JPS5826389B2 - Hydrocarbon pyrolysis method and apparatus - Google Patents

Hydrocarbon pyrolysis method and apparatus

Info

Publication number
JPS5826389B2
JPS5826389B2 JP5175078A JP5175078A JPS5826389B2 JP S5826389 B2 JPS5826389 B2 JP S5826389B2 JP 5175078 A JP5175078 A JP 5175078A JP 5175078 A JP5175078 A JP 5175078A JP S5826389 B2 JPS5826389 B2 JP S5826389B2
Authority
JP
Japan
Prior art keywords
molten salt
raw material
steam
hydrocarbon
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5175078A
Other languages
Japanese (ja)
Other versions
JPS54143408A (en
Inventor
正実 吉竹
文明 山口
敦 酒井
正雄 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Zosen KK
Original Assignee
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Zosen KK filed Critical Mitsui Zosen KK
Priority to JP5175078A priority Critical patent/JPS5826389B2/en
Publication of JPS54143408A publication Critical patent/JPS54143408A/en
Publication of JPS5826389B2 publication Critical patent/JPS5826389B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 本発明は、溶融塩と水蒸気を用いて炭化水素をエチレン
・プロピレン等の低級オレフィンの製造を目的として熱
分解する方法および装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for thermally decomposing hydrocarbons using molten salt and steam for the purpose of producing lower olefins such as ethylene and propylene.

エタンやナフサなどを分解して低級オレフィンを製造す
る場合、これら原料炭化水素を水蒸気と混合して分解炉
反応管に送入する。
When producing lower olefins by cracking ethane, naphtha, etc., these raw material hydrocarbons are mixed with steam and fed into a cracking furnace reaction tube.

この混合流体は分解炉の炉壁に設置されている複数個の
バーナによって加熱昇温され、低級オレフィン成分に富
むガスに分解される。
This mixed fluid is heated and heated by a plurality of burners installed on the wall of the cracking furnace, and is decomposed into gas rich in lower olefin components.

分解炉反応管から出る分解ガスは、重合などの不都合な
反応を抑制するため急冷熱交換器で急冷される。
The cracked gas coming out of the cracking furnace reaction tube is quenched in a quenching heat exchanger to suppress undesirable reactions such as polymerization.

このような装置における1つの欠点として分解炉反応管
、急冷熱交換器伝熱管、およびそれらを連絡する配管に
原料炭化水素の熱分解の際に副生ずるタール物質、コー
クス等が付着、いわゆるコーキング現象を起す。
One drawback of such equipment is that tar substances, coke, etc., which are by-products during the thermal decomposition of feedstock hydrocarbons, adhere to the cracking furnace reaction tube, the quenching heat exchanger heat transfer tube, and the piping that connects them, a so-called coking phenomenon. wake up

よって長期間装置を運転すればそれらが管壁に蓄積して
くるため、分解炉反応管や急冷熱交換器伝熱管の管壁温
度が上昇し、圧力損失が増大し、伝熱効率の低下をもた
らす。
Therefore, if the equipment is operated for a long period of time, they will accumulate on the tube walls, which will increase the tube wall temperature of the cracking furnace reaction tubes and quench heat exchanger heat transfer tubes, increase pressure loss, and reduce heat transfer efficiency. .

このため定期的に、原料炭化水素の供給を停止して、付
着物質を除去する操作を行う必要があるが原料炭化水素
として原油、重油、アスファルト等の重質留分を含む原
料を使用する場合は、エタン、ナフサ等の軽質炭化水素
原料とは比較にならないほどタール物質やコークス等の
付着物が大量に副生し、装置の長期運転は全く不可能と
なる。
For this reason, it is necessary to periodically stop the feedstock hydrocarbon supply and perform operations to remove adhering substances, but when using raw materials containing heavy fractions such as crude oil, heavy oil, and asphalt as the feedstock hydrocarbon. However, in comparison with light hydrocarbon raw materials such as ethane and naphtha, a large amount of deposits such as tar and coke are produced as by-products, making long-term operation of the equipment completely impossible.

そこでこれら重質留分を含む原料を使用する場合は、分
解炉反応管、急冷熱交換器伝熱管などにおいて、タール
物質やコークス等の付着を抑制又は防止する目的で、溶
融塩を原料炭化水素と水蒸気に混合して分解、急冷する
方法がある。
Therefore, when using raw materials containing these heavy fractions, in order to suppress or prevent the adhesion of tar substances, coke, etc. in cracking furnace reaction tubes, quenching heat exchanger heat transfer tubes, etc., molten salt should be used as raw material hydrocarbon. There is a method of mixing it with water vapor, decomposing it, and rapidly cooling it.

しかしながら本方法においては付着物質の一部、特にコ
ークスが溶融塩の中に混入する。
However, in this method some of the deposited substances, especially coke, are mixed into the molten salt.

溶融塩は循環して繰返し使用するのが望ましく長期間連
続運転の場合には溶融塩中のコークスの割合が多くなり
、粘性、融点の上昇を来し、溶融塩の循環使用が不可能
となる欠点がある。
It is desirable to circulate and use the molten salt repeatedly, but in the case of long-term continuous operation, the proportion of coke in the molten salt increases, resulting in an increase in viscosity and melting point, making it impossible to circulate and use the molten salt. There are drawbacks.

溶融塩がアルカリ又はアルカリ土類金属の溶融塩の場合
は、副生ずるコークスと水蒸気が反応する、いわゆる水
性ガス化の強力な触媒作用を有しており、エタンやナフ
サ等の軽質炭化水素を原料とする場合は、溶融塩中にコ
ークスが混入しても副生ずるコークス量が少ないため、
分解炉反応管に循環させることにより水性ガス化反応で
溶融塩中に混入したコークスを処理することが出来るが
、重質油を原料とする場合は副生コークスが大量である
ため溶融塩中のコークスは蓄積してくる。
When the molten salt is an alkali or alkaline earth metal molten salt, it has a strong catalytic effect for so-called water gasification, in which by-product coke and water vapor react, and light hydrocarbons such as ethane and naphtha are used as raw materials. In this case, even if coke is mixed into the molten salt, the amount of by-product coke is small, so
By circulating the coke in the cracking furnace reaction tube, it is possible to treat the coke mixed in the molten salt in the water gasification reaction, but when heavy oil is used as a raw material, there is a large amount of by-product coke, so the amount of coke in the molten salt is Coke accumulates.

よって、この場合溶融塩を急冷熱交換器に通した後分解
ガス、水蒸気と分離して、別個に設けた溶融塩中のコー
クス処理装置で処理しなければならない。
Therefore, in this case, the molten salt must be passed through a quenching heat exchanger, separated from cracked gas and steam, and then treated in a separate molten salt coke treatment device.

本発明は、溶融塩と水蒸気を用いて炭化水素から低級オ
レフィンを製造する際に溶融塩中に混入してくるコーク
スを特別なコークス処理装置を別個に設けることなく完
全に処理し得る炭化水素熱分解方法および装置を提供す
るものである。
The present invention provides hydrocarbon heat that can completely treat coke mixed into molten salt when producing lower olefins from hydrocarbons using molten salt and steam without separately installing a special coke treatment equipment. A decomposition method and apparatus are provided.

本発明の他の目的は以下の説明から明らかとなろう。Other objects of the invention will become apparent from the description below.

本発明は次の構成を有する。The present invention has the following configuration.

すなわち、本発明の炭化水素熱分解方法は、水蒸気と溶
融塩の混合流体を加熱する加熱部と加熱部から出る水蒸
気と溶融塩の混合流体に原料炭化水素を混合しこれを加
熱して原料炭化水素の熱分解を行なう反応部とを有する
分解炉を用い、溶融塩中に蓄積するコークスを原料炭化
水素と接融する前の加熱部でガス化除去し、この混合流
体は更に反応部で原料炭化水素と混合され分解炉反応管
中で原料炭化水素を熱分解することを特徴とするもので
ある。
That is, the hydrocarbon pyrolysis method of the present invention includes a heating section that heats a mixed fluid of steam and molten salt, and a raw material hydrocarbon mixed with the mixed fluid of steam and molten salt discharged from the heating section, which is then heated to carbonize the raw material. Using a cracking furnace that has a reaction section that thermally decomposes hydrogen, the coke that accumulates in the molten salt is gasified and removed in the heating section before it is fused with the raw material hydrocarbon, and this mixed fluid is further processed into the raw material in the reaction section. This method is characterized by thermally decomposing raw material hydrocarbons mixed with hydrocarbons in a cracking furnace reaction tube.

また、本発明の炭化水素熱分解装置は、水蒸気と溶融塩
の混合流体を加熱する加熱部とその加熱部から出る水蒸
気と溶融塩の混合流体に原料炭化水素を混合しこれを加
熱して原料炭化水素の熱分解を行なう反応部とを有する
分解炉と、分解炉から出る分解ガスとその地熱分解生成
物と水蒸気と溶融塩の混合流体を急冷する熱交換器と、
該熱交換器から出る混合流体から溶融塩を分離する分離
器とから基本的に構成さ札分離器で分離された溶融塩を
水蒸気と混合して分解炉の該加熱部に循環供給し得るよ
うになしたことを特徴とする炭化水素熱分解装置である
In addition, the hydrocarbon pyrolysis apparatus of the present invention includes a heating section that heats a mixed fluid of steam and molten salt, a raw material hydrocarbon mixed with the mixed fluid of steam and molten salt discharged from the heating section, and heated. a cracking furnace having a reaction section for thermally decomposing hydrocarbons; a heat exchanger for rapidly cooling a mixed fluid of cracked gas, geothermal decomposition products thereof, steam, and molten salt discharged from the cracking furnace;
and a separator for separating molten salt from the mixed fluid coming out of the heat exchanger.The molten salt separated by the separator can be mixed with steam and circulated to the heating section of the cracking furnace. This is a hydrocarbon pyrolysis device that is characterized by the following.

また本発明の装置では分解炉の反応部が管状の反応管で
構成されており、該反応管を任意のパスに分解し任意の
パスの反応管に原料炭化水素の供給を制御し得る流量制
御装置を設けることができ、また分解反応部反応管の原
料捜入部を原料炭化水素の性状によって変更することも
できる。
Furthermore, in the apparatus of the present invention, the reaction section of the cracking furnace is composed of a tubular reaction tube, and the reaction tube is decomposed into any path and the flow rate control is capable of controlling the supply of raw material hydrocarbon to the reaction tube of any path. A device can be provided, and the raw material searching section of the reaction tube of the cracking reaction section can be changed depending on the properties of the raw material hydrocarbon.

次に本発明を図面によって説明する。Next, the present invention will be explained with reference to the drawings.

図は、本発明の一実施態様を説明するための系統図であ
る。
The figure is a system diagram for explaining one embodiment of the present invention.

まず、原料炭化水素はパイプ8からパイプ9からの噴霧
スチームを伴って分解炉1の対流部18で約400℃ま
で予熱され反応部の反応管12に送られる。
First, the raw material hydrocarbon is preheated to about 400° C. in the convection section 18 of the cracking furnace 1, accompanied by atomized steam from the pipe 8 to the pipe 9, and sent to the reaction tube 12 of the reaction section.

また希釈スチームもパイプ7から同様に対流部18で約
400℃以上に予熱され溶融塩との混合部15に送られ
る。
Further, the diluted steam is similarly preheated to about 400° C. or higher in the convection section 18 from the pipe 7 and sent to the mixing section 15 with the molten salt.

一方、溶融塩はタンク4からポンプ5により溶融塩輸送
バイブロを通り混合部15に送ら札混合部で予熱された
希釈スチームと混合され、分解炉1の副側部17にある
反応管12の反応管人口20から反応管12に導かれて
溶融塩中に混入しているコークスを水性ガス化する。
On the other hand, the molten salt is sent from the tank 4 by the pump 5 through the molten salt transport vibro to the mixing section 15, where it is mixed with preheated diluted steam in the mixing section, and reacted in the reaction tube 12 in the sub-side section 17 of the cracking furnace 1. The coke introduced into the reaction tube 12 from the tube port 20 and mixed in the molten salt is converted into water gas.

また予熱されパイプ8,9から送られて来た原料炭化水
素と噴霧スチームは反応管原料送入部21から反応管1
2に導入され、溶融塩および水性ガス化されたガス状物
質と混合されここで原料炭化水素の熱分解が行なわれる
In addition, the preheated raw material hydrocarbon and the sprayed steam sent from the pipes 8 and 9 are transferred from the reaction tube raw material inlet section 21 to the reaction tube 1.
2, where it is mixed with the molten salt and the water-gasified gaseous substance, and thermal decomposition of the feedstock hydrocarbon is carried out there.

反応温度は700〜850℃が好ましく用いられる。The reaction temperature is preferably 700 to 850°C.

反応管12における加熱は、パイプ10から送られてく
る燃料をバーナー11で燃焼させたものを用い、また燃
焼廃ガスは分解炉1の廃ガス出口19から抜出される。
The reaction tube 12 is heated by using fuel sent from the pipe 10 and combusted in the burner 11, and combustion waste gas is extracted from the waste gas outlet 19 of the cracking furnace 1.

反応管12を出た分解ガス等は分解ガスの二次反応を抑
制するために直ちに急冷熱交換器2に導かれて350℃
〜650℃くらいの温度まで冷却される。
The cracked gas etc. that exited the reaction tube 12 are immediately led to the quenching heat exchanger 2 and cooled to 350°C in order to suppress secondary reactions of the cracked gas.
It is cooled to a temperature of ~650°C.

熱交換器2にはパイプ13からボイラー水が送りこまれ
、ここで発生した高圧スチームをパイプ14から抜出し
熱回収を行なう。
Boiler water is fed into the heat exchanger 2 from a pipe 13, and high pressure steam generated here is extracted from a pipe 14 for heat recovery.

次いで分解ガスと溶融塩の混合物は溶融塩分離器3に導
かれ分解ガスから溶融塩の分離が行なわれる。
The mixture of cracked gas and molten salt is then led to a molten salt separator 3, where the molten salt is separated from the cracked gas.

分解ガスはパイプ16から抜出され分解ガス精製工程に
導かれ、溶融塩は熱分解によって副生じたコークスを混
入保持したままタンク4に導かれ再循環される。
The cracked gas is extracted from the pipe 16 and guided to a cracked gas purification process, and the molten salt is led to the tank 4 and recycled while containing coke produced by the thermal decomposition.

また、反応管12の管径は1/2〜8インチのものが好
ましく用いられ特に2〜6インチのものが好ましい。
Further, the diameter of the reaction tube 12 is preferably 1/2 to 8 inches, particularly preferably 2 to 6 inches.

反応管12の長さはバーナーから供給される熱量、分解
ガスの反応管内での滞留時間、溶融塩中に混入するコー
クス量等によって任意に決められる。
The length of the reaction tube 12 is arbitrarily determined depending on the amount of heat supplied from the burner, the residence time of the cracked gas in the reaction tube, the amount of coke mixed into the molten salt, etc.

本発明の実施に用いられる原料炭化水素には、ナフサ、
灯油、軽油、原油、重油、アスファルト等があるが、本
発明の装置は特に原油、重7曲アスファルト等の重質留
分を含む原料に有効である。
Feedstock hydrocarbons used in the practice of this invention include naphtha,
There are kerosene, light oil, crude oil, heavy oil, asphalt, etc., and the apparatus of the present invention is particularly effective for raw materials containing heavy fractions such as crude oil and heavy asphalt.

本発明の実施に用いられる溶融塩は上記機能を有するも
のであれば任意であるが、例えばアルカリ金属又はアル
カリ土類金属の塩、特に炭酸塩が好ましく用いられる。
The molten salt used in carrying out the present invention may be any salt as long as it has the above-mentioned functions, but for example, alkali metal or alkaline earth metal salts, particularly carbonates, are preferably used.

アルカリ金属の炭酸塩としては炭酸リチウム、炭酸ナト
リウム、炭酸カリウムがあり、本発明では2種以上の混
合塩として用いても良い。
Examples of alkali metal carbonates include lithium carbonate, sodium carbonate, and potassium carbonate, and in the present invention, two or more of them may be used as a mixed salt.

次に本発明の特徴について説明する。Next, the features of the present invention will be explained.

本発明では、溶融塩分離器で分解ガス、スチームと分離
された溶融塩をそのままポンプにより分解炉の反応管に
導き、ここで原料炭化水素と接触する前に、スチームの
存在下で約500〜900℃に昇温され溶融塩中のコー
クスを水性ガス化する。
In the present invention, the molten salt separated from the cracked gas and steam in the molten salt separator is directly guided to the reaction tube of the cracking furnace by a pump, and is heated in the presence of steam for about 50 to The temperature is raised to 900°C to turn the coke in the molten salt into water gas.

すなわち分解炉の反応管の一部をコークスの再生処理系
統に利用しコークスをガス化して除去するのである。
In other words, a part of the reaction tube of the cracking furnace is used as a coke regeneration system to gasify and remove coke.

ここでの水性ガス化反応は吸熱反応で C+H20→ CO+H2 で示される。The water gasification reaction here is an endothermic reaction. C+H20→ CO+H2 It is indicated by.

ここでの混合流体は更に原料炭化水素と混合され、分解
炉反応管中で原料炭化水素は熱分解される。
The mixed fluid here is further mixed with the raw material hydrocarbon, and the raw material hydrocarbon is thermally cracked in the cracking furnace reaction tube.

従って、本発明では溶融塩の再生反応槽を別個に設置す
る必要がなく、しかもスチームと溶融塩の供給を続けた
まま原料炭化水素の供給を一時的に停止して運転すると
、分解炉反応管、急冷熱交換器伝熱管、連絡パイプなど
に付着したコークスを、分解炉のバーナーの火を消さず
に、除去することもできる。
Therefore, in the present invention, there is no need to separately install a molten salt regeneration reaction tank, and furthermore, if the operation is temporarily stopped while supplying steam and molten salt while temporarily stopping the feedstock hydrocarbon supply, the cracking furnace reaction tube It is also possible to remove coke adhering to the quenching heat exchanger heat exchanger tubes, connecting pipes, etc. without turning off the burner of the cracking furnace.

原料性状、分解条件によっても異なるが、例えばエチレ
ン年産3万トンの分解炉の場合には反応管は8〜12パ
スに分かれている。
For example, in the case of a cracking furnace with an annual production capacity of 30,000 tons of ethylene, the reaction tube is divided into 8 to 12 passes, although this varies depending on the raw material properties and cracking conditions.

従って1つのパスへの原料炭化水素の供給を停止し、他
のパスへの供給を続けたまま運転すると、その時の単位
時間当りのエチレンの生産量は1/8〜1/12はど低
下するにすぎず、プラント全体としてのエチレン生産量
の低下は非常に少なくなる。
Therefore, if the feedstock hydrocarbon supply to one pass is stopped and the operation is continued while supplying to the other pass, the ethylene production amount per unit time will decrease by 1/8 to 1/12. Therefore, the decrease in ethylene production for the entire plant will be very small.

急冷熱交換器に連絡されている各反応管群毎に原料炭化
水素の供給を一時的に停止する方法が採用される。
A method is adopted in which the supply of raw material hydrocarbon is temporarily stopped for each group of reaction tubes connected to the quenching heat exchanger.

更に原料炭化水素の性状によって副生ずるコークス量が
異なり、溶融塩中に混入するコークス量も異なる。
Furthermore, the amount of by-product coke varies depending on the properties of the raw material hydrocarbon, and the amount of coke mixed into the molten salt also varies.

従って、反応管への原料炭化水素の送入位置を変更する
ことによっていかなる原料の処理も可能で、しかも別個
のコークス処理装置も必要としない。
Therefore, any feedstock can be treated by changing the feed position of the feedstock hydrocarbon into the reaction tube, and no separate coke treatment equipment is required.

例えば先述の図面に於て反応管12の反応管人口20と
反応管原料送入部21の長さを比較的小さくしてコーク
ス副生量の少ない軽量留分を含む原料を処理し、またそ
の長さを比較的長くしてコークス副生量の大きい重質留
分を含む原料を処理できる。
For example, in the above-mentioned drawing, the length of the reaction tube population 20 of the reaction tube 12 and the length of the reaction tube raw material inlet section 21 are made relatively small to process raw materials containing light fractions with a small amount of coke by-product, and By making the length relatively long, it is possible to process raw materials containing heavy fractions with a large amount of coke by-product.

本発明の実施に於ては、このように反応管を任意のパス
に分割し任意のパスの反応管に原料炭化水素の供給を制
御し得る任意の流量制御装置を設けることができ、分解
反応部反応管の原料送入部の位置を原料炭化水素の性状
によって変更し実施できる。
In carrying out the present invention, it is possible to divide the reaction tube into arbitrary passes and provide an arbitrary flow rate control device capable of controlling the supply of raw material hydrocarbons to the reaction tubes of arbitrary passes, thereby controlling the decomposition reaction. The position of the raw material feeding part of the reaction tube can be changed depending on the properties of the raw material hydrocarbon.

本発明によれば、溶融塩再生用反応槽を別個に設置する
ことなく副生コークスを処理でき、原料の種類、性状が
異っても分解処理可能で、運転操作および管理も容易で
あるとともにオレフィン生産量を大きく低下させること
なくコークス除去が可能である。
According to the present invention, by-product coke can be treated without installing a separate reaction tank for molten salt regeneration, decomposition treatment is possible even if the raw materials have different types and properties, and operation and management are easy. Coke removal is possible without significantly reducing olefin production.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施態様を説明する系統図である。 1・−・・・・分解炉、2・・・・・・急冷熱交換器、
3・・・・・・溶融塩分離器、4・・・・・−タンク、
5・・・・・・ポンプ、6・・・・−・パイプ、7・・
・・・・パイフミ 8・・・・・・パイプ、9・・・・
・・パイプ)10・・・・・・パイプ、11・・・・・
・バーナー12・・・・・−反応管、13・・・・・・
パイプ、14・・・・・・パイプ、15・・・・・・混
合部、16・・・・・・パイプ、17・・・・・・副側
部、 18・−・・・・対流部、 19・・・・・・廃ガ゛ス出口、 20・・−・・・反応管入口、 21・・・・・・反応管原料送入部。
The figure is a system diagram explaining one embodiment of the present invention. 1... Decomposition furnace, 2... Rapid cooling heat exchanger,
3... Molten salt separator, 4...-tank,
5...pump, 6...--pipe, 7...
...pifumi 8...pipe, 9...
・・・Pipe) 10・・・Pipe, 11・・・・・・
・Burner 12...-Reaction tube, 13...
Pipe, 14...Pipe, 15...Mixing section, 16...Pipe, 17...Sub-side section, 18...Convection section , 19... Waste gas outlet, 20... Reaction tube inlet, 21... Reaction tube raw material feeding section.

Claims (1)

【特許請求の範囲】 1 水蒸気と溶融塩の混合流体を加熱する加熱部と該加
熱部から出る水蒸気と溶融塩の混合流体に原料炭化水素
を混合しこれを加熱して原料炭化水素の熱分解を行なう
反応部とを有する分解炉を用い、溶融塩中に蓄積するコ
ークスを原料炭化水素と接触する前の加熱部でガス化除
去し、この混合流体は更に反応部で原料炭化水素と混合
され分解炉反応管中で原料炭化水素を熱分解することを
特徴とする炭化水素熱分解方法。 2 水蒸気と溶融塩の混合流体を加熱する加熱部と該加
熱部から出る水蒸気と溶融塩の混合流体に原料炭化水素
を混合しこれを加熱して原料炭化水素の熱分解を行なう
反応部とを有する分解炉と、該分解炉から出る分解ガス
とその地熱分解生成物と水蒸気と溶融塩の混合流体を急
冷する熱交換器と、該熱交換器から出る混合流体から溶
融塩を分離する分離器とから基本的に構成され、該分離
器で分離された溶融塩を水蒸気と混合して該分解炉の該
加熱部に循環供給し得るようになしたことを特徴とする
炭化水素熱分解装置。 3 分解炉の反応部が管状の反応管で構成されており、
該反応管を任意のパスに分割し任意のパスの反応管に原
料炭化水素の供給を制御し得る流量制御装置を設けてな
る特許請求の範囲第2項に記載の装置。
[Claims] 1. A heating section that heats a mixed fluid of steam and molten salt, and a raw material hydrocarbon mixed with the mixed fluid of steam and molten salt discharged from the heating section, which is then heated to thermally decompose the raw material hydrocarbon. The coke accumulated in the molten salt is gasified and removed in the heating section before it comes into contact with the feedstock hydrocarbon, and this mixed fluid is further mixed with the feedstock hydrocarbon in the reaction section. A hydrocarbon thermal decomposition method characterized by thermally decomposing raw material hydrocarbons in a cracking furnace reaction tube. 2. A heating section that heats a fluid mixture of steam and molten salt, and a reaction section that mixes raw material hydrocarbons into the fluid mixture of steam and molten salts emitted from the heating section and heats it to thermally decompose the raw material hydrocarbons. a cracking furnace, a heat exchanger that rapidly cools a mixed fluid of cracked gas, its geothermal decomposition products, steam, and molten salt that comes out of the cracking furnace, and a separator that separates the molten salt from the mixed fluid that comes out of the heat exchanger. 1. A hydrocarbon pyrolysis apparatus basically consisting of the following, characterized in that the molten salt separated in the separator can be mixed with steam and circulated and supplied to the heating section of the cracking furnace. 3 The reaction part of the decomposition furnace consists of a tubular reaction tube,
3. The apparatus according to claim 2, further comprising a flow rate control device capable of dividing the reaction tube into arbitrary paths and controlling the supply of raw material hydrocarbon to the reaction tube of the arbitrary paths.
JP5175078A 1978-04-28 1978-04-28 Hydrocarbon pyrolysis method and apparatus Expired JPS5826389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5175078A JPS5826389B2 (en) 1978-04-28 1978-04-28 Hydrocarbon pyrolysis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5175078A JPS5826389B2 (en) 1978-04-28 1978-04-28 Hydrocarbon pyrolysis method and apparatus

Publications (2)

Publication Number Publication Date
JPS54143408A JPS54143408A (en) 1979-11-08
JPS5826389B2 true JPS5826389B2 (en) 1983-06-02

Family

ID=12895598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5175078A Expired JPS5826389B2 (en) 1978-04-28 1978-04-28 Hydrocarbon pyrolysis method and apparatus

Country Status (1)

Country Link
JP (1) JPS5826389B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175782U (en) * 1983-05-13 1984-11-24 住友ゴム工業株式会社 Flexible rubber tube connection structure

Also Published As

Publication number Publication date
JPS54143408A (en) 1979-11-08

Similar Documents

Publication Publication Date Title
KR101273069B1 (en) Adiabatic reactor to produce olefins
US4276153A (en) Process for thermal cracking of hydrocarbons and apparatus therefor
US7744753B2 (en) Coking apparatus and process for oil-containing solids
US4233137A (en) Method of heat recovering from high temperature thermally cracked hydrocarbons
US7862707B2 (en) Liquid fuel feedstock production process
BG98848A (en) Method for the decomposition of hydrocarbons
US4150716A (en) Method of heat recovery from thermally decomposed high temperature hydrocarbon gas
US10927007B2 (en) Method and plant for the production of synthesis gas
CN113195685A (en) Process for treating carbonaceous material and apparatus therefor
US4421631A (en) Hydrocarbon treatment process
US11795401B2 (en) Conversion of waste plastics to petrochemicals
JPS60248793A (en) Thermal decomposition of heavy oil
EA011643B1 (en) Pyrolysis of residual hydrocarbons
US3617478A (en) Suppression of coke formation in a thermal hydrocarbon cracking unit
JPS5826389B2 (en) Hydrocarbon pyrolysis method and apparatus
US4975181A (en) Process and apparatus for ethylene production
CN107840335B (en) Continuous pyrolysis and activation integrated device for hydrocarbon-containing solid raw materials
US20140058164A1 (en) Methane Conversion Apparatus and Process Using a Supersonic Flow Reactor
RU2168533C2 (en) Method for decoking of tubular furnaces for hydrocarbon stock pyrolysis
US4497638A (en) Fuel gas generation for solids heating
US20180029955A1 (en) Method and apparatus for producing hydrocarbons
CA1295571C (en) Vis-breaking heavy crude oils for pumpability
KR100352923B1 (en) Process for promoting the coking of coke produced during pyrolysis of hydrocarbons
JPH0421601B2 (en)
US20140058163A1 (en) Methane Conversion Apparatus and Process Using a Supersonic Flow Reactor