JPS5826724A - Apparatus for transporting powder and particle under high pressure - Google Patents

Apparatus for transporting powder and particle under high pressure

Info

Publication number
JPS5826724A
JPS5826724A JP12560081A JP12560081A JPS5826724A JP S5826724 A JPS5826724 A JP S5826724A JP 12560081 A JP12560081 A JP 12560081A JP 12560081 A JP12560081 A JP 12560081A JP S5826724 A JPS5826724 A JP S5826724A
Authority
JP
Japan
Prior art keywords
powder
pressure
screw
valve
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12560081A
Other languages
Japanese (ja)
Inventor
Shuzo Fujii
修三 藤井
Hideo Oishi
秀夫 大石
Takashi Moriyama
森山 峻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Consultant and Engineering Co Ltd
Original Assignee
Denka Consultant and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Consultant and Engineering Co Ltd filed Critical Denka Consultant and Engineering Co Ltd
Priority to JP12560081A priority Critical patent/JPS5826724A/en
Publication of JPS5826724A publication Critical patent/JPS5826724A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/04Conveying materials in bulk pneumatically through pipes or tubes; Air slides
    • B65G53/16Gas pressure systems operating with fluidisation of the materials
    • B65G53/18Gas pressure systems operating with fluidisation of the materials through a porous wall
    • B65G53/22Gas pressure systems operating with fluidisation of the materials through a porous wall the systems comprising a reservoir, e.g. a bunker

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Transport Of Granular Materials (AREA)

Abstract

PURPOSE:To improve the preciseness of continuous and constant volume delivery of powder and particles, by conveying the powder and particles in a pressurizing tank by a screw. CONSTITUTION:After loading powder and particles in a pressurizing tank 1, a loading valve 22 and an evacuation valve 23 are closed, and a pressurizing valve 7 and a pressure equalizing valve 9 are opened to raise the pressure in the pressurizing tank 1 to not less than 2kg/cm<2>.G. After pressurizing the tank 1, approximately at the same time when a transport valve 11 and delivering valve 20 are opened, a screw 14 is driven to rotate by a driving apparatus 16. By this process, the powder and particles fluidized on a fluidizing bed 4 in the pressurizing tank 1 are continuously transported in accordance with the rotation of the screw 14 from a powder and particle introducing section 15 through a guide cylinder 12 and through a discharge outlet 19 and the delivering valve 20 into a transport pipe 10. The pressure in the transport pipe 10 is approximately the same as that in the pressurizing tank 1.

Description

【発明の詳細な説明】 この発明は、加圧タンク内に粉粒体を充填し、該粉粒体
を搬送気体によって圧力2 Y4/ca+ −G以上で
輸送する粉粒体高圧輸送装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-pressure transportation device for powder and granule, which fills a pressurized tank with powder and transports the powder and granule using a carrier gas at a pressure of 2 Y4/ca+ -G or more.

粉粒体を空気又はN重ガスのような不活性ガス等の搬送
気体で輸送管中を輸送する輸送装置は稙々の改良によっ
てかなり高度化され今日に至っているが、現在多くの研
究者の主たる目的は輸送管中を尚固気比で輸送する事に
向ゆられてきた。その目的は究極的には省エネルギ化に
あるが、近年気体輸送の適用分野が広まるにつれ、上記
の目的以外に定量切出し及び/又は複数個所への同時均
等切出し輸送の要求が高まってきた。
Transport equipment that transports powder and granules through transport pipes using air or a carrier gas such as an inert gas such as N heavy gas has been considerably advanced through various improvements and has reached the present day. The main purpose has been to transport gas at a solid-air ratio through transport pipes. The ultimate purpose is to save energy, but as the field of application of gas transportation has expanded in recent years, there has been a growing demand for quantitative cutting and/or simultaneous and uniform cutting transportation to multiple locations in addition to the above-mentioned purposes.

この要求に応えるため従来粉粒体の定量切出しを行なう
場合、加圧タンクと輸送管との間にロータリーバルブを
設ける方法或−はエジェクタのように固定絞りを設は管
路断面積を輸送管よりも縮少させることにより定量性を
保たせるという方法等が採用されている。然し乍ら前者
の場合ロータに充填される粉粒体の量即ち定量性が加圧
タンク内部に充填されている量によって多少異なる欠点
(これは粉体圧力の大小によりp−ター内に充填される
量カ変動することに起因する)を有すると共に四−夕が
麹数室に分割されている為、粉粒体が断続的に輸送管に
供給され特にp−ターの回転Wkが低い範囲で粉粒体を
切出すとき断続供給が顕著になる欠点を有する。
In order to meet this demand, conventional methods for quantitative cutting of powder and granular materials include installing a rotary valve between the pressurized tank and the transport pipe, or installing a fixed throttle such as an ejector to reduce the cross-sectional area of the pipe to the transport pipe. A method has been adopted in which quantitativeness is maintained by reducing the amount by more than 20%. However, in the former case, the disadvantage is that the amount of powder or granules filled into the rotor, that is, the quantitative nature, varies depending on the amount filled inside the pressurized tank. (due to fluctuations in power) and because the four-stage is divided into several chambers, powder and granules are intermittently supplied to the transport pipe, especially when the rotation Wk of the p-tor is low. It has the disadvantage that intermittent supply becomes noticeable when cutting out the body.

一方後者の固定絞りによる場合、断爾を縮少して−るた
め通常の輸送圧力に比べ過剰の圧力を必要とし、且つ絞
夛部分はその流速が早(なるので極度に摩耗が進行し、
時間の経過と共に切出し速度が徐々に変化した9、実際
に必要な切出し速度を得るためには絞り形状を数回羨更
して試験するという試行錯誤の煩わしさがあり、しかも
粉粒体の性状変化に容易に追従し得ない等の欠点があっ
た。
On the other hand, in the case of the latter fixed throttle, an excessive pressure is required compared to the normal transport pressure in order to reduce the flow rate, and the flow rate at the throttle part is high (as a result of this, wear progresses extremely).
The cutting speed gradually changed with the passage of time9, and in order to obtain the actual cutting speed required, there was a tedious trial and error process of testing the drawing shape several times, and the properties of the powder and granules It has drawbacks such as not being able to easily follow changes.

又複数個所へ均等に分配輸送する場合現状は、−個の加
圧タンクに複数個の輸送管を接続して分配輸送する方法
、麹数個の加圧タンクを使用して各加圧タンクに1個の
輸送管を接続する方法等が採用されているが、均等分配
輸送管の夫々に固定絞りを設ける場合は前記したと同様
の欠点があシ、又固定絞り以外の方法では輸送管自体の
長さを調整することによって各輸送管の圧力損失を調整
して粉粒体を均等分配しているが、この場合輸送管敷設
ルートが規制される欠点があった。
In addition, when distributing and transporting koji evenly to multiple locations, the current method is to connect multiple transport pipes to -1 pressurized tanks and distribute and transport, or use several pressurized tanks containing koji to each pressurized tank. Methods such as connecting one transport pipe have been adopted, but if fixed orifices are provided for each of the equally distributed transport pipes, the same disadvantages as mentioned above will occur, and methods other than fixed orifices will cause the transport pipe itself to By adjusting the length of each transport pipe, the pressure loss of each transport pipe is adjusted and the powder is distributed evenly, but this method has the disadvantage that the transport pipe installation route is restricted.

本発明は上記従来装置の諸欠点を一掃し得る新規な粉粒
体高圧輸送装置を提供せんとするものである。
The present invention aims to provide a new apparatus for high-pressure transportation of powder and granular materials that can eliminate the various drawbacks of the conventional apparatuses described above.

以下図面について本発明の詳細な説明すると、(1)は
頂部に粉粒体投入弁(2)及び気体排出弁(3)を有す
る加圧タンクであって、その下部に流動床(4)が形成
されて−ると共に流動床(4)の上部側壁に後述するス
クリュー挿入孔(5)が形成されている。
The present invention will be described in detail with reference to the drawings below. (1) is a pressurized tank having a powder input valve (2) and a gas discharge valve (3) at the top, and a fluidized bed (4) at the bottom thereof. A screw insertion hole (5), which will be described later, is also formed in the upper side wall of the fluidized bed (4).

(6)は加圧タンク(1)の底部に空気、不活性ガス等
の加圧気体を加圧弁(7)を介して供給する加圧管、(
8)は加圧タンク(1)の上部に同様の加圧気体を均圧
弁(9)を介して供給する均圧管、(1(lは同様の加
圧気体が輸送弁aυを介して供給される輸送管であって
、加圧管(6)及び均圧! (8)の何れか一方は省略
することが可能である。
(6) is a pressurizing pipe that supplies pressurized gas such as air or inert gas to the bottom of the pressurizing tank (1) via a pressurizing valve (7);
8) is a pressure equalizing pipe that supplies the same pressurized gas to the upper part of the pressurized tank (1) via the pressure equalizing valve (9); It is possible to omit either the pressurizing pipe (6) or the pressure equalizing pipe (8).

114)はタンク外から挿入孔(5)を通じてタンク内
に挿入されその先端導入部05+が流動床(4)と上方
から対向するスクリューであって、モータ等の駆動装置
00によって回転駆動され、その回転に応じて加圧タン
ク内の粉粒体を外部に連続的に移送する。
114) is a screw that is inserted into the tank from outside the tank through the insertion hole (5) and whose tip introduction part 05+ faces the fluidized bed (4) from above, and is rotationally driven by a drive device 00 such as a motor. Continuously transfers the powder inside the pressurized tank to the outside according to the rotation.

この場合スクリューIはその軸線の先端導入部(151
側からみた水平線に対する角度即ち仰角が6ol内とな
るように配設することが粉粒体切出しの定量性(以下単
に定量性と称す)を維持する上で望ましく、俯角で配設
すると移送中の粉粒体に働く重力の影暢及び粉体圧力の
影榔によって定量性が損なわれ、又仰角を60〜90の
範囲に選定するとスクリュー内で粉粒体のすべり現象が
増大して定量性が損なわれる。
In this case, the screw I is connected to the tip introduction part (151) of its axis.
It is desirable to arrange the arrangement so that the angle with respect to the horizontal line when viewed from the side, that is, the elevation angle, is within 6 ol in order to maintain quantitative performance (hereinafter simply referred to as quantitative performance) in cutting out powder and granules. Quantitativeness is impaired due to the effect of gravity acting on the powder and powder pressure, and if the elevation angle is selected in the range of 60 to 90, the sliding phenomenon of the powder and granular material in the screw increases, resulting in poor quantitative performance. be damaged.

0樽はスクリュー04のタンク(1)外に露出している
部分を覆う円筒状のトラフであって、そのタンク内に延
長する左端部がテーパー吠に形成され、右端下面に粉粒
体排出口αIが形成され、この排出口01が切出弁−を
介して輸送tQIK接続されている。
The 0 barrel is a cylindrical trough that covers the exposed part of the tank (1) of the screw 04, and the left end that extends into the tank is tapered, and there is a powder discharge port on the lower surface of the right end. αI is formed, and its outlet 01 is connected to the transport tQIK via a cut-off valve.

次に以上の本発明装置の動作を説明する。先ず気体排出
弁(3)を開いて加圧タンク(1)内圧力を常圧とした
状態で投入弁(2)を開いてタンク内に粉粒体を充填す
る。粉粒体充填後投入弁(2)及び排出弁(3)を開じ
ると共に加圧弁(7)及び均圧弁(9)を開き加圧タン
ク(1)を2即/側・0以上に昇圧する。タンク昇圧後
輸送弁αυ及び切出弁−を開くと略同時に駆動装置tt
e Kよってスクリューα4を回転駆動させる。
Next, the operation of the above device of the present invention will be explained. First, the gas discharge valve (3) is opened to bring the internal pressure of the pressurized tank (1) to normal pressure, and the input valve (2) is opened to fill the tank with powder. After filling the powder and granular material, open the input valve (2) and discharge valve (3), and at the same time open the pressurization valve (7) and pressure equalization valve (9) to increase the pressure of the pressurization tank (1) to 0 or more on the 2nd/side. do. Almost at the same time when the transport valve αυ and the cut-off valve are opened after the tank pressure is increased, the drive device tt
e Rotate the screw α4 by K.

これによって加圧タンク(1)内の粉粒体が流動床(4
)で常に一定の流動化状態に保たれスクリューの粉粒体
導入部a[有]からスクリューの回転に伴なってトラフ
0〜内を外部に連続的に移送され排出口a*hb切出弁
(2)を通って加圧タンク(υと略同−圧力となるよう
に加圧気体が供給された輸送管α呻に供給され、この輸
送管を通じて目的地に高圧輸送される。
As a result, the powder and granules in the pressurized tank (1) are transferred to the fluidized bed (4).
), the powder and granules are kept in a constant fluidized state at all times, and are continuously transferred to the outside through the trough 0 to the inside as the screw rotates from the powder introduction part a of the screw to the outside through the outlet a*hb cut-off valve. (2), the gas is supplied to a transport pipe α to which pressurized gas is supplied so that the pressure is approximately the same as that of the pressurized tank (υ), and the gas is transported under high pressure to the destination through this transport pipe.

この賜金粉粒体の定量性は加圧管(6)から供給される
気体流量と、スクリューQ4)の羽根形状及び回転数と
によって決定され、通常スクリューの形状を決定すれば
定量性はスクリュー′の回転数及び加圧管(6)の気体
供給量によって決定される・なお、実験の結果スクリュ
ーの回転数を低連にした方が高速回転時に比較してより
定量性が良いことカ硲詔された。
The quantitative nature of this powdered powder is determined by the gas flow rate supplied from the pressurizing pipe (6) and the blade shape and rotation speed of the screw Q4). Normally, once the screw shape is determined, the quantitative nature is It is determined by the rotation speed and the gas supply amount of the pressurizing tube (6).As a result of the experiment, it was suggested that lower screw rotation speeds provide better quantitative performance compared to high speed rotations. .

以上のように本発明装置によると、加圧タンク内の粉粒
体がスクリューによって連続的に切出されて輸送管に供
給されるので粉粒体の切出精度を向上させることができ
、例えば従来装置の粉粒体の定磁性は約±15%程度で
あるのに対、し本発明装置によれば土3〜6%に押える
ことが可能となり、又粉粒体の流れが断続的にならない
ので、輸送先が粉粒体を連続的に使用したり反応させた
りする設備である場合に特に好適であり、更にスクリュ
ーの羽根形状を適宜選択することによって各種粉粒体を
輸送することができ、特に加圧タンク内で加圧気体のみ
が流れ粉粒体が輸送管に供給されない所謂吹込後は現象
を生じゃすい粉粒体の輸送装置として最適であることが
確認された。
As described above, according to the apparatus of the present invention, the granular material in the pressurized tank is continuously cut out by the screw and supplied to the transport pipe, so that the cutting precision of the granular material can be improved, for example. While the constant magnetism of powder and granules in conventional equipment is about ±15%, the present invention makes it possible to suppress the constant magnetism to 3 to 6%. Therefore, it is particularly suitable when the destination is equipment that continuously uses or reacts powder and granular materials, and furthermore, by appropriately selecting the shape of the screw blades, it is possible to transport various powder and granular materials. It has been confirmed that this system is ideal as a transportation device for powder and granular materials, especially after the so-called blowing, in which only pressurized gas flows in the pressurized tank and the powder and granules are not supplied to the transport pipe.

次に本発明の他の実施例を第2図について説明する。本
例に於いて第1図との対応部分には同一符号を附しその
詳細説明は省略するが、第1図の構成に於いて加圧タン
ク(1)に複数例えば8本のスクリュー(14a )〜
(14b)  −1t:放射状に配設されその夫々に輸
送管(10a )〜(10h )  が接続されている
Next, another embodiment of the present invention will be described with reference to FIG. In this example, parts corresponding to those in FIG. 1 are given the same reference numerals and detailed explanation thereof will be omitted. )~
(14b) -1t: They are arranged radially and transport pipes (10a) to (10h) are connected to each of them.

この実施例装置によると、加圧タンク(1)内の粉粒体
を複数の輸送管に分配輸送し得るものであるが、加圧タ
ンク内圧力とトップ排出口圧力との差圧に無関係に粉粒
体の切出し量を決定できる。即ち、各Fう7排出ロ圧力
は各輸送管の圧力損失によって決定°される為夫々異な
った値を示す、一方加圧タンクの圧力は加圧気体供給源
元圧に等しくなるので各スクリュー人口及び出口間では
圧力差が異なる訳であるが、その圧力差の大小に応じて
スクリューの回転数の小太を選択決定することにより切
出し量を均等に決定できる。又上述したようにスクリュ
ーの回転数を低下させた方が定量性が艮くなるので、最
も回転数が大となるスクリューを一部として他のスクリ
ューはそれ以下の回転数で運転するように設計条件を決
定すれば、定量性はある一定の範囲のバラツキに押える
ことが出来る。
According to this example device, the powder and granular material in the pressurized tank (1) can be distributed and transported to a plurality of transport pipes, regardless of the differential pressure between the pressure inside the pressurized tank and the top outlet pressure. The amount of powder to be cut out can be determined. In other words, the pressure of each F7 discharge is determined by the pressure loss of each transport pipe, so it shows a different value. On the other hand, the pressure of the pressurized tank is equal to the source pressure of the pressurized gas, so the pressure of each screw is determined by the pressure loss of each transport pipe. Although the pressure difference differs between the pressure difference and the outlet, the cutting amount can be uniformly determined by selecting and determining the rotational speed of the screw depending on the magnitude of the pressure difference. In addition, as mentioned above, lowering the rotational speed of the screw makes quantitative performance more difficult, so the screw with the highest rotational speed is designed to operate at a lower rotational speed. Once the conditions are determined, it is possible to suppress the variation in quantitativeness within a certain range.

以上のように本実施例にお−ては1つの加圧タンクから
複数個所に粉粒体を均等分配することができ、この場合
の均等分配性は従来装置が釣上15≦程度のバラツキが
あるのに対し本発明装置では±3〜6%の範囲に押える
ことができると共に各スクリューによる粉粒体の定量性
も±3〜6%に押えるこ七ができ、しかも1個の加圧タ
ンクから複数個所に粉粒体を分配輸送できるから、設置
面一が少ない上段備装が廉価であり、更に輸送管の長さ
による圧力損失の変動をスクリューの同転数で調整でき
るから輸送管長K11l限がなく設計自由度を向上し得
、又均等分配に限らず各輸送管への切出し量を別個に設
定することも可能である等の優れた特徴を有する。
As described above, in this embodiment, it is possible to evenly distribute powder and granules to multiple locations from one pressurized tank, and in this case, the uniform distribution performance is different from that of the conventional device, which has a variation of about 15≦. On the other hand, with the device of the present invention, it is possible to suppress the granular material within the range of ±3 to 6%, and also to suppress the quantification of powder and granules by each screw to ±3 to 6%. Since the powder and granules can be distributed and transported to multiple locations, the upper stage equipment, which requires less installation space, is inexpensive.Furthermore, fluctuations in pressure loss due to the length of the transport pipe can be adjusted by the same rotation speed of the screw, so the transport pipe length is K11l. It has excellent features such as being able to improve the degree of freedom in design without any limitations, and being able to set the cutting amount to each transport pipe separately, rather than just distributing it evenly.

尚各スクリュー(14a)〜(14h)は放射状に取付
ける場合に限定されるものではなく、平行に配設するよ
うKしても良いこと勿論である。
It should be noted that the screws (14a) to (14h) are not limited to being installed radially, but may of course be installed in parallel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例を示す一部を断面とした
正面図、第2図は本発明装置の他の例を示す平面図であ
る。 (1)は加圧タンク、(6)は加圧管、(8)は均圧管
、Ql(10a )〜(10h )は輸送管、(14,
(14a ) 〜(14h)はスクリュー、aeは駆動
装置、01はトラフ、a!Jは排出口。 特 許 出 願 人 デンカエンジニアリング株式会社
手続補正書C自発) 昭和61年す月31日 特許゛庁長富 島田響樹 殿 1、事件の表示 昭和86年特 許願第115@00号 2  発TljtD名称   粉粒体高圧輪!!!装置
3、 補正をする者゛ 事件との関係特許出」歇人 住 所 東京都千代田区有秦町1丁14書1号4、代理
人 5、 補正命令の日付  自  発 6、 補正により増加する発明の数 ナシ7、補正の対
象 補   正   書 特願昭56−125400 (1)  明細書中1発明の詳細な説明の項を次の如く
補正する。 3、発明の詳細な説明 この発明は、加圧タンク内の粉粒体を高圧搬送気体によ
って輸送する場合において定量切り出し及び直接分配可
能な輸送装置に関する。 粉粒体を空気又は不活性ガス等の搬送気体で輸送管中を
輸送する装置は種々の改良によってかなり高度化され今
日に至っているが、現在まで多くの研究者の主たる目的
は輸送管中を高固気比で輸送する事に向けられてきた。 その目的は究極的には省エネルイ化にあるが、近年気体
輸送の適用分野が広まるKつれ、上記の目的以外に粉粒
体の定量切出しと複数個所への同時均等切出し輸送の要
求が高まってきた。 との要求を受けて粉粒体の定量切出しを行なう場合、加
圧タンクと輸送管との間にロータリーバルブを設ける方
法式−はエジェクタのように固定絞りを設は管路断面積
を輸送管よりも縮少させることにより定量性を保九せる
という方法等が採用されている。然し乍ら前者の場合ロ
ータに充填される粉粒体の量が加圧タンク内部に存在す
ゐ粉粒体の量によって多少異なる欠点即ち粉体圧力の大
小によりローター内に充填されゐ量が蜜動する欠点を有
すると共にロータが複数室に分lX11れている為、粉
粒体が断続的に輸送管に供給され特にトターの回転数が
低い範囲では粉粒体の断続供給が顕著になる欠点がある
。 一方後者の固定絞りによる場合、断面を縮少しているた
め通常の輸送圧力に比べ過剰の圧力を必要とし、且つ絞
り部分はその流速が早くなるので摩耗が進行して時間の
経過と共に切出し速度が徐々に変化しえり、実際に必!
!麦切出し速度を得るためKは絞り形状を数回変更して
試験しなければ々ら々いという試行錯誤の煩わしさかあ
抄、シかも粉粒体の性状変化に容易に追従し得ない等の
欠点があった。 又複数個所への均等に分配輸送する場合現状は、−個の
加圧タンクに複数個の輸送管を接続して分配輸送する方
法、複数個の加圧タンクを使用して各加圧タンクに、1
本の輸送管を接続する方法等が採用されているが1分配
輸送管の夫々に固定絞りを設ける場合は前記したと同様
の欠点があり、又固定絞り以外の方法では輸送管自体の
長さを調整して各輸送管の圧力損失を調整しなければ均
等分配輸送をまし得々いから輸送管敷設ルートが規制さ
れる欠点があった。 本発明は上記従来装置の諸欠点を一掃し得る新規な粉粒
体高圧輸送装置を提供せんとする−のである。 以下図面について本発明の実施例装置を説明する。 (1)は粉粒体が投入充填される加圧タンク、(りはそ
の胴部(8)は底部であってエアチャンバー(5m)を
形成している@(4)d多孔質のエアレータである。 (6)、ま胴部(2)を貫通しエアレータの上部に延長
されているスクリューを備えた切出し装置である。 加圧気体は加圧源(図示せず)から輸送管00に供給さ
れると共に分岐配管(6)(2)Kよってエアチャンノ
々−(3烏)と加圧タンク上部に夫々弁(?) (1)
を介して供給される。 cL1ri輸送弁である。弁(7) (9) 01 r
i夫々流量を調節しうる。 Uriスクリューであってその先端部曽は露出して前記
エアレータ上方に延長され為と共にその基端側はモータ
等の駆動装置(至)に連結されて−る。 (ロ)はスクリューの一部を覆う案内筒であって取付端
枝Qηを介してタンク胴部に固設されその先端(2)6
拡張されて導入案内となって−る。 案内筒の基端側(至)の底部には排出口@が設けられ管
(2)が連設されて切出弁jを介して前記輸送管(イ)
に接続されている。 上記装置においてスクリュー(財)はその軸線の先端導
入部(ロ)側からみた水平線に対する角度即ち仰角が6
0°以内となるように配設することが粉粒体切出しの定
量性を維持する上で望ましい。 スクリュー(ロ)を俯角で配設すると移送中の粉粒体に
働く重力の影響及び粉体圧力の影響によって定量性が損
なわれ、又仰角を60〜90(範囲に?!定するとスク
リュー内で粉粒体のすべり現象又ri1M−が増大して
定量性が損なわれる。 次に以上の本発明装置の動作を説明する。先ず気体排出
弁(2)を開いて加圧タンク(1)内圧力を常圧とした
状態で投入弁(2)を開いてタンク内に粉粒体を充填す
る。粉粒体充填稜投入弁(2)及び排出弁(3)を閉じ
ると共に加圧弁(n及び均圧弁(9)を開き加圧タンク
(1)を2に4/cIII・0以上に昇圧する。タンク
昇圧稜輸送弁(ロ)及び切出弁jを開くと略同時に駆動
装fl(至)によってスクリューα◆を回転駆動させる
。 この操作によって加圧タンク(1)内の流動床(4)上
で流動化状廖にされた粉粒体がスクリューの回転に伴な
ってスクリューの粉粒体導入部(2)から案内筒αカ内
を通って連続的に移送され排出口(6)から切出弁ωを
通って輸送管(イ)内に供給される。輸送管内圧力は加
圧タンクの内部と略同−圧力である。 粉粒体の定量性は加圧管(6)から供給される気体流量
と、スクリュー(ロ)の羽根形状及び回転数とKよって
決定され3通常スクリューの形状を決定すれは定量性は
スクリューの回転数及び加圧管(6)の気体供給量によ
って決定される。なお、実験の結果スクリューの回転数
を低速にした方が高速回転時に比較してより定量性が良
いことが確認された。 以上のように本発明装置によると、加圧タンク内の粉粒
体がスクリューによって連続的に切出されて輸送管に供
給されるので粉粒体の切出精度を向上させることができ
1例えば従来装置の粉粒体の定量性は約±15優程度で
あるのに対し本発明装置によれば±3〜6%に一押える
ことが可能になる。又粉粒体の流れが断続的にならない
ので、輸送端が粉粒体を連続的に使用したり反応させた
りする設備である場合に特に好適であり、更にスクリュ
ーの羽根形状を適宜選択することによって各種の粉粒体
を輸送することができる。更に加圧タンク内で加圧気体
のみが渡れ粉粒体が輸送管に供給されない所謂吹込抜は
現象を生じヤす一粉粒体を輸送するための輸送装置とし
て最適であることが確認された。 本発明において、切出し装置を共通のタンクに複数個配
設することによって直接分配輸送装置が提供される。 第2図は分配輸送装蓋の要部平面図であって加圧タンク
(1)K複数のスクリュー(141)〜(14h)が放
射状に配設されその夫々に輸送管(10m)〜(10k
)が接続されている。 この鋏雪によると、加圧タンク内圧力とトラフ排出口圧
力との差圧に無関係に粉粒体の切出し量を調節できる利
点がある。即ち、各案内筒排出口圧力は各輸送管の圧力
損失によって決定される為夫々異なった値を示す、一方
加圧タンクの圧力は一定であるから各スクリュー人口と
その排出口の間では圧力差が異なり従ってこのf−では
粉体排出量も異なってしまうが夫々の圧力差の大小に応
じてスクリューの回転数を調節することにより切出し量
を均等化することができるのである。この場合において
は上述したようにスクリューの回転数が低い場合の方が
定量性が良いから、最も回転数が大となるスクリューを
基準として他のスクリューはそれ以下の回転数で運転す
るように設計条蜂を決定すれば、定量性はある一定の範
囲内に押えることが出来る。 上記装置によれば1つの加圧夕4ンクから複数個所に粉
粒体を均等分配又は調節分配することができ、この場合
の粉粒体の定量性も±S〜6チに押えることができる。 しかも1個の加圧タンクから複数個所に粉粒体を分配輸
送できるから、設置面積が少ない上設備費が廉価になり
、更に各輸送管の長さくよる圧力損失の変動をスクリュ
ーの回転数で調整できるから輸送管長に制限がなく設計
自由度が大きくなる。又均等分配に限らず各輸送管への
切出し量を別個に設定することも可能である。 尚各スクリュー(14−)〜(14h) ri放射状に
取付ける場合に限定されるものではなく1片側に並行に
配設することもできる。 (2)  図面中、第1図を別紙添付の通り補正する。 以上
FIG. 1 is a partially sectional front view showing one embodiment of the device of the present invention, and FIG. 2 is a plan view showing another example of the device of the present invention. (1) is a pressurized tank, (6) is a pressurized pipe, (8) is a pressure equalizing pipe, Ql (10a) to (10h) are transport pipes, (14,
(14a) to (14h) are screws, ae is a drive device, 01 is a trough, a! J is the outlet. Patent Applicant Denka Engineering Co., Ltd. Procedural Amendment C Voluntary) Patent Office Chief Tomi Hibiki Shimada dated 31st May 1985 1, Indication of Case 1986 Patent Application No. 115 @ 00 No. 2 Issued TljtD Name Powder Granular high pressure wheel! ! ! Device 3. Person making the amendment (patent issued related to the incident) Address: 1-14-1-4, Arihata-cho, Chiyoda-ku, Tokyo Agent 5: Date of amendment order Voluntary 6: Increased due to the amendment Number of inventions None 7, Amendment to be made Patent Application No. 125400/1983 (1) The detailed explanation section of the first invention in the specification is amended as follows. 3. DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a transport device capable of cutting out a fixed amount and directly distributing powder or granules in a pressurized tank by means of a high-pressure carrier gas. Devices for transporting powder and granular materials through transport pipes using carrier gas such as air or inert gas have become quite sophisticated through various improvements and have reached the present day, but until now the main purpose of many researchers has been to It has been aimed at transporting at a high solid-air ratio. The ultimate purpose of this is to save energy, but as the field of application of gas transportation has expanded in recent years, there has been an increasing demand for quantitative cutting of powder and granular material and simultaneous and even transportation to multiple locations in addition to the above-mentioned purposes. Ta. When performing quantitative cutting of powder or granular materials in response to requests for A method has been adopted in which quantitativeness is maintained by reducing the amount by more than 20%. However, in the case of the former, the amount of powder filled into the rotor varies somewhat depending on the amount of powder present inside the pressurized tank, ie, the amount filled into the rotor fluctuates depending on the magnitude of powder pressure. In addition, since the rotor is divided into multiple chambers, powder and granular material is intermittently supplied to the transport pipe, and the intermittent supply of powder and granular material is particularly noticeable in the range where the rotation speed of the rotor is low. . On the other hand, in the case of the latter fixed throttle, because the cross section is reduced, excessive pressure is required compared to the normal transport pressure, and the flow rate at the throttle part increases, so wear progresses and the cutting speed decreases over time. It changes gradually and is actually necessary!
! In order to obtain the wheat cutting speed, K has to change the drawing shape several times and test it, which is a hassle of trial and error. There were drawbacks. In addition, when distributing and transporting to multiple locations evenly, the current methods are to connect multiple transport pipes to -1 pressurized tanks and distribute and transport, or to use multiple pressurized tanks and connect each pressurized tank. ,1
Methods such as connecting two transport pipes have been adopted, but if a fixed throttle is provided for each distribution pipe, there are the same drawbacks as mentioned above, and methods other than fixed throttles have the same length as the transport pipe itself. Unless the pressure loss of each transport pipe is adjusted by adjusting the pressure loss of each transport pipe, it is impossible to achieve evenly distributed transport, which has the disadvantage that the transport pipe laying route is regulated. The present invention aims to provide a new apparatus for high-pressure transportation of powder and granular materials that can eliminate the various drawbacks of the conventional apparatuses described above. An embodiment of the present invention will be described below with reference to the drawings. (1) is a pressurized tank into which powder and granules are charged, and (4) d is a porous aerator whose body (8) is the bottom and forms an air chamber (5 m). (6) is a cutting device equipped with a screw that passes through the barrel (2) and extends to the top of the aerator. Pressurized gas is supplied to the transport pipe 00 from a pressurized source (not shown). At the same time, branch pipes (6) (2) K are connected to air channels (3) and valves (?) at the top of the pressurized tank (1).
Supplied via. cL1ri transport valve. Valve (7) (9) 01 r
The flow rate can be adjusted respectively. The Uri screw has a distal end exposed and extended above the aerator, and its proximal end is connected to a drive device such as a motor. (B) is a guide cylinder that covers a part of the screw, and is fixed to the tank body via the mounting branch Qη, and its tip (2) 6
It has been expanded to become an introduction guide. A discharge port @ is provided at the bottom of the proximal end side (toward) of the guide cylinder, and a pipe (2) is connected to the transport pipe (a) via a cut-off valve j.
It is connected to the. In the above device, the angle of the axis of the screw with respect to the horizontal line viewed from the tip introduction part (b) side, that is, the elevation angle is 6.
It is desirable to arrange the angle within 0° in order to maintain the quantitative property of cutting out the powder. If the screw (B) is arranged at an angle of depression, quantitative performance will be impaired due to the influence of gravity acting on the powder and granules being transferred and the influence of powder pressure, and if the angle of elevation is set in the range of 60 to 90? The sliding phenomenon of powder and granules or ri1M- increases, impairing quantitative performance.Next, the operation of the apparatus of the present invention described above will be explained.First, the gas discharge valve (2) is opened to reduce the pressure inside the pressurized tank (1). With the pressure at normal pressure, open the input valve (2) to fill the tank with powder and granules. Close the powder and granule filling ridge input valve (2) and discharge valve (3), and close the pressure valve (n and equalization valve). Open the pressure valve (9) and increase the pressure of the pressurized tank (1) to 2 to 4/cIII・0 or higher.Almost at the same time as the tank pressure increase ridge transport valve (b) and cut-off valve j are opened, the pressure is increased by the drive device fl (to). The screw α◆ is driven to rotate. Through this operation, the powder and granules fluidized on the fluidized bed (4) in the pressurized tank (1) are introduced into the screw as the screw rotates. It is continuously transferred from part (2) through the inside of the guide tube α, and is supplied from the discharge port (6) through the cut-off valve ω into the transport pipe (A). The pressure is approximately the same as the inside.The quantitative property of powder and granular material is determined by the gas flow rate supplied from the pressurizing pipe (6), the blade shape and rotation speed of the screw (b), and the shape of the screw (b). Quantitativeness is determined by the rotational speed of the screw and the amount of gas supplied to the pressurizing tube (6).As a result of the experiment, the quantitativeness is better when the screw rotational speed is low compared to when the screw is rotating at high speed. As described above, according to the device of the present invention, the powder and granules in the pressurized tank are continuously cut out by the screw and supplied to the transport pipe, which improves the cutting precision of the powder and granules. 1. For example, while the conventional apparatus has a quantitative accuracy of about ±15%, the apparatus of the present invention can reduce the quantitative accuracy to ±3 to 6%. Since the flow of the body does not become intermittent, it is particularly suitable when the transport end is equipment that continuously uses or reacts powder or granular materials. Furthermore, by appropriately selecting the shape of the screw blades, various types of It is possible to transport powder and granules.Furthermore, in a pressurized tank, only pressurized gas passes through, and the powder and granules are not supplied to the transport pipe, which is the so-called blow-out, which causes a phenomenon. It has been confirmed that the device is optimal as a device. In the present invention, a direct dispensing and transporting device is provided by arranging a plurality of cutting devices in a common tank. Figure 2 is a plan view of the main part of the distributing and transporting device In the figure, a pressurized tank (1) K has a plurality of screws (141) to (14h) arranged radially, each of which has a transport pipe (10m) to (10k).
) are connected. According to this scissors, there is an advantage that the amount of powder or granular material to be cut out can be adjusted regardless of the differential pressure between the pressure inside the pressurized tank and the pressure at the trough outlet. In other words, the pressure at the outlet of each guide cylinder is determined by the pressure loss of each transport pipe, so it shows a different value.On the other hand, since the pressure in the pressurized tank is constant, there is a pressure difference between each screw port and its outlet. Therefore, the amount of powder discharged also differs in this f-, but the amount of cut-out can be made equal by adjusting the rotational speed of the screw according to the magnitude of each pressure difference. In this case, as mentioned above, the quantification is better when the screw rotation speed is low, so the screw with the highest rotation speed is used as a reference, and the other screws are designed to operate at lower rotation speeds. If the number of row bees is determined, the quantitativeness can be kept within a certain range. According to the above device, it is possible to equally distribute or adjust the distribution of powder and granules to multiple locations from one pressurized tank, and in this case, the quantitative quality of the powder and granules can be kept within ±S to 6C. . Moreover, since powder and granules can be distributed and transported from one pressurized tank to multiple locations, the installation area is small and equipment costs are low.Furthermore, fluctuations in pressure loss due to the length of each transport pipe can be controlled by the number of revolutions of the screw. Since it can be adjusted, there is no limit to the length of the transport pipe, increasing the degree of freedom in design. Moreover, it is not limited to equal distribution, and it is also possible to set the amount of cutout to each transport pipe separately. It should be noted that the screws (14-) to (14h) are not limited to being installed radially, but may be installed in parallel on one side. (2) Among the drawings, Figure 1 will be amended as attached. that's all

Claims (3)

【特許請求の範囲】[Claims] (1)  力U圧タンク内に粉粒体を充填し、該粉粒体
を搬送気体によって圧力2即/国・G以上で輸送する粉
粒体高圧輸送装置iにおいて、駆動装置によって駆動さ
れるスクリューを外部から上記加圧タンク内に延長させ
ると共に、当該スクリューの加圧タンク外の露出部を排
出口を形成したトラフで覆い、上記排出口を搬送気体が
供給された輸送管に接続すると共に上記加圧タンクに搬
送気体を供給するようにしたことを特徴とする粉粒体高
圧輸送装置。
(1) In a powder and granule high-pressure transport device i that fills a powder or granule in a force U pressure tank and transports the powder or granule by a carrier gas at a pressure of 2 kg/g or more, the granule is driven by a drive device. Extending the screw from the outside into the pressurized tank, covering the exposed part of the screw outside the pressurizing tank with a trough forming a discharge port, and connecting the discharge port to a transport pipe supplied with carrier gas. A high-pressure transportation device for powder and granular material, characterized in that a carrier gas is supplied to the pressurized tank.
(2)加圧タンク内に粉粒体を充填し、該粉粒体を搬送
気体によって圧力2 KIi/cg −G以上で輸送す
る粉粒体高圧輸送装置において、駆動装置によって駆動
される複数のスクリューを外部から上記加圧タンク内に
延長させると共に当該各スクリューの加圧タンク外の露
出部を排出口を形成したトラフで億い、上記排出口を搬
送気体が供給された複数の輸送管に別個IIC接続する
と共に上記加圧タンクに搬送気体を供給して粉粒体を分
配輸送するようにしたことを特徴とする粉粒体高圧輸送
装置。
(2) In a high-pressure powder transport device that fills a pressurized tank with powder and transports the powder and granule with a carrier gas at a pressure of 2 KIi/cg -G or more, a plurality of The screws are extended from the outside into the pressurized tank, and the exposed portion of each screw outside the pressurized tank is connected to a trough forming a discharge port, and the discharge port is connected to a plurality of transport pipes to which carrier gas is supplied. A high-pressure transportation device for powder and granular material, characterized in that the powder and granular material is distributed and transported by being connected to a separate IIC and supplying a carrier gas to the pressurized tank.
(3)  スクリューの軸線方向の仰角がθ〜60の範
囲に選定されてなる特許請求の範囲第1項又は第2項記
載の粉粒体高圧輸送装置。
(3) The powder and granular material high-pressure transport device according to claim 1 or 2, wherein the elevation angle in the axial direction of the screw is selected in the range of θ to 60.
JP12560081A 1981-08-11 1981-08-11 Apparatus for transporting powder and particle under high pressure Pending JPS5826724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12560081A JPS5826724A (en) 1981-08-11 1981-08-11 Apparatus for transporting powder and particle under high pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12560081A JPS5826724A (en) 1981-08-11 1981-08-11 Apparatus for transporting powder and particle under high pressure

Publications (1)

Publication Number Publication Date
JPS5826724A true JPS5826724A (en) 1983-02-17

Family

ID=14914148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12560081A Pending JPS5826724A (en) 1981-08-11 1981-08-11 Apparatus for transporting powder and particle under high pressure

Country Status (1)

Country Link
JP (1) JPS5826724A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62500377A (en) * 1984-10-11 1987-02-19 クゥオンタム・レ−ザ−(ユ−・ケイ)・リミテッド screw powder feeder
US4970830A (en) * 1985-09-20 1990-11-20 Schlick-Roto-Jet Maschinenbau Gmbh Apparatus for the uniform dosage of granular blasting agents in pneumatical blasting machines
US6074135A (en) * 1996-09-25 2000-06-13 Innovative Technologies, Inc. Coating or ablation applicator with debris recovery attachment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62500377A (en) * 1984-10-11 1987-02-19 クゥオンタム・レ−ザ−(ユ−・ケイ)・リミテッド screw powder feeder
US4970830A (en) * 1985-09-20 1990-11-20 Schlick-Roto-Jet Maschinenbau Gmbh Apparatus for the uniform dosage of granular blasting agents in pneumatical blasting machines
US6074135A (en) * 1996-09-25 2000-06-13 Innovative Technologies, Inc. Coating or ablation applicator with debris recovery attachment

Similar Documents

Publication Publication Date Title
US4502820A (en) High-pressure conveyor for powdery and granular materials
US7410107B1 (en) Apparatus and method for reducing anhydrous ammonia application by optimizing distribution
US7407345B2 (en) Method and a system of distribution of fluidizable materials
US4883390A (en) Method and apparatus for effecting pneumatic conveyance of particulate solids
US7137759B1 (en) System and method for handling bulk materials
JP3584092B2 (en) Powder metering device
JPH0255335B2 (en)
US4355929A (en) Flow control device
JPS5826724A (en) Apparatus for transporting powder and particle under high pressure
US4599015A (en) Device for dosing loose material
CN106415177A (en) Gearbox assembly for a charging installation of a metallurgical reactor
CN107533335A (en) Method and apparatus for Flow-rate adjustment
EP0060137A1 (en) Conveying systems
JP2003500627A (en) Equipment for uniformly supplying fine powder material to the concentration burner of the suspension melting furnace
US6668874B2 (en) Gas assisted flow tube and filling device
AU546422B2 (en) Means and apparatus for throttling a dry pulverized solid material pump
EP0140570A1 (en) Feeding particulate material
JPH036094B2 (en)
FI69258C (en) ANORDNING FOER MATNING AV PULVERISERAT MATERIAL
CN101638326B (en) Fluid dispenser for fluid, particularly for glaze
FI69101C (en) FOERFARANDE FOER TILLFOERSEL AV PULVERFORMIG BRAENSLEBLANDNINGTILL BLAESTERFORMOR HOS EN MASUGN
FI68981B (en) CONTAINING CONTAINER MATERIAL AV RELATIVT FINFOERDELAT MATERIAL
KR920000519B1 (en) Method of controlling substantially equal distribution of particulates from a multi-outlet distributor and an article constructed according to the method
JPS5855507A (en) Control process for blasting powdered coal
CA3134021A1 (en) Distribution device for granular material