JPS5826148B2 - alkaline dench - Google Patents

alkaline dench

Info

Publication number
JPS5826148B2
JPS5826148B2 JP806775A JP806775A JPS5826148B2 JP S5826148 B2 JPS5826148 B2 JP S5826148B2 JP 806775 A JP806775 A JP 806775A JP 806775 A JP806775 A JP 806775A JP S5826148 B2 JPS5826148 B2 JP S5826148B2
Authority
JP
Japan
Prior art keywords
battery
ago
anode
active material
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP806775A
Other languages
Japanese (ja)
Other versions
JPS5183128A (en
Inventor
巖 岸
次夫 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP806775A priority Critical patent/JPS5826148B2/en
Publication of JPS5183128A publication Critical patent/JPS5183128A/en
Publication of JPS5826148B2 publication Critical patent/JPS5826148B2/en
Expired legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 本発明は過酸化銀(Age)を主陽極活物質とするアル
カリ電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an alkaline battery using silver peroxide (Age) as the main positive electrode active material.

この種の電池は、陽極活物質の過酸化銀(Age)が1
価の酸化銀(Ag20)に比べ約1,8倍の理論電気容
量を有する利点を持つが、反面、過酸化銀(Ago)が
熱力学的に極めて不安定な物質であるという欠点を有し
ている。
This type of battery has a positive electrode active material of silver peroxide (Age) of 1
It has the advantage of having a theoretical capacitance approximately 1.8 times higher than silver oxide (Ag20), but on the other hand, it has the disadvantage that silver peroxide (Ago) is an extremely thermodynamically unstable substance. ing.

すなわち、過酸化銀(Age)はアルカリ水溶液中およ
び高温度において、 2AgO→Ag2O+1/20□ なる分解反応にしたがって急速に分解することが知られ
ている。
That is, it is known that silver peroxide (Age) rapidly decomposes in an alkaline aqueous solution and at high temperatures according to the decomposition reaction: 2AgO→Ag2O+1/20□.

また、その分解速度はアルカリ濃度が高くなるにつれ、
もしくは温度が高くなるにつれ、増大することが確認さ
れている。
In addition, the rate of decomposition increases as the alkali concentration increases.
Or, it has been confirmed that it increases as the temperature rises.

したがって、従来の1価の酸化銀電池に用いられている
ような30〜40%の高濃度アルカリ電解液を過酸化銀
を陽極活物質とする電池に用いた場合には、AgOがA
g、20に分解し、それに伴うガス発生が著しくなるた
め、容量低下、電池の膨らみ、漏液等が甚しくなるとい
う欠点があった。
Therefore, when a highly concentrated alkaline electrolyte of 30 to 40%, such as that used in conventional monovalent silver oxide batteries, is used in a battery using silver peroxide as the anode active material, AgO is
This decomposes into 20 g and 20 g, resulting in significant gas generation, which has the drawbacks of severe capacity reduction, battery bulge, and liquid leakage.

また、従来行なわれているように、陽極活物質に導電性
の高い黒鉛等を添加したものでは電池としたときに、内
部抵抗が低いという長所を持つ反面、電池反応の活性点
が多いため、放電初期の高電位区間が長く、長期保存時
にAgOが不安定となる欠点がある。
Furthermore, when used as a battery with the addition of highly conductive graphite or the like to the anode active material, as has been done in the past, it has the advantage of low internal resistance, but on the other hand, it has a large number of active sites for battery reactions. There is a drawback that the high potential section at the beginning of discharge is long, and AgO becomes unstable during long-term storage.

本発明は前記の欠点を除去するため、陽極活物質として
のAgOに、2硫化モリブデン、タルク、パイロフィラ
イト、弗化黒鉛等のほとんど導電性のない固体潤滑剤を
添加した陽極合剤を加圧して成形した陽極成形体を用い
ることlこより長期保存に耐え、高電位区間が短かく、
単位体積当りの放電容量の大きな電池を提供することを
目的とする。
In order to eliminate the above-mentioned drawbacks, the present invention adds an anode mixture to AgO as an anode active material and a solid lubricant with almost no conductivity such as molybdenum disulfide, talc, pyrophyllite, or graphite fluoride. By using a pressed anode molded body, it can withstand long-term storage, has a short high potential period,
The purpose is to provide a battery with a large discharge capacity per unit volume.

次に本発明の実施例について述べる。Next, embodiments of the present invention will be described.

実施例 1 弗化黒鉛4%、Ag096%を良く混合した陽極合剤を
8ton/fflで加圧して陽極成形体とし、汞化亜鉛
を主とする陰極合剤と合せてJIS−GS−12のタイ
プの電池を作った。
Example 1 An anode mixture of 4% fluorinated graphite and 96% Ag was pressurized at 8 ton/ffl to form an anode molded body, and combined with a cathode mixture mainly composed of zinc fluoride, the anode mixture was prepared according to JIS-GS-12. I made a type of battery.

実施例 2 二硫化モリブデンをそれぞれ、0.5,1,2゜3.5
,10,20%添加したAgOを8 ton/fflで
加圧し、実施例1と同様にしてJIS−GS−12タイ
プの電池を作った。
Example 2 Molybdenum disulfide was heated to 0.5, 1, and 2°3.5, respectively.
, 10, and 20% AgO was pressurized at 8 ton/ffl, and a JIS-GS-12 type battery was produced in the same manner as in Example 1.

AgOを陽極活物質とする電池では放電初期において、 2e−+2AgO+H20−)Ag20+2(OH)−
の反応による高電位が出現する。
In a battery using AgO as the anode active material, at the beginning of discharge, 2e-+2AgO+H20-)Ag20+2(OH)-
A high potential appears due to the reaction.

Ag2Oが生成すると、 2e +Ag2O+)(2Q→2Ag+2(OH)
−2Ag+AgO−)Ag20 の反応が続いておこるため、通常の電位に戻る。
When Ag2O is generated, 2e +Ag2O+)(2Q→2Ag+2(OH)
-2Ag+AgO-)Ag20 reaction continues, so the potential returns to normal.

した力わて、始めにAgOが電解液と陽極り−ドに接し
ているうちは高電位が出現し、AgOが電解液と陽極リ
ードの少なくともどちらか一方と絶縁され、Agあるい
はAg2Oと接するようになれば通常の電位に戻る。
Initially, a high potential appears while AgO is in contact with the electrolyte and the anode lead, and AgO is insulated from at least one of the electrolyte and the anode lead and comes into contact with Ag or Ag2O. When this happens, the potential returns to normal.

現状の黒鉛を添加したものでは、黒鉛の高導電性のため
、黒鉛が陽極リードとなりAgOはほとんどすべて陽極
リードとなっている黒鉛に接していることになる。
In the current graphite-added products, due to the high conductivity of graphite, the graphite becomes the anode lead, and almost all of the AgO is in contact with the graphite, which serves as the anode lead.

従って電解液が含浸した場合、高電位が出現し全てのA
gO粒子表面がAg2OもしくはAgになるまで接続す
る。
Therefore, when the electrolyte is impregnated, a high potential appears and all A
Connect until the gO particle surface becomes Ag2O or Ag.

また、黒鉛を添加しないものでは成形性が悪く、AgO
充填率が低いために放電容量が小さくなる欠点を有する
In addition, those without graphite have poor formability, and AgO
This has the disadvantage that the discharge capacity is small due to the low filling rate.

一方、黒鉛の替りにMOS 2 、(CF ) n、パ
イロフィライト、タルク等のほとんど導電性のない固※
※体潤滑剤を添加したAgO陽極陽極体形体例え電解液
がAgOに接しても陽極リードに接していない部分は反
応しない。
On the other hand, instead of graphite, solid materials with almost no conductivity such as MOS2, (CF)n, pyrophyllite, and talc can be used.
*AgO anode body shape with added body lubricant Even if the electrolyte comes into contact with AgO, the parts that are not in contact with the anode lead will not react.

反応するのはリードに接し、かつ電解液に接する極く少
量のAgOのみであり、その後はAgOの反応によって
生じたAgが電極となるため、2Ag+Ag0−+Ag
、20の反応が起り、高電圧を示すことはない。
Only a very small amount of AgO that is in contact with the lead and in contact with the electrolyte reacts, and after that, the Ag produced by the reaction of AgO becomes the electrode, so 2Ag+Ag0-+Ag
, 20 reactions occur and do not show high voltage.

次に第1表に各実施例の電池の75に8定抵抗放電に於
ける放電容量を示す。
Next, Table 1 shows the discharge capacity of the batteries of each example in 75 to 8 constant resistance discharge.

なお、第1表中0内は高電位を示す区間であり、各デー
タは電池5個の平均値である。
Note that in Table 1, the area within 0 indicates a high potential, and each data is an average value of five batteries.

また、試料/169は従来のもの、410は比較のため
AgOに添加物を加えないものである。
Further, Sample/169 is a conventional sample, and Sample/410 is a sample in which no additive is added to AgO for comparison.

従来例の試料/169と本発明実施例の試料41〜8を
比べてわかるように、はとんど導電性のない固体潤滑剤
を添加すると陽極合剤成形体の内部が陽極リードに接し
ていないため保存中の劣化が少なく、6ケ月保存後の容
重容量が太きい、電池が得られる。
As can be seen by comparing Sample 169 of the conventional example and Samples 41 to 8 of the examples of the present invention, when a solid lubricant with almost no conductivity is added, the inside of the anode mixture molded body is in contact with the anode lead. Therefore, a battery with less deterioration during storage and a large weight capacity after storage for 6 months can be obtained.

MoB2の場合、添加量を、2〜5重量%としたときそ
の効果が顕著である。
In the case of MoB2, the effect is remarkable when the amount added is 2 to 5% by weight.

一方、添加剤を全く入れない試料A、10では陽極成形
体中に占めるAgOの体積比が小さいため電池としたと
きの放電容量が小さく、また空隙率が大きいため電解液
が浸透し易いため長期保存後の放電容量も小さい。
On the other hand, in Samples A and 10, which do not contain any additives, the volume ratio of AgO in the anode molded body is small, so the discharge capacity when used as a battery is small, and the large porosity makes it easy for the electrolyte to penetrate, so it will not last long. The discharge capacity after storage is also small.

次(こ放電特性を第1図および第2図に示す。The discharge characteristics are shown in FIGS. 1 and 2.

第1図は従来の電池(試料/169)、第2図は本発明
にかかわる電池(試料44)である。
FIG. 1 shows a conventional battery (sample/169), and FIG. 2 shows a battery according to the present invention (sample 44).

以上述べたように本発明によれば、陽極活物質としての
Agoにほとんど導電性のない固体潤滑剤を混入したの
で、長期保存性にすぐれ、高電位区間の短かく、かつ、
単位体積当りの容量の大きなアルカリ電池が得られる。
As described above, according to the present invention, since a solid lubricant with almost no conductivity is mixed into Ago as the anode active material, it has excellent long-term storage stability, has a short high potential section, and
An alkaline battery with a large capacity per unit volume can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のAgOを陽極活物質とする電池、第2図
は本発明にかかわるAgOを陽極活物質とする電池であ
る。 1:従来の電池(製造直後)、2:従来の電池(6ケ月
保存後)、3:本発明の電池(製造直後)、4:本発明
の電池(6ケ月保存後)。
FIG. 1 shows a conventional battery using AgO as the anode active material, and FIG. 2 shows a battery using AgO as the anode active material according to the present invention. 1: Conventional battery (immediately after manufacture), 2: Conventional battery (after storage for 6 months), 3: Battery of the present invention (immediately after manufacture), 4: Battery of the invention (after storage for 6 months).

Claims (1)

【特許請求の範囲】[Claims] 1 過酸化銀(Age)を陽極活物質とする電池におい
て、前記陽極活物質にほとんど導電性のない固体潤滑剤
を0.5〜20重量%添加してなる陽極合剤を加圧して
成形した陽極成形体を用いることを特徴とするアルカリ
電池。
1. In a battery using silver peroxide (Age) as an anode active material, an anode mixture prepared by adding 0.5 to 20% by weight of a solid lubricant with almost no conductivity to the anode active material was pressurized and molded. An alkaline battery characterized by using a molded anode.
JP806775A 1975-01-17 1975-01-17 alkaline dench Expired JPS5826148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP806775A JPS5826148B2 (en) 1975-01-17 1975-01-17 alkaline dench

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP806775A JPS5826148B2 (en) 1975-01-17 1975-01-17 alkaline dench

Publications (2)

Publication Number Publication Date
JPS5183128A JPS5183128A (en) 1976-07-21
JPS5826148B2 true JPS5826148B2 (en) 1983-06-01

Family

ID=11682989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP806775A Expired JPS5826148B2 (en) 1975-01-17 1975-01-17 alkaline dench

Country Status (1)

Country Link
JP (1) JPS5826148B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171528A (en) * 1984-09-14 1986-04-12 河村電器産業株式会社 Breaker

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10152220B4 (en) * 2001-10-23 2005-03-24 Reinhard Hessel lithium battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171528A (en) * 1984-09-14 1986-04-12 河村電器産業株式会社 Breaker

Also Published As

Publication number Publication date
JPS5183128A (en) 1976-07-21

Similar Documents

Publication Publication Date Title
JPH056791B2 (en)
US3098770A (en) Anhydrous electric battery
CZ109497A3 (en) Alkaline galvanic cell and process for producing thereof
US4470939A (en) Method of electrode formation
JPS5826148B2 (en) alkaline dench
GB1373340A (en) Solid electroylte cells
US4141801A (en) Fuel cell anode electrode, method of making the fuel cell anode electrode, and fuel cell containing the fuel cell anode electrode
US2759986A (en) Primary cell
ES429503A1 (en) Additive for an alkaline battery employing divalent silver oxide positive active material
JPS5937546B2 (en) alkaline battery
JP4318000B2 (en) Button type battery
US4430399A (en) Method of electrode formation and article
JPH0654667B2 (en) Non-aqueous electrolyte battery
JP2737233B2 (en) Zinc alkaline battery
JP2708887B2 (en) Non-aqueous electrolyte battery
JP2737232B2 (en) Zinc alkaline battery
JP2737230B2 (en) Zinc alkaline battery
EP0117902B1 (en) Process for producing divalent silver oxide cathode material
JP2737231B2 (en) Zinc alkaline battery
JPS5826619B2 (en) Button silver oxide battery
JPS59165368A (en) Silver oxide battery
JPH0654664B2 (en) Non-aqueous electrolyte battery
CENEK et al. Effect of zinc on the function of an acid electrode(Effect of zinc on function of acid electrode)
JPH0474833B2 (en)
JPH07254407A (en) Unamalgamated zinc alkaline battery