JPS5826297A - Neutron shielding material - Google Patents

Neutron shielding material

Info

Publication number
JPS5826297A
JPS5826297A JP12466981A JP12466981A JPS5826297A JP S5826297 A JPS5826297 A JP S5826297A JP 12466981 A JP12466981 A JP 12466981A JP 12466981 A JP12466981 A JP 12466981A JP S5826297 A JPS5826297 A JP S5826297A
Authority
JP
Japan
Prior art keywords
shielding
weight
boron
neutron
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12466981A
Other languages
Japanese (ja)
Inventor
前田 正彦
吉田 保夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP12466981A priority Critical patent/JPS5826297A/en
Publication of JPS5826297A publication Critical patent/JPS5826297A/en
Pending legal-status Critical Current

Links

Landscapes

  • Absorbent Articles And Supports Therefor (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Particle Accelerators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は硼素および/または無機硼素化合物と粘土粉末
とからなる中性子遮蔽材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a neutron shielding material comprising boron and/or an inorganic boron compound and clay powder.

近年、原子力産業の発展にともない、原子力施設におい
ての放射線遮蔽が重要になっている。この放射線遮蔽の
目邑は、人体が受ける放射線の量をある種の遮蔽材を使
用して許容量以下におさえるとともに、原子力施設の構
造材や機器の材料が放射線による損傷、放射線加熱およ
び放射化を防ぎ、測定機器に対する放射線バッ?グラウ
ンドを低くおさえることにある。たとえは、原子炉遮蔽
については、γ線と中性子とが混存し、その上二次放射
線も考慮に入れなければな゛らない。r線と中性子とで
は、物質による減衰特性が異なるため、種々の物質の組
合わせが遮蔽材として考えられている。現在、一般に使
われている遮蔽材料としては、r線と中性子のいずれに
も有効なものとして、コンクリートがある。iた、中性
子の遮蔽材料として広く利用されているものに水がある
。水は中性子増殖炉の炉体冷却をかね、循環して使用さ
れている。水は遮蔽用コンクリート中の含水量を増加さ
せてコンクリートの遮蔽効果を高めるなどに広く使用さ
れている。水に類するものとして、不純物が比較的に少
なく、かつ水素数が比較的に多い炭化水素化合物(たと
えば、パラフィン類、ポリエチレン樹脂)がブロックや
厚板状に成形されて使われている。
In recent years, with the development of the nuclear power industry, radiation shielding in nuclear facilities has become important. The purpose of this radiation shielding is to keep the amount of radiation received by the human body below the permissible level by using a certain kind of shielding material, and also to prevent the structural materials and equipment materials of nuclear facilities from being damaged by radiation, heated by radiation, and activated. Prevent radiation exposure to measuring equipment? The goal is to keep the ground low. For example, in the case of nuclear reactor shielding, gamma rays and neutrons coexist, and secondary radiation must also be taken into account. Since r-rays and neutrons have different attenuation characteristics depending on materials, combinations of various materials are being considered as shielding materials. Currently, concrete is a commonly used shielding material that is effective against both r-rays and neutrons. Additionally, water is widely used as a neutron shielding material. Water is circulated and used to cool the reactor body of the neutron breeder reactor. Water is widely used to increase the water content in shielding concrete, thereby enhancing the shielding effect of concrete. As substances similar to water, hydrocarbon compounds with relatively few impurities and a relatively large number of hydrogen atoms (for example, paraffins, polyethylene resins) are used in the form of blocks or thick plates.

一方、放射線吸収という立場から考えると、原子番号の
大きい元素はγ線を減衰させるのに有効であり、中性子
に対する前弾性散乱断面積が大きい元素は高速中性子を
低速中性子に減衰するのに適している。高速中性子が散
乱によって熱中性子または低速中性子になると、原子核
に吸収されやすくなり、吸収断面積の大きい元素が吸収
の効果を増大させる。これらのことから、中性子が吸収
されたとしても、二次γ線を出さないか、たとえ出した
としてもエネルギーが極めて低いことが要求された。
On the other hand, from the standpoint of radiation absorption, elements with a large atomic number are effective at attenuating gamma rays, and elements with a large pre-elastic scattering cross section for neutrons are suitable for attenuating fast neutrons into slow neutrons. There is. When fast neutrons become thermal neutrons or slow neutrons due to scattering, they are easily absorbed by atomic nuclei, and elements with large absorption cross sections increase the absorption effect. For these reasons, even if neutrons are absorbed, secondary gamma rays must not be emitted, or even if they are emitted, the energy must be extremely low.

中性子遮蔽材料としては、以上のように有効な遮蔽性能
を有する元素をより多く含んでいることが重要であるが
、遮蔽設計については、重量、容積、コストなどの観点
にたった最適設計の問題が存在する。特に、原子力船の
ごとく、重量および容積が限られた中での遮蔽材料とし
ては、コンクリート、鉛、水などにかわって、軽量であ
り、低容積の中性子遮蔽材が必要となってきている。
As mentioned above, it is important for neutron shielding materials to contain as many elements as possible that have effective shielding performance, but when it comes to shielding design, there are issues with optimal design from the viewpoints of weight, volume, cost, etc. exist. In particular, lightweight, low-volume neutron shielding materials are needed in place of concrete, lead, water, etc., as shielding materials for ships with limited weight and volume, such as nuclear-powered ships.

また、中性子線を用いた材料欠陥探査のためのラジオグ
ラフィーまたは熱中性子線を用いて悪性腫瘍を治療する
などの核医療分野においても、目的に適った効果的な放
射線の遮蔽設剖が必要とされ、そのためにも軽量であり
、かつ低容積で施工が簡易な中性子遮蔽材の開発が要請
されている。
In addition, in the field of nuclear medicine, such as radiography for detecting defects in materials using neutron beams or treatment of malignant tumors using thermal neutron beams, effective radiation shielding structures that suit the purpose are required. Therefore, there is a need to develop a neutron shielding material that is lightweight, has a low volume, and is easy to install.

現在、これらの要請に応える中性子遮蔽材としては、遮
蔽効果、軽量性の点から□、硼素または無機硼素化合物
とエチレン系樹脂との複合成形物が広く用いられている
。しかし、材料準備、施工に時間を要し、さらに一定形
状物に限られるため、複雑な形状を有する部分の遮蔽、
遮蔽設計の急変更または緊急時の一時遮蔽には対処が難
しく、施工性にすぐれた遮蔽材の開発が急務となってい
る。
Currently, as a neutron shielding material that meets these demands, a composite molded product of boron or an inorganic boron compound and an ethylene resin is widely used because of its shielding effect and light weight. However, it takes time to prepare materials and install, and it is limited to objects with a certain shape, so it is difficult to shield parts with complex shapes.
It is difficult to deal with sudden changes in shielding design or temporary shielding in emergencies, and there is an urgent need to develop shielding materials with excellent workability.

以上のことから、本発明者らは、安全性にすぐれ、かつ
施工が容易な中性子遮蔽材を得るために種々探索した結
果、 100重量部の硼素および/または無機硼素化合物と1
0〜200重量部の粘土粉末とからなる中性子遮蔽材が
、複雑な形状の被遮蔽物に対しても容易に施工すること
ができることを見出し、本発明に到達した。
Based on the above, the present inventors conducted various searches in order to obtain a neutron shielding material with excellent safety and ease of construction.
The inventors have discovered that a neutron shielding material consisting of 0 to 200 parts by weight of clay powder can be easily applied even to complex-shaped objects, and have thus arrived at the present invention.

本発明において使用される硼素には、密度が1、739
7cm3の無定形硼素(無晶)から結晶性硼素(密度 
2.33 g 7cm3)まであるが、とりわけ粉末状
が得やすい無定形のものがft’fましい。 純度とし
ては硼素単体の濃度が96〜97多近傍であれば充分で
ある。また、粒末状物として電縫平均粒が05〜500
ミクロンのものが望ましく、特に30〜300ミクロン
のものが好適である。
The boron used in the present invention has a density of 1,739
7 cm3 of amorphous boron (amorphous) to crystalline boron (density
There are up to 2.33 g 7 cm3), but amorphous ones are particularly preferable because they are easy to obtain in powder form. As for the purity, it is sufficient if the concentration of simple boron is around 96 to 97. In addition, as a grain powder, the average grain size of the electric sewing is 05 to 500.
A micron diameter is desirable, and a 30 to 300 micron diameter is particularly preferred.

また、本発明において使用される無機硼素化合物のうち
、金属を含有しない無機硼素化合物が望ましい。望まし
い無機硼素化合物の代表例としては、炭化硼素、窒化硼
素、無水硼酸、正硼酸、メタ硼酸および四硼酸があげら
れる。これらの無機硼素化合物および硼素のうち、窒化
硼素が好ましい。これらの無機硼素化合物の重量平均径
が0.5〜500ミクロンの粉末状のものが望ましく、
とりわけ30〜300ミクロンのものが好適である。
Furthermore, among the inorganic boron compounds used in the present invention, inorganic boron compounds that do not contain metal are desirable. Representative examples of desirable inorganic boron compounds include boron carbide, boron nitride, boric anhydride, orthoboric acid, metaboric acid, and tetraboric acid. Among these inorganic boron compounds and boron, boron nitride is preferred. These inorganic boron compounds are preferably in powder form with a weight average diameter of 0.5 to 500 microns.
Particularly suitable are those having a diameter of 30 to 300 microns.

好ましい無機硼素化合物である窒化硼素については、結
晶の発達の程度により演密度が1.88〜2゜27.9
7α3、重量平均径が0.5〜6.0ミクロン、表面積
が14〜35rn2/9のものが望ましく、とりわけ真
密度が1.7g10n3以上および重量平均径が:う0
ミクロン以上のものが好適である。さらに中性子吸収断
面積の太き4Btoを多く含んでいるものが最適である
Regarding boron nitride, which is a preferred inorganic boron compound, the density is 1.88 to 2°27.9 depending on the degree of crystal development.
7α3, a weight average diameter of 0.5 to 6.0 microns, a surface area of 14 to 35rn2/9 is desirable, and especially a true density of 1.7g10n3 or more and a weight average diameter of: 0
A diameter of micron or larger is preferable. Further, it is optimal to use a material containing a large amount of 4Bto, which has a large neutron absorption cross section.

また、本発明において用いられる粘土粉末は、一般に天
然に存在する微細なアルミニウム硅酸塩を主成分とし、
その微粉末に水を加えて混練すると可塑性をもつもので
あればよい。とりわけ、本節粘土および水ひ蛙目粘土の
ように可塑性の高いものが望ましいが、さらに白色性を
要する場合には、可塑性の高いカオリン粘土が好適であ
る。この粘土粉末の平均粒径は1〜20ミクロンであり
、特に5〜15ミクロンが好ましい。
In addition, the clay powder used in the present invention generally has naturally occurring fine aluminum silicate as its main component,
Any material may be used as long as it has plasticity when water is added to the fine powder and kneaded. In particular, clays with high plasticity such as Honbushi clay and Laminar clay are desirable, but if whiteness is required, kaolin clay with high plasticity is suitable. The average particle size of this clay powder is 1 to 20 microns, particularly preferably 5 to 15 microns.

100重量部の硼素および/または無機硼素化合物に対
する粉末粘土の混合割合は10〜200重量部であり、
とりわけ30〜100重量部が望ましい。100重量部
の硼素および/または無機硼素化合物に対する粉末粘土
の混合割合が10重量部以下では、可塑性と結合力が低
下し、後記の処理によって得られる混線物が乾燥するに
つれて硼素および/または無機硼素化合物の脱落が著し
くなることによって施工時の遮蔽効果が低下する。
The mixing ratio of powdered clay to 100 parts by weight of boron and/or inorganic boron compound is 10 to 200 parts by weight,
Particularly desirable is 30 to 100 parts by weight. If the mixing ratio of powdered clay to 100 parts by weight of boron and/or inorganic boron compound is less than 10 parts by weight, the plasticity and bonding strength will decrease, and as the mixed material obtained by the treatment described below dries, boron and/or inorganic boron As the compound falls off significantly, the shielding effect during construction decreases.

一方、200重量部以上では、たとえば中性子の強度を
1/100に減少させるためには、被遮蔽物に10咽以
上の厚さに塗付する必要があり、遮蔽材の重量が増加し
、軽量性が乏しくなる。
On the other hand, if the amount is more than 200 parts by weight, in order to reduce the neutron intensity to 1/100, for example, it is necessary to coat the object to be shielded to a thickness of 10 mm or more, which increases the weight of the shielding material and makes it lightweight. Sexuality becomes poor.

本発明の中性子遮蔽材を製造するには、前記の硼素およ
び/または無機硼素化合物と粉末粘土V型ブレンダー、
スクリューミキサーおよびボールミルのごとき混合機を
使ってほぼ均一に混合することによって目的を達成する
ことができる。この混合物を製造するさいに硼素および
/また無機硼素化合物および粘土粉末をそれぞれの粗粉
を同時にボールミルによって混合しなか、ら粉砕しても
よく、またこちらのうちいずれかを粉砕し、他の混合成
分を順次に添加しながら混合・粉砕を行なってもよい。
To produce the neutron shielding material of the present invention, the boron and/or inorganic boron compound and a powder clay V-type blender,
This can be accomplished by substantially uniform mixing using mixers such as screw mixers and ball mills. In producing this mixture, the boron and/or inorganic boron compound and clay powder may be mixed together in a ball mill or ground, or one of them may be ground and the other mixed. Mixing and pulverization may be performed while sequentially adding the components.

 このようにして得られる混合物をさらにプラベンダー
およびニーダーのごとき混合機を用いて混練物を指先に
つけて他の形状物に塗りつけられる程度の可塑性をもつ
程度まで水または石けんもしくは界面活性剤を含有する
水を加えながら均一に混練すれば、被遮蔽物に塗り付け
ることができる混線物を得ることができる。この混線物
を製造するさいにあらかじめ混練した粉末粘土に硼素お
よび/または無機硼素化合物の粉末と水または石けんも
しくは界面活性剤を含有する水とを順次加えながら均一
になるように混練してもよい。このようにして得られる
混練物を使用することにより、複雑な形状を有する被遮
蔽物についても、塗り付けあるいは定形遮蔽材の間隙を
埋めることで容易に遮蔽工事を施すことがで、きる。
The mixture thus obtained is further mixed with water, soap, or a surfactant to the extent that it has enough plasticity to be applied to other shapes by applying the kneaded mixture to the fingertips using a mixer such as a plastic bender or a kneader. By uniformly kneading the mixture while adding water, it is possible to obtain a mixture that can be applied to objects to be shielded. When producing this mixed wire, boron and/or inorganic boron compound powder and water or water containing soap or a surfactant may be sequentially added to powdered clay that has been kneaded in advance and kneaded until uniform. . By using the kneaded product obtained in this way, it is possible to easily perform shielding work on objects to be shielded that have complicated shapes by painting or filling the gaps in the shaped shielding material.

本発明によって得られる遮蔽材に、前記のように水また
は石けんもしくは界面活性剤を含有する水で処理して得
られる混線物は、不定形材として塗りつけ、埋めこみに
使うほかに、目地材として使うことができるのみならず
、水分の量を多くすることにより、流し込み材として用
いることができる。さらに、成形および焼結することに
よって定形遮蔽材として使用することも可能である。な
お、前記の混線物が保管中に乾燥し、施工時に可塑性が
減じているならば、再度適量の水を添加して混練するこ
とにより、可塑性が回復し、施工が可能となる。また、
との混練物は、中性子遮蔽力がすぐれているばかりでな
く、不定形であることによって前記のごとく複雑形状物
の遮蔽のほか、緊急時の中性子洩れに対する一時遮蔽用
には特に有用である。
The mixed material obtained by treating the shielding material obtained by the present invention with water or water containing soap or a surfactant as described above can be used as a joint material in addition to being applied as an irregularly shaped material and used for embedding. Not only can it be used as a pouring material, but it can also be used as a pouring material by increasing the amount of water. Furthermore, it can also be used as a shaped shielding material by molding and sintering. In addition, if the above-mentioned mixed wire has dried during storage and its plasticity has decreased at the time of construction, by adding an appropriate amount of water and kneading it again, the plasticity will be restored and construction will become possible. Also,
The kneaded product not only has excellent neutron shielding power, but also has an amorphous shape, which makes it particularly useful for shielding complex-shaped objects as described above, as well as for temporary shielding against neutron leakage in emergencies.

以下、実施例によって本発明をさらにくわしく説明する
Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 1 100重量部の窒化硼素粉末(粒度 200メツシユパ
ス、−成粒径径 1〜10ミクロン、二次粒子密度 ]
、 9 fl 7cm3)および30重量部の木節粘土
粉末(粒度 200メツシユパス、5in2含有量 5
5重量%、AI!203含有量 35重量%、結晶水水
分含有量 12重量%)をボールミルにて2時間粉砕し
ながら混合を行なった。得られた混合物にスクリュ一式
ニーダ−(径 15 omyn)を使って70重量部の
水を順次加えながら20分間混練を行ない、可塑性′不
定形材を作成した。
Example 1 100 parts by weight of boron nitride powder (particle size 200 mesh passes, particle diameter 1 to 10 microns, secondary particle density)
, 9 fl 7 cm3) and 30 parts by weight of Kibushi clay powder (particle size 200 mesh, 5 in2 content 5
5% by weight, AI! 203 content: 35% by weight, crystal water content: 12% by weight) was mixed while being ground in a ball mill for 2 hours. The resulting mixture was kneaded for 20 minutes while sequentially adding 70 parts by weight of water using a kneader with a set of screws (diameter 15 omyn) to produce a plastic, irregularly shaped material.

この材料の中性子遮蔽力をみるために目開きが5鰭の2
0m×20cTnの金網に厚さが5鯛になるように均一
に塗り付けた。この試料にトリガ■型原子炉から出る熱
中性子を照射ル、透過実験を行なった。透過後の中性子
強度は1/100となり、良好な遮蔽能力を示した。
In order to see the neutron shielding power of this material, the opening is 2 with 5 fins.
The mixture was applied uniformly onto a 0 m x 20 cTn wire mesh to a thickness of 5 sea breams. This sample was irradiated with thermal neutrons emitted from a trigger type nuclear reactor, and a transmission experiment was performed. The neutron intensity after transmission was 1/100, indicating good shielding ability.

実施例 2 実施例1において使った木節粘土粉末のかわりに、白色
カオリン(粒度 200メツシユパス、S i 02含
有量 60重量%、Al2O3含有惜25重量%、結晶
水水分含有量 12重量%)!200重量部および10
0重量部の実施例1において使用した窒化硼素を竪型ス
クリュ一式攪拌器に入れ、100重量部の水を加えて1
時間攪拌し、流動性がある混練物が得られた。この混練
物を10m×20σおよび深さが3crnの木型に流し
込んだ。
Example 2 Instead of the Kibushi clay powder used in Example 1, white kaolin (particle size: 200 mesh, SiO2 content: 60% by weight, Al2O3 content: 25% by weight, crystal water content: 12% by weight)! 200 parts by weight and 10
0 parts by weight of the boron nitride used in Example 1 was placed in a vertical screw set stirrer, and 100 parts by weight of water was added.
After stirring for a period of time, a fluidized kneaded product was obtained. This kneaded material was poured into a wooden mold of 10 m x 20σ and 3 crn in depth.

室温で乾燥した後、型抜きし、実施例1と同じ方法で中
性子遮蔽能力を測定したところ、中性子強度は1/20
0に減少し、良好な遮蔽能力を示した。
After drying at room temperature, the mold was cut out and the neutron shielding ability was measured using the same method as in Example 1. The neutron intensity was 1/20.
0, indicating good shielding ability.

特許出願人 昭和電工株式会社 代理人 弁理士菊地精−Patent applicant: Showa Denko Co., Ltd. Agent: Patent attorney Sei Kikuchi

Claims (1)

【特許請求の範囲】[Claims] 100重量部の硼素および/または無機硼素化合物と1
0〜200重量部の粘土粉末とからなる中性子遮蔽材。
100 parts by weight of boron and/or inorganic boron compound and 1
A neutron shielding material comprising 0 to 200 parts by weight of clay powder.
JP12466981A 1981-08-11 1981-08-11 Neutron shielding material Pending JPS5826297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12466981A JPS5826297A (en) 1981-08-11 1981-08-11 Neutron shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12466981A JPS5826297A (en) 1981-08-11 1981-08-11 Neutron shielding material

Publications (1)

Publication Number Publication Date
JPS5826297A true JPS5826297A (en) 1983-02-16

Family

ID=14891119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12466981A Pending JPS5826297A (en) 1981-08-11 1981-08-11 Neutron shielding material

Country Status (1)

Country Link
JP (1) JPS5826297A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780268A (en) * 1984-06-13 1988-10-25 Westinghouse Electric Corp. Neutron absorber articles
JPH04175700A (en) * 1990-11-08 1992-06-23 Power Reactor & Nuclear Fuel Dev Corp Boron compound neutron shielding material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105700A (en) * 1977-02-25 1978-09-13 Japan Atom Energy Res Inst Radioactive ray shielding material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105700A (en) * 1977-02-25 1978-09-13 Japan Atom Energy Res Inst Radioactive ray shielding material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780268A (en) * 1984-06-13 1988-10-25 Westinghouse Electric Corp. Neutron absorber articles
JPH04175700A (en) * 1990-11-08 1992-06-23 Power Reactor & Nuclear Fuel Dev Corp Boron compound neutron shielding material

Similar Documents

Publication Publication Date Title
US2726339A (en) Concrete radiation shielding means
Florez et al. The material characterization and gamma attenuation properties of Portland cement-Fe3O4 composites for potential dry cask applications
Khalaf et al. Physicomechanical and gamma-ray shielding properties of high-strength heavyweight concrete containing steel furnace slag aggregate
KR20010079675A (en) Radiation protective concrete and radiation protective casing
KR20110084416A (en) Radiation shielding structure composition
CN110105743A (en) A kind of unleaded X, gamma ray shielding material and preparation method thereof
US5416333A (en) Medium density hydrogenous materials for shielding against nuclear radiation
Al-Tersawy et al. Long-term behavior of normal weight concrete containing hybrid nanoparticles subjected to gamma radiation
El-Hosiny et al. Shielding of gamma radiation by hydrated Portland cement–lead pastes
CN110415851A (en) A kind of cement base neutron shielding material and preparation method thereof
Ashoor et al. Appraisal of new density coefficient on integrated-nanoparticles concrete in nuclear protection
JPS5826297A (en) Neutron shielding material
US3207705A (en) Radiation shielding composition comprising carbon and lead dispersed in cement
US2992175A (en) Neutronic reactor shielding
EP0773555B1 (en) Neutron-shielding hydraulic hardening material and method of manufacturing neutron shields using the same
US3645916A (en) Metallic mortars
US3558526A (en) Cement matrix radiation shielding compositions containing calcium compounds
DE1769563B1 (en) Neutron absorbing material and process for its manufacture
JPS6249305B2 (en)
CN104649605B (en) A kind of radiation shield concrete protective agent and preparation method thereof
JP2520978B2 (en) Radiation shield
CN110156410B (en) Steel slag and steel scrap radiation-proof concrete and preparation method thereof
JPS5942280B2 (en) radiation shielding material
JPS5826299A (en) Neutron shielding material
US3827982A (en) Moldable lead composition