C, and the temperature at the bottom of the rectification column was as high as 92°C, resulting in a low rectification efficiency. The temperature increase rate was close to its limit.

実施例 3 実施例1と同じ装置を用いてDMTに対しMET 11
00 ppmを存在させ、反応開始温度を160℃とし
て3時間で235℃となるように25℃/hの割合で一
定昇温とした以外は実施例1と同様の条件で行なった。
Example 3 MET 11 for DMT using the same equipment as Example 1
The reaction was carried out under the same conditions as in Example 1, except that 00 ppm was present, the reaction initiation temperature was 160°C, and the temperature was raised at a constant rate of 25°C/h to reach 235°C in 3 hours.

反応開始後45分、反応温度179℃のとき、DMTの
精留塔への詰りか一番機しかったが、ランクは第2図B
でありこのときの精留塔下部温度は74℃、反応率39
%であった。
45 minutes after the start of the reaction, when the reaction temperature was 179°C, the most likely cause was clogging of the DMT rectification column, but the rank was B in Figure 2.
At this time, the temperature at the bottom of the rectification column was 74°C, and the reaction rate was 39.
%Met.

反応温度が235℃に到達後15分間同温度に保持し、
反応終了とした。
After the reaction temperature reached 235°C, it was maintained at the same temperature for 15 minutes,
The reaction was completed.

得られたBHTの反応率は98.2%、DEC含量は0
.22重量%であった。
The reaction rate of the obtained BHT was 98.2%, and the DEC content was 0.
.. It was 22% by weight.

比較実施例 I METを添加しないで実施例3と同一の装置、条件で実
施したところ、反応開始後53分、反応温度182℃、
反応率42%、精留塔下段温度96℃のとき、DMTの
凝縮、固化により精留塔の詰りが第2図りとなり、精留
塔下部の大部分が閉塞し、危険となったので実験を中止
した。
Comparative Example I When carried out using the same equipment and conditions as in Example 3 without adding MET, 53 minutes after the start of the reaction, the reaction temperature was 182°C,
When the reaction rate was 42% and the temperature at the bottom of the rectification tower was 96°C, the rectification tower was clogged to the second level due to condensation and solidification of DMT, and most of the lower part of the rectification tower was blocked, making the experiment dangerous. Canceled.

実施例 4 DMT20001yにMET600ppmを存在させ、
予め150℃で1時間溶融貯蔵してかラエステル交換反
応缶へ供給した。
Example 4 600 ppm of MET was present in DMT20001y,
It was melted and stored in advance at 150° C. for 1 hour before being supplied to the transesterification reactor.

次に150℃に予め加熱したEGを1.151kg(対
DMTモル比1.8)、酢酸コバルト4水塩0.01重
量%/DMT、酢酸マンガン4水塩0.03重量%/D
MT、三酸化アンチモン0.03重量%/DMTを加え
て攪拌し反応をスタートさせた。
Next, 1.151 kg of EG preheated to 150°C (molar ratio to DMT 1.8), cobalt acetate tetrahydrate 0.01% by weight/DMT, manganese acetate tetrahydrate 0.03% by weight/D
MT and 0.03% by weight of antimony trioxide/DMT were added and stirred to start the reaction.

反応開始温度は150℃とし、233℃まで3時間40
分で一定速度で昇温するように制御して233℃到達後
15分間保持して反応を終了させた。
The reaction initiation temperature was 150°C, and the temperature was increased to 233°C for 3 hours.
The temperature was controlled to increase at a constant rate in minutes, and after reaching 233°C, the reaction was completed by holding for 15 minutes.

反応系から発生したメタノールおよび少量のエタノール
は精留塔で精留し、全縮器を通して一部を還流し、一部
を留出するように分配した。
Methanol and a small amount of ethanol generated from the reaction system were rectified in a rectification column, passed through a total condenser, and distributed so that one part was refluxed and the other part was distilled out.

なお還流比はほぼ1.0とした。反応を通じて反応缶内
の圧力はほぼ0.1 kg/critG圧で一定であり
、特に異常は認められなかった。
Note that the reflux ratio was approximately 1.0. Throughout the reaction, the pressure inside the reactor was constant at approximately 0.1 kg/critG pressure, and no particular abnormality was observed.

反応は3時間55分で終了し生成りHTの反応率は98
.9%、DEG含量は0.29重量%であった。
The reaction completed in 3 hours and 55 minutes, and the reaction rate of HT produced was 98.
.. 9%, and the DEG content was 0.29% by weight.

比較実施例 2 METをDMTに存在させなかった以外は実施例4と同
じ条件で反応を行なった。
Comparative Example 2 A reaction was carried out under the same conditions as in Example 4 except that MET was not present in DMT.

昇温開始の1時間後、反応温度175℃、反応率42%
、精留塔下段温度103℃のとき最も缶内圧力が高く、
0.3kg/ff1G圧となった。
One hour after the start of temperature rise, reaction temperature was 175°C, reaction rate was 42%.
, the pressure inside the tank is highest when the temperature at the lower stage of the rectifying column is 103°C,
The pressure was 0.3kg/ff1G.

これは第2図りのようなりMTによる精留塔の一部閉塞
現象が起ったものと推定される。
This is presumed to be due to the phenomenon of partial blockage of the rectification column due to MT, as shown in the second diagram.

比較実施例 3 DMTにMETを存在させずに実施例4と同程度の缶内
圧力、即ち0.1 kg/crit、G圧を保ちつつ反
応を行なった。
Comparative Example 3 A reaction was carried out without the presence of MET in DMT while maintaining the same internal pressure as in Example 4, ie, 0.1 kg/crit and G pressure.

反応を進行させながら該圧力を保つためには、150℃
から233℃までの昇温に4時間20分かげる必要があ
り、反応終点での233℃で15分間保持する時間を加
えると4時間35分が必要となって実施例4に較べ反応
時間は40分遅延した。
In order to maintain the pressure while the reaction progresses, the temperature must be 150°C.
It took 4 hours and 20 minutes to raise the temperature from 233°C to 233°C, and if you add the time to hold the temperature at 233°C for 15 minutes at the end of the reaction, it took 4 hours and 35 minutes, so compared to Example 4, the reaction time was 40 minutes. Minutes late.

実施例 5 DMTに対してDETを19000 ppm存在させる
以外は実施例4と同一の装置、条件で実施した。
Example 5 The experiment was carried out using the same equipment and conditions as in Example 4, except that DET was present at 19,000 ppm relative to DMT.

精留塔のDMT詰り状態は第2図ランクAであり、この
時点での精留塔下部温度は73℃であった。
The DMT clogging state of the rectification column was rank A in Figure 2, and the temperature at the bottom of the rectification column at this point was 73°C.

反応温度が233℃に到達後15分間同温度に保持し反
応終了とした。
After the reaction temperature reached 233°C, the temperature was maintained for 15 minutes to complete the reaction.

得られたBHTの反応率は97.0%、DEC含量は0
.31重量%であった。
The reaction rate of the obtained BHT was 97.0%, and the DEC content was 0.
.. It was 31% by weight.

比較実施例 4 DMTに対してDETを21000ppm存在させる以
外は、実施例4と同一の装置、条件で実施したところ精
留塔のDMT詰り状態は、第2図ランクAであり、この
時の下部温度は72℃で安定していたが、反応時間3時
間55分での反応率は94.5%と低かった。
Comparative Example 4 The experiment was carried out using the same equipment and conditions as in Example 4, except that DET was present at 21,000 ppm relative to DMT. Although the temperature was stable at 72° C., the reaction rate at a reaction time of 3 hours and 55 minutes was as low as 94.5%.

反応率を高めるため、さらに反応温度233℃のまま3
5分間反応時間を延長したところ反応率は97.0%に
到達したため反応を終了した。
In order to increase the reaction rate, the reaction temperature was kept at 233℃ for 3
When the reaction time was extended for 5 minutes, the reaction rate reached 97.0% and the reaction was terminated.

全反応時間は4時間30分であった。Total reaction time was 4 hours and 30 minutes.

得られたBHTのDEC含量は0.46重量%と高くな
った。
The DEC content of the obtained BHT was as high as 0.46% by weight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で用いたフラスコにおけるエス
テル交換反応装置の正面断面図。 第2図は精留塔でのDMTの詰り状態のランクを示す図
である。 1:三つロフラスコ 2:マントルヒーター、3:攪拌
モーター、4,10:記録計、5:温度コントローラー
、6:精留塔、7:分配器、8:全縮器、12:反応液
FIG. 1 is a front sectional view of a transesterification reaction apparatus in a flask used in an example of the present invention. FIG. 2 is a diagram showing the rank of DMT clogging in the rectification column. 1: Three-necked flask 2: Mantle heater, 3: Stirring motor, 4, 10: Recorder, 5: Temperature controller, 6: Rectifier, 7: Distributor, 8: Total condenser, 12: Reaction liquid.

Claims (1)

【特許請求の範囲】[Claims] 1 ジメチルテレフタレートとエチレングリコールとを
反応させてビス−β−ヒドロキシエチルテレフタレート
および/またはその低重合体を得るに際し、該エステル
交換反応を50〜200001)、P、m(対ジメチル
テレフタレート)のメチルエチルテレフタレートおよび
/またはジエチルテレフタレートの存在下で行なうこと
を特徴とするエステル交換反応方法。
1 When dimethyl terephthalate and ethylene glycol are reacted to obtain bis-β-hydroxyethyl terephthalate and/or its low polymer, the transesterification reaction is performed with methyl ethyl of 50 to 200001), P, m (vs. dimethyl terephthalate). A transesterification method characterized in that it is carried out in the presence of terephthalate and/or diethyl terephthalate.
JP51056660A 1976-05-19 1976-05-19 Transesterification reaction method Expired JPS5826742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51056660A JPS5826742B2 (en) 1976-05-19 1976-05-19 Transesterification reaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51056660A JPS5826742B2 (en) 1976-05-19 1976-05-19 Transesterification reaction method

Publications (2)

Publication Number Publication Date
JPS52142035A JPS52142035A (en) 1977-11-26
JPS5826742B2 true JPS5826742B2 (en) 1983-06-04

Family

ID=13033533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51056660A Expired JPS5826742B2 (en) 1976-05-19 1976-05-19 Transesterification reaction method

Country Status (1)

Country Link
JP (1) JPS5826742B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59216840A (en) * 1983-05-20 1984-12-06 Teijin Hercules Kk Treatment of recovered methanol
JP2002020348A (en) * 2000-07-07 2002-01-23 Nissan Chem Ind Ltd Method for producing diol derivative

Also Published As

Publication number Publication date
JPS52142035A (en) 1977-11-26

Similar Documents

Publication Publication Date Title
SU665796A3 (en) Method of producing oligomeric terephthalates
WO1997038038A1 (en) Ethylene terephthalate/ethylene 2,6-naphthalene-dicarboxylate copolymers for bottles
US9416223B2 (en) Device and method for producing polyester
JPH04108760A (en) Method of increasing rate of reaction for directly esterifying diacid with glycol
JPS6111248B2 (en)
JP4651895B2 (en) Continuous production method of bis (3-hydroxypropyl) terephthalate
JPS5826742B2 (en) Transesterification reaction method
JP2005532455A (en) Partially transesterified SIPM and method using the same
US5811513A (en) Process for producing polyethylene naphthalate
JP2507276B2 (en) Method for producing alkylene glycol solution containing 5-sulfoisophthalic acid alkylene glycol ester metal salt
JP3904532B2 (en) Method for producing butylene terephthalate oligomer and method for producing polybutylene terephthalate
JPH0859810A (en) Preparation of polyester
JPH0770299A (en) Production of high-molecular-weight polyester resin from 2,6-naphthalenedicarboxylic acid
KR101473085B1 (en) Preparation Method of Polyethylene Polyester based Polymer
JPH07216074A (en) Production of polyester
JPH08193126A (en) Production of bis(beta-hydroxyethyl) terephthalate
JPS5950660B2 (en) Esterification method
JPS6021172B2 (en) Polyester manufacturing method
JPH0465426A (en) Production of polyester
JPS5835496B2 (en) Transesterification reaction method
JPH01110528A (en) Production of polyester resin
JPS6126806B2 (en)
JPS63277230A (en) Method for ester interchange reaction
JP3725974B2 (en) Method for producing catalyst solution for polyester production
JP2001278969A (en) Production method of polyester