JPS5826130A - Method of construction work - Google Patents

Method of construction work

Info

Publication number
JPS5826130A
JPS5826130A JP12513081A JP12513081A JPS5826130A JP S5826130 A JPS5826130 A JP S5826130A JP 12513081 A JP12513081 A JP 12513081A JP 12513081 A JP12513081 A JP 12513081A JP S5826130 A JPS5826130 A JP S5826130A
Authority
JP
Japan
Prior art keywords
work
signal
program
monitoring device
remotely installed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12513081A
Other languages
Japanese (ja)
Inventor
Sadaji Noki
能木 貞治
Tomoyasu Matsuo
松尾 友靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP12513081A priority Critical patent/JPS5826130A/en
Publication of JPS5826130A publication Critical patent/JPS5826130A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

PURPOSE:To automatically perform a construction work without the needs for an operator for a construction machine by operating a construction machine provided with a sensor and a monitoring device by a remote control system using a computer storing the contents of construction work. CONSTITUTION:A construction machine 15 with a working apparatus 25 is provided with a monitoring device 33 consisting of several sensors 32a, a three- dimentional position monitor 34, a working condition monitor 35, a working amount monitor 36, an obstacle monitor 37, and an anomalous condition monitor 38. Thus, when giving a work startup command to a computer 23, the computer 23 sends out a working command according to an automatic working program. The working command is put in the transmitter-receiver 55 of the construction machine 15 through a transmitter-receiver 52, a repeating office 53, and an antenna 54 and then transmitted to given devices from a repeater 56.

Description

【発明の詳細な説明】 本発明はブルドーザ−、パワシャベル、及びモーターグ
レーダ−等の土建用機械の自動作業運転方法に係り、土
建機械に積載した監視装置に監視方法及び監視基準を記
憶させた土建機械を作業地域内に置き、当該作業地域の
作業仕様、作業方法及び作業プログラム等を記憶させた
コンピューターを遠隔地に設置し【該コンピューターの
指示により前記土建機械を遠隔操作をし、土建機械に積
載した、監視装置のセンサーと作業地域に設置Aれた基
準点例えばビーコン発撮器またはトランスポンダ等(以
下応答器という)と交信をさせ、監視装置により土建機
械の作業地域内の位置及び姿勢を判断し、遠隔地に設置
したコンビエータ−よりの指示にもとづいて土建作業を
遂行する土建作業方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic work operation method for civil engineering machines such as bulldozers, power shovels, and motor graders, and relates to a method for automatically operating civil engineering machines such as bulldozers, power shovels, and motor graders. A machine is placed in a work area, and a computer is installed in a remote location that stores work specifications, work methods, work programs, etc. for the work area. The loaded monitoring device sensor communicates with a reference point installed in the work area, such as a beacon transmitter or transponder (hereinafter referred to as a transponder), and the monitoring device monitors the position and posture of the construction machine in the work area. The present invention relates to a construction work method in which construction work is carried out based on judgment and instructions from a combinator installed at a remote location.

従来は第1図、第2図に示すように土工作業対象物1を
土工機械に積載した視覚情報機器例へばテレビカメラ3
により得た前記対象物1の視覚情報を有線又は無線4に
より遠隔地に置かれた主動側操従装置5に電送され画像
映像装置6に投影される。該画像映像装置6に投影され
た前記視覚情報を掻疵者7が読み取り、作業対象物1の
情況判断を行ない主動側操従装置5の主動操作レバー8
゜8を掻疵する、 主動操作レバー8,8の掻疵動作を主動側操従装置5に
より電気信号に変換され有線又は無19により前記土建
機械2に積載された従動側操従装置10に電送される、
該従動側操従装置10は電送されて来た電気信号により
主動操作レバー8,8の掻疵動作に追従する掻疵動作を
土建機械2の掻疵レバー 11.11 K与え土建機械
2を遠隔掻疵するものが主である。この場合、掻疵者7
は必ず必要であり掻疵者7がいなければ運転できない欠
点を有しており、危険環境、水中など作業や昼夜連続作
業を要する場合には掻疵者7には笥酷な作業となり掻疵
者7の交代を必要とする。
Conventionally, as shown in Figs. 1 and 2, an example of visual information equipment is a television camera 3 in which an earthwork work object 1 is loaded on an earthmoving machine.
The visual information of the object 1 obtained by this is electrically transmitted by wire or wireless 4 to the main driving side control device 5 located at a remote location and projected onto the image video device 6. The scratcher 7 reads the visual information projected on the image video device 6, judges the situation of the work object 1, and operates the main operation lever 8 of the main operation side control device 5.
8, the scratching operation of the main drive operating levers 8, 8 is converted into an electrical signal by the drive side control device 5 and sent to the driven side control device 10 loaded on the earth construction machine 2 by wire or wireless 19. sent by wire,
The driven side control device 10 remotely controls the earth construction machine 2 by applying a scratch lever 11.11 K to the earth construction machine 2 to perform a scratch movement that follows the scratch movement of the main drive operating levers 8, 8 using the electric signal transmitted thereto. It mainly causes scratches. In this case, scratcher 7
is absolutely necessary and has the disadvantage that it cannot be operated without the scratcher 7, and when working in a dangerous environment, underwater, or when continuous work is required day and night, it becomes a harsh job for the scratcher 7. Requires 7 substitutions.

また第3図に示すように作業地域にレザービーム発光器
12を地上に設置して、レザービーム13を発光させレ
ザービーム13の直進性を利用して該レザービーム13
の追跡装置14を土建機械15に積載させ土建機械15
の直進走行を誘導したり(特公昭シー33538χレザ
ービーム13を一定高さで放射させて前記追跡装置14
により作業地域の平面仕上作業の高低差検出を行ない土
建機械15を誘導するもの(特開、昭54−15080
21)等があるがいづれも単純な運転のみで複雑な作業
や複雑な地形での作業はで−ない欠点を有している。
Further, as shown in FIG. 3, a laser beam emitter 12 is installed on the ground in the work area, and the laser beam 13 is emitted and the laser beam 13 is emitted by using the straightness of the laser beam 13.
The tracking device 14 is loaded on the construction machine 15 and the construction machine 15
(by emitting the laser beam 13 at a certain height, the tracking device 14
A system for guiding earth construction machinery 15 by detecting height differences in surface finishing work in a work area (Japanese Patent Laid-Open Publication No. 15080-1980)
21), etc., but all of them have the disadvantage that they are only capable of simple operation and cannot be used for complex work or work on complex terrain.

本発明はこの点に鍾みなされたもので以下図面により本
発明の実施例につき説明をする、第4 Wa m第5図
は本発明に係る土建機械の概念間及び土建機械Kll載
せる各装置の結合関係の概念を示すブロック接続図であ
る。15は土建機械本体で、16は土建機械15に積載
された原動機、17は原動機16の燃料を収容する燃料
タンク、18は原動機16及び燃料タンク17に取付け
られた正常異常検出センナ−で原動機16の同転数、温
度及び燃料の残量等を検出する。°19は原動機16に
連結し原動機16より駆動される発電及び発源装置で交
流発電機、am装置バッテリー及び制御装置等(図示省
略)より構成される。20は発電及び発源装置19の正
常異常検出センサーで、発電機の回転数9発電々圧電流
及びバッテリーの充電電圧等を検出する。
The present invention has been made in this respect, and embodiments of the present invention will be explained below with reference to the drawings. Figures 4 and 5 show the concept of the earthworks machine according to the invention and the various devices mounted on the earthworks machine. FIG. 2 is a block connection diagram showing the concept of a connection relationship. Reference numeral 15 denotes the main body of the construction machine, 16 the prime mover loaded on the earth construction machine 15, 17 a fuel tank containing fuel for the prime mover 16, and 18 a normal/abnormality detection sensor attached to the prime mover 16 and the fuel tank 17. Detects the rotation speed, temperature, remaining amount of fuel, etc. 19 is a power generation and generation device connected to the prime mover 16 and driven by the prime mover 16, and is composed of an alternating current generator, an AM device battery, a control device, etc. (not shown). Reference numeral 20 denotes a normal/abnormality detection sensor of the power generation/source device 19, which detects the rotational speed of the generator, the output voltage current, the charging voltage of the battery, etc.

7は原動機16vcより駆動される走行駆動装置で、後
述する遠隔設置のコンビニ−タラの指令信号により、ま
たは掻疵者の手動操作レバー 27,27.27の掻疵
操作により土建機械15を前進、後退、有旋回、左旋闘
、増速、減速及び停止等を行なつ、22は走行駆動装置
21の正常異常検出センサーで走行駆動装置τの各部の
作動状況、回転数及び温度勢を検出する。24作業駆動
装置で原動機16の駆動力を直接または油圧力に変換し
遠隔設置のコンビエータ−乃の指令信号、または掻疵者
の手動掻疵レバー27,27.27の掻疵操作により作
業装置δを駆動掻疵する。19は電源装置、πは作業駆
動装置24の正常異常検出センサーで作業駆動装置24
の各所の油圧力、温度及び作動角度等を検出する。28
は原動機起動停止装置で遠隔設置のコンピューター乃の
指令信号かまたは掻疵者の手動操作により原動機16を
自動起動または停止させる。29は原動機起動停止装置
囚の正常異常検出センサーで作動状態及び温度等を検出
する。30はセンサー装置で後述する各種センナ−32
m、32b、32c、32d、32e、32Fの回 。
7 is a traveling drive device driven by a prime mover 16vc, which moves the earth construction machine 15 forward in response to a command signal from a remotely installed convenience cod, which will be described later, or by the scratcher's manual operation of a manual operation lever 27, 27.27; The vehicle performs operations such as backing up, turning, turning left, speeding up, decelerating, and stopping, and a normal/abnormality detection sensor 22 of the travel drive device 21 detects the operating status, rotation speed, and temperature of each part of the travel drive device τ. 24 The work drive device converts the driving force of the prime mover 16 directly or into hydraulic pressure, and the work device δ is activated by a command signal from a remotely installed combiator, or by the scratcher's manual scratching operation of the scratcher levers 27, 27. Driving scratches. 19 is a power supply device, and π is a normal/abnormality detection sensor of the work drive device 24.
Detects hydraulic pressure, temperature, operating angle, etc. at various locations. 28
is a prime mover start/stop device that automatically starts or stops the prime mover 16 by a command signal from a remotely installed computer or by manual operation by a scratcher. Reference numeral 29 is a normal/abnormality detection sensor of the motor start/stop device that detects the operating state, temperature, etc. 30 is a sensor device and various sensors 32 will be described later.
m, 32b, 32c, 32d, 32e, 32F times.

動、頚振伸縮等の動作を行なはせ後述する頂塔郁8の上
昇、下降、旋罵、動作の駆動を行なっている。31はセ
ンサー駆動装置の正常異常検出センサーで各種センサー
の動作状態、動作方向、動作速度及び温度等を検出する
。33は監視装置で、自動作業運転中は常時監視作業を
行なうもので、各種センナ−32m−32f及び各装置
の正常異常検出セy?−18.20,22,26,29
.37から送られて来る情報を分析、幣析eTfi算1
判定及び記憶等をして遠隔設置のフンビニ−ター23に
デジタル情報として出力する。この監視装置あは、三次
元位置監視装置ヌと作業状況監視装置5と1作業量監視
装置品と障害物監視装F157と異常状態監視装置脂よ
り構成されている。
It performs movements such as movement, neck shaking, extension and contraction, etc., and also drives the raising, lowering, rotation and movement of the top tower 8, which will be described later. Reference numeral 31 denotes a normal/abnormality detection sensor of the sensor driving device, which detects the operating state, operating direction, operating speed, temperature, etc. of various sensors. Reference numeral 33 is a monitoring device that constantly monitors during automatic operation, and detects the normality and abnormality of various sensors 32m-32f and each device. -18.20,22,26,29
.. Analyzing the information sent from 37, eTfi calculation 1
The information is judged, stored, etc., and output as digital information to the remotely installed funbinitor 23. This monitoring device consists of a three-dimensional position monitoring device, a work status monitoring device 5, a work amount monitoring device, an obstacle monitoring device F157, and an abnormal condition monitoring device.

三次元位置監視装置馴は発信暢9発信信号増中器、受信
器、受信信号増巾器、信号合成器、受信信号レベル検出
器等(図示省略)とより構成されて、セン? −32m
と接続されている、センサー込は例へば全天回動形のバ
ラがラアンテナ等で超短波、極超短波、及び超音波等の
信号を送信及び受信する送受信装置よりなり第6図、第
7図に示す作業地域に設置されている例へばビーコン発
信器またはトランスポンダ等の応答器39.39と信号
の授受を行なう、そうしてセンサー32aより発信した
信号に応答して応答器39.39より返信されるまでに
要する時間またはドツプラー効果等より第6図、第7図
で示すセンf −32mと応答器39との距離t194
14を測定する、またセンサー32aと応答器39.5
9よりの応答波の最強となる回動角α1,4゜烏、Aを
それぞれ土建機械15の進行方向り及び水平基準、II
Kより計測しこれら各測定値を三次元位置監視装置34
に導入し内蔵せるコンピューター(図示省略)Kより演
算して三次元位置と進行方向を求めて遠隔設置のコンピ
ューター3と作業量1線置品、及び異常状態監視装置3
8にデジタル信号として出力する。
The three-dimensional position monitoring device consists of a transmitting signal intensifier, a receiver, a receiving signal amplifier, a signal combiner, a receiving signal level detector, etc. (not shown). -32m
For example, the device connected to the sensor includes a transceiver device that transmits and receives signals such as ultra-high frequency waves, ultra-high frequency waves, and ultrasonic waves using an all-sky rotating antenna, as shown in Figures 6 and 7. For example, it sends and receives signals to and from a transponder 39.39, such as a beacon transmitter or transponder, installed in the work area shown in FIG. Due to the time required to reach this point or the Doppler effect, the distance t194 between the sensor f -32m and the transponder 39 shown in FIGS. 6 and 7 is
14, also the sensor 32a and the transponder 39.5
The rotation angles α1, 4° and A, which are the strongest response waves from 9, are respectively the advancing direction and horizontal reference of the construction machine 15, II
K, and these measured values are sent to the three-dimensional position monitoring device 34.
A remotely installed computer 3 calculates the three-dimensional position and direction of movement using a built-in computer (not shown) K, a workpiece line equipment, and an abnormal condition monitoring device 3.
8 as a digital signal.

作業情報監視装置5は作業状況セン? −32b 。Is the work information monitoring device 5 a work status sensor? -32b.

32cと接続しており、作業情況センサー32bは近距
離レーダーの送受信器で土建機械150周辺状況監視を
行ない、同じ作業地域内で作動する別の土建機械や作業
者の異常接近を検知する。また作業情報センナ−32c
は視覚情報装置で例へばテレビカメラ等で土建機械15
の馬辺の視覚情報を作業情況監視装置35に出力して内
蔵せるコンピューター(図示省略)Kより峡常解析を行
ない異常物体の接′近や、地形判断等を行なう。作業状
況監視装置5は1作業状況センサー32b’、32cよ
り得た作業状況情報を遠隔設置のコンピュータ乃と後述
する障害物監視装置9と異常状態監視装置甜へ出力する
ゆまた作業状報センサー32cの視覚状報は送受信装置
55.アンチナシ及び中継局5.を経て遠隔設置の送受
信装置52により受信され遠隔設置の監視装置51に送
信され、図示省略の映倫機器に入力される。
32c, the work situation sensor 32b uses a short-range radar transmitter/receiver to monitor the surrounding situation of the construction machine 150, and detects abnormal approach of another construction machine or worker operating in the same work area. Also, work information senna-32c
is a visual information device, for example, a television camera, etc.
The visual information of the horse's side is output to the work situation monitoring device 35, and a built-in computer (not shown) K performs a canyon analysis to determine the approach of abnormal objects, topography, etc. The work status monitoring device 5 includes a work status information sensor 32c that outputs the work status information obtained from the first work status sensors 32b' and 32c to a remotely installed computer, an obstacle monitoring device 9, and an abnormal condition monitoring device (to be described later). The visual status information is sent to the transmitting/receiving device 55. Anti-pear and relay station 5. The signal is received by a remotely installed transmitting/receiving device 52, transmitted to a remotely installed monitoring device 51, and inputted to an Eirin device (not shown).

作業量監視装置シは三次元位置監視装置ヌより入力され
る三次元位置信号を積算しての積算した遂行作業量と前
もって内蔵コンピューター(図示省略)に記憶させであ
る計画作業範囲及び計画作業量等と比較演算して作業進
行度を演算する。またこの監視装置′56には前方地形
センサー32eより実測作業量情報が入力される。
The work amount monitoring device SI integrates the three-dimensional position signals inputted from the three-dimensional position monitoring device N, and calculates the cumulative amount of work to be performed, a planned work range, and a planned work amount, which are stored in advance in a built-in computer (not shown). The work progress level is calculated by comparing and calculating. In addition, actually measured work amount information is input to this monitoring device '56 from the front terrain sensor 32e.

地形センサー32eは土建機械15に支承されたアーム
41の先端部に回動自在に装着され極超短波等ビームを
発射し且つ地表よりの反射波をキャッチする極超短波郷
の送受信器Sを有している、送受信器Sは作業量監視装
置36に内蔵せる発信器9発信器号増巾器、受信器、受
信信号増巾器、信号合成器、受信信号レベル検出器、演
算用コンピューター等より構成する信号加工装置(図示
省略)K接続されており、作業時にはアーム41を前傾
にし送受信器−を作業前方地表側に突出させて極超短波
等ビームを発射させそれが地表より反射されてくる反射
波をキャッチして発射より全速するまでの時間等より送
受信器Sと一地表間の距離4を内蔵せる演算用コンピュ
ーターにより演算する。送受信器Bは順次回動されて極
超短波等ビームを発射させ、その反射波より4,4・・
・をそれぞれ内蔵せる演算用コンピュータにより演算さ
せる。すなわち作業量監視装置Mにおいて求められた前
方地形実測作業量を修正量とし、三次元位置情報を積算
して求めた遂行作業量とを突合せて誤差修正を行なわせ
前記演算した作業進行度の修正を行ない、その修正され
た作業進行度をデジタル信号として遠隔設置のコンピュ
ータ−23に出力する。またセンサ−32ev#方地形
信号はデジタル信号化して障害物監視装置37に出力さ
れる。なおセンサー32eは作業終了後はアーム41を
後方へ仰転到させて土建機械15の参勤走行に支障のな
いように操作される。
The terrain sensor 32e is rotatably attached to the tip of an arm 41 supported on the construction machine 15, and has an extremely high frequency transmitter/receiver S that emits an extremely high frequency beam and catches reflected waves from the ground surface. The transmitter/receiver S includes a transmitter 9 built in the work amount monitoring device 36, a transmitter number amplifier, a receiver, a received signal amplifier, a signal synthesizer, a received signal level detector, a computer for calculation, etc. A signal processing device (not shown) is connected to K, and during work, the arm 41 is tilted forward and the transmitter/receiver is projected to the ground in front of the work to emit a beam such as an extremely high frequency wave, and the reflected wave is reflected from the ground surface. The distance 4 between the transmitter/receiver S and the ground surface is calculated by a built-in calculation computer based on the time it takes to catch the object and reach full speed from launch. Transmitter/receiver B is sequentially operated to emit ultrahigh frequency beams, and from the reflected waves, 4, 4, etc.
・A calculation computer with a built-in computer performs calculations. That is, the actual front terrain measurement work amount obtained by the work amount monitoring device M is used as a correction amount, and the error correction is performed by comparing it with the amount of work performed obtained by integrating three-dimensional position information, and the calculated work progress is corrected. The corrected work progress is output as a digital signal to a remotely installed computer 23. Further, the sensor 32ev# terrain signal is converted into a digital signal and output to the obstacle monitoring device 37. Incidentally, the sensor 32e is operated so that the arm 41 is turned backward after the work is completed so as not to hinder the regular running of the construction machine 15.

障害物監視装置37では内蔵せるコンビニ−ターに鍵も
って障害物判断プログラムと障害物判断基準とが記憶さ
れており、前記作業状況監視装置5よりインプツシされ
る作業状況情報デジタル信号と作業量監視装置品よりの
前方地形デジタル信号とを央会せ判断プログラムに基づ
いて演算させて前方障害物を判定させる。また作業装置
5の前部の地表に近い部分に1個以上の地下埋設物セン
サー 32fを装着して障害物監視装置37に接続され
ている。地下埋設物監視センサー52fは超音波探索装
置又は磁気探索装置等でアナログ量で得られた信号を障
害物監視装置g内でデジタル信号化して内蔵せる;ンビ
為−ターに#もって記憶されている障害物信号と突金せ
演算して地下埋設物の有無と種類の判定を行ないデジタ
ル信号として前記前方障−書物及び地下埋設物を障害物
情報としてコンビエータ−乃と後述子る異常状態監視装
置38にインプットする。異常状態監視装置58は前記
各装置のセンサー18.20,22,26,29.37
と接続され運転中時々刻kK送られてくる各装置の正常
異常信号、例へば回転数、温度、圧力、力角度、量等の
電気信号は各センサーごとのP波器、増巾器等を通して
入力され、この電気信号がアナログ量の場合はデジタル
変換された後入力される。またこの装置33には艙記三
次元位置監視装置況、作業状況監視装置35.作業状況
視装置品及び障害物監視装置37よりの各デジタル信号
も入力され内蔵せるコンピュータ(図示省略)の記憶装
置に一定時間間隔で所定番地にストアーさせ前もってイ
ンプットして記憶させである各装置の正常、異常判定基
準値とを順次コンビエータの演算装置に呼び出して比較
演算を行ない正常、異常判定をそれぞれに行なう。
In the obstacle monitoring device 37, an obstacle judgment program and obstacle judgment criteria are stored in a built-in convenience store, and the work situation information digital signal input from the work situation monitoring device 5 and the work amount monitoring device are stored. The front terrain digital signal from the object is combined with the central location and calculated based on a judgment program to determine the obstacle ahead. Further, one or more underground object sensors 32f are attached to the front part of the working device 5 near the ground surface and connected to the obstacle monitoring device 37. The underground buried object monitoring sensor 52f converts a signal obtained in analog form by an ultrasonic search device or a magnetic search device, etc. into a digital signal in the obstacle monitoring device g and stores it in the computer. Abnormal state monitoring device 38, which will be referred to later as a combiator, calculates the presence or absence and type of underground objects by calculating the obstacle signal and the collision signal, and uses the forward obstacle books and underground objects as obstacle information as a digital signal. Input to. The abnormal state monitoring device 58 includes sensors 18, 20, 22, 26, 29, and 37 of each of the devices described above.
The normal/abnormal signals of each device connected to it and sent every moment during operation, such as electrical signals such as rotation speed, temperature, pressure, force angle, amount, etc., are input through the P-wave device, amplifier, etc. for each sensor. If this electric signal is an analog quantity, it is input after being digitally converted. Also, this device 33 includes a three-dimensional position monitoring device status and a work status monitoring device 35. Each digital signal from the work situation viewing device and the obstacle monitoring device 37 is also input and stored in a storage device of a built-in computer (not shown) at a predetermined location at regular time intervals, input in advance and stored in each device. The normality/abnormality determination reference values are sequentially called into the arithmetic unit of the combiator, and comparison calculations are performed to determine normality/abnormality, respectively.

この作業は運転中繰り返し行なはれており正常。This operation is repeated during operation and is normal.

異常判定が行なわれたときには正常信号又は異常発生信
号が遠隔設置のコンビエータ23にインプ。
When an abnormality determination is made, a normal signal or an abnormality occurrence signal is input to the remotely installed combiator 23.

トされる。プンピエー/23には作業前に自動作業運転
に必要な各種作業のプログラム例へば走行誘導プログラ
ム、陣m避自V−プログラム、緊急停止プログラム、仕
上り検査プログラム、作業準備開始プ讐グラム、作業終
了プログラム、及び各装置の点検チェックプログラム等
必要とせる各種プログラムを記憶させである。また、作
業現場や、地域によりその都度変更される作業仕様例へ
ば作業範囲9作業順序2作業量9作業方法、土質等の作
業仕様プログラムはその作業開始前にその都度遠隔設営
のコンピュータ23に記憶させておく、該コンピュータ
3は監視装置51と送受信装置52に接続されており、
遠隔設置のコンピュータ26よりの指令信号は送受信装
置52に入力して送信信号に変換し【中継局5まで有線
又は無線により電送して中継局Sより無線信号により発
信をし前記作業地域に置かれた土建機械15に装備積載
されたアンテナヌを介して送受信装置5に受信させ中継
装置シに入力して指令信号に変換して所定の各装置に指
令を伝達している。また前記監視装置あより遠隔設置の
コンビエータ3に出力する各種情報信号及び各装置の応
答信号は中継装置お及び送受信装置55により返信信号
に変換してアンテナヌより発信し、中継局5を介して岐
記逮隔設置されている送受信装置52に電送されコンビ
エータ23及び監視装置51 Kインプットされる。
will be played. Examples of programs for various tasks necessary for automatic operation before work are included in Punpie/23, such as a travel guidance program, an evacuation V-program, an emergency stop program, a finishing inspection program, a work preparation start program, a work end program, It also stores various necessary programs such as inspection and check programs for each device. In addition, as an example of work specifications that change each time depending on the work site or region, work specification programs such as work scope, work order, work volume, work method, soil quality, etc. are stored in the remotely installed computer 23 each time before the work starts. The computer 3 is connected to a monitoring device 51 and a transmitting/receiving device 52,
A command signal from a remotely installed computer 26 is input to a transmitting/receiving device 52, converted into a transmission signal, and transmitted to the relay station 5 by wire or wirelessly, and then transmitted by a wireless signal from the relay station S, which is placed in the work area. The signal is received by the transmitting/receiving device 5 via an antenna mounted on the earth construction machine 15, inputted to the relay device, converted into a command signal, and transmitted to each predetermined device. Various information signals output from the monitoring device to the combiator 3 installed remotely and response signals from each device are converted into reply signals by the relay device and transmitting/receiving device 55, transmitted from the antennae, and distributed via the relay station 5. The information is electrically transmitted to the transmitting/receiving device 52 installed at the same time and input to the combiator 23 and the monitoring device 51K.

当該土建機械は作業地域まで車輌等により運搬されまた
は掻疵者により運転誘導されて作業開始地点または作業
開始地点近くに置かれ、掻疵者又は作業員等により自動
作業運転の指令が与えられたあとは遠隔設置のコンピュ
ータ23に記憶されている自動作業プログラムによる遠
隔操作により各装置に作業指令を発するとと−に遠隔設
置のコンピュータ3に入力される前記監視装置34,3
5,36゜37 、58よりの各種情報及び各装置の応
答信号の返信信号の出力信号により作業区域内での作業
機械15の三次元位置、走行方向9作業情況9作業量。
The said earth construction machine was transported to the work area by vehicle, etc., or was guided by the scratcher and placed at or near the work start point, and the worker, worker, etc. gave the command for automatic work operation. After that, work commands are issued to each device by remote control using an automatic work program stored in the remotely installed computer 23, and then the monitoring devices 34, 3 are inputted to the remotely installed computer 3.
5, 36° 37, 58 and the output signal of the reply signal of the response signal of each device, the three-dimensional position of the working machine 15 in the work area, the traveling direction, 9 the work situation, 9 the work amount.

障害物、異常状態を判断して情況に応じた作業指令を発
して前記記憶されている自動作業プログラムを遂行させ
るものである。42は緊急連絡装置で常時は遠隔設置の
コンピュータ23の指令により異常状態発生時にアンテ
ナヌと接続して異常発生信号を発信して中継局5を介し
て監視装置51へ入力し異常発生を知らせる。また土建
機械15の全装置停止の様な異常発生時には電源装置1
9も停止し制御電源も無くなってしまうその場合には、
緊急連絡装置42に内蔵の非常用電源装置(図示省略)
K同じく内蔵の低電王継電器(図示省略)の作動により
切換えられアンチナシより緊急連絡信号を発信し前記中
継局Sを介して監視袋f151に入力され異常発生を連
絡する。頂塔部6は各種センサー32a。
It determines obstacles and abnormal conditions, issues work commands according to the situation, and executes the stored automatic work program. Reference numeral 42 denotes an emergency communication device which is normally connected to an antenna when an abnormal condition occurs according to a command from a remote-installed computer 23, and transmits an abnormality occurrence signal, which is input to the monitoring device 51 via the relay station 5 to notify the occurrence of an abnormality. In addition, in the event of an abnormality such as a stoppage of all equipment in the construction machinery 15, the power supply 1
In that case, when 9 also stops and the control power is lost,
Emergency power supply device built into the emergency communication device 42 (not shown)
K is also switched by the operation of a built-in low power relay (not shown), and an emergency contact signal is transmitted from the antenna, which is input to the monitoring bag f151 via the relay station S to notify the occurrence of an abnormality. The top tower section 6 has various sensors 32a.

32b、32c、!S2d及び緊急連絡装置42を内装
し極超短波等の送受信及び視覚情報に支障を与えないよ
うな強固なカプセル例へば強化ガラス等により覆い地上
、地下及び水中自動作業にも適するよう内装機器を保護
しているPまたこの頂塔郁43には作業情況により各種
センサー駆動装置間により上昇。
32b, 32c,! An example of a strong capsule that houses the S2d and emergency communication device 42 and does not interfere with the transmission and reception of extremely high frequency waves, etc. and visual information is covered with tempered glass, etc. to protect the internal equipment so that it is suitable for automatic work above ground, underground, and underwater. Also, depending on the work situation, the top tower Iku 43 will rise due to various sensor drive devices.

下降及び旋1等が遠隔設置のコンピューター23からの
指令又は手動掻疵ハンドル27,27.27の操作によ
りで診るようKなっている。
The lowering and turning 1 etc. are performed by commands from a remotely installed computer 23 or by operation of manual scratching handles 27, 27.27.

次に第8図以降に示す自動作業フローチャートにより自
動作業運転について説明する。
Next, automatic work operation will be explained using automatic work flowcharts shown in FIG. 8 and subsequent figures.

第8図は自動作業開始までのフローチャートな示す、 
土建作業の作業量、様101が決まると現地測量102
が作業員により行なわれ、精密測量により作業区域の地
形、土質9作業出量等が正確に計測されて現地測量図が
製作される。骸測量図により自動作業計画103が開始
する自動作業計画103は作業仕様101により仕上り
図が作成され、地形土質1作業土量等より土建機械の選
定を行なう。
Figure 8 shows the flowchart up to the start of automatic work.
Once the amount and type of civil construction work has been determined 101, the field survey 102 is carried out.
This is carried out by workers, and a field survey map is created by accurately measuring the topography, soil quality, and amount of work in the work area through precision surveying. The automatic work plan 103 starts based on the skeleton survey map, and a finished map is created according to the work specifications 101, and earth construction machinery is selected based on the topography, soil quality, volume of work, etc.

土建機械が決められると自動作業手順が具体的に決めら
れる。すなわち、測量図より地形、土質。
Once the construction machinery is decided, the automatic work procedure will be determined in detail. In other words, topography and soil quality from survey maps.

作業土量等を考慮して土建機械の作業開始位置を決定す
るとともに#釦応答!) :9,392個の設置場所を
決定する応答器39.39は作業地域全域を見渡せる場
所で土建作業仕上り状態の場合にも土建機械15が見通
せる場所を選定する。また応答器39゜39の設置場所
は作業区域境界外の近傍に設置するのが好ましいが地形
、その他障害物により困難な場合は作業区域内の空中に
土lI作業に支障がないよう固定してもよいまた応答器
39.39間はお互に見通せる場所は必ずしも必要とせ
ず中間に障害物が介在しても良い。この場合応答器39
.39間の直線距離りの正確な測量ができれば支障はな
い6次に土建機械15と応答@39,59の設置場所が
決められると土建機械15の1回の作業量等より作業の
繰り返し回数、走行距離及び方向1作業順序等が詳細に
仕上り完了までの計画作業軌跡が設計されムそして中間
作業工程での中間仕上り図が必要枚数製作され中間工程
及び最終仕上状態での作業進行度チェックに必要な土建
機械15の三次元位置が計算される。自動作業計画10
3が完了すると自動作業プログラム104が作成される
。自動作業プログツム104は前記自動作業針1ji1
103 Kより作成される仕様作業プーグツムヘ前もっ
て作成されているルーチンプログラム及びサブルーチン
プログラム例へば始動プログラム、停止プログラム及び
異常発生対応プログラム等を組込んで自動作業プログラ
ム104が作成される。105は作成された自動作業プ
ログラム104を遠隔設置のコンビエータ23にインプ
ットする作業工程である。コンピュータインプy)作業
105の終了で自動作業運転の前段の準備作業が終了す
る0次Vc106は応答器設置作業で現地作業区域所定
位置に応答器59.59を作業員により設置する。応答
器39.39間の距離りは実測しながら正確な位置に設
定することを必要とすム応答器設置炸業106が済むと
次に107の土建機械始動点移動作業を行なう、土建機
械15を作業員により作業区域の始動開始点所定位置ま
たはその近傍まで移動する土建機械始動点移動作業10
7が終了後作業員により作業開始指令が無線指令により
中継局5及び送受信装置父を介して遠隔設置のコンピュ
ーター23に与えられるとともに応答器39゜39にも
与えられ、自動作業運転が開始される。
Determine the work start position of the earth construction machine considering the amount of soil to be worked, etc., and respond with the # button! ): 9,392 transponders 39.39 for determining the installation location select a location where the entire work area can be seen, and where the construction machine 15 can be seen even when the construction work is completed. It is preferable to install the transponder 39 near the outside of the boundary of the work area, but if this is difficult due to terrain or other obstacles, it should be fixed in the air within the work area so as not to interfere with soil work. Also, it is not necessarily necessary to have a place where the transponders 39 and 39 can see each other, and an obstacle may be interposed between them. In this case, the responder 39
.. If the straight line distance between 39 and 39 can be accurately measured, there will be no problem.6 Next, when the installation location of the civil engineering machine 15 and the response @39, 59 is decided, the number of repetitions of the work is calculated based on the amount of work per time of the civil engineering machine 15, etc. A planned work trajectory is designed in detail including travel distance, direction, work order, etc. until completion, and the necessary number of intermediate finishing drawings are produced in the intermediate work process, which are necessary for checking the work progress in the intermediate process and final finishing state. The three-dimensional position of the construction machine 15 is calculated. Automatic work plan 10
When step 3 is completed, an automatic work program 104 is created. The automatic work program 104 is the automatic work needle 1ji1.
The automatic work program 104 is created by incorporating, for example, a start program, a stop program, an abnormality response program, etc. into the specification work program 103 K created in advance into routine programs and subroutine programs. 105 is a work step in which the created automatic work program 104 is input to the remotely installed combiator 23. Computer input y) With the completion of work 105, the preparatory work for automatic work operation is completed.The zero-order Vc106 is a transponder installation work in which a transponder 59,59 is installed by a worker at a predetermined position in the field work area. After completing the transponder installation work 106, which requires setting the transponder 39 at an accurate position while actually measuring the distance between the transponders 39 and 39, the civil engineering machine 15 then performs the work of moving the starting point of the civil engineering machine 107. Construction machine starting point moving work 10 in which a worker moves a starting point to a predetermined starting point position in a work area or its vicinity.
After step 7 is completed, the worker gives a work start command via radio command to the remotely installed computer 23 via the relay station 5 and the transmitting/receiving device, and also to the transponder 39, 39, and automatic work operation is started. .

108の作業開始指令が作業員の無線指令により遠隔設
置のコンピュータ23に与えられるとコンピューター2
5は前もつ℃記憶されている前記自動作業プログラム1
04Kt、たがい作業指令を発する。
When the work start command 108 is given to the remotely installed computer 23 by a worker's wireless command, the computer 2
5 is the automatic work program 1 stored previously.
04Kt, issue work orders to each other.

峡作業指令は送受信装置52に入力されて送信信号に変
換されて中継局5を介してアンチナシで受信し送受信装
置55に入力し遠隔設置のコンピュータ3よりの作業指
令に変換して中継装置55により所定の各装置に前記作
業指令を伝達する。まづ土建機械15が停止状態であれ
ば準備運転工@110−113を行なう・、遠隔設置の
コンピューター3より準備運転超勤指令が出る8#コン
ピユータδ内では前もって記憶されている各装置の始動
プログラムに切換えられ該始動プログラムにより始動指
令が順次発しられてい幹遠隔地の土建機械15の各装置
起動110が行なわれる。
The work command is input to the transmitting/receiving device 52, converted to a transmitting signal, received via the relay station 5, inputted to the transmitting/receiving device 55, converted into a work command from the remotely installed computer 3, and transmitted by the relay device 55. The work command is transmitted to each predetermined device. First, if the construction machinery 15 is in a stopped state, a preparatory operation @ 110-113 is carried out. A preparatory overtime command is issued from the remotely installed computer 3. 8# In the computer δ, a start program for each device is stored in advance. The start command is sequentially issued by the start program, and the start-up 110 of each device of the earth construction machine 15 at the remote location is performed.

遠隔設置のコンピューター23による始動指令により土
建機械15の各装置の起動が完了すると起動応答信号が
各装置より次々に発せられ中継装置怒に入力されて送受
信装置間で送信信号に変換されてアンテナ舅より無ms
号により前記経路を経て遠隔設置のコンピュータ23に
出力される。
When the startup of each device of the construction machine 15 is completed by the start command from the remotely installed computer 23, a startup response signal is emitted from each device one after another, is input to the relay device, is converted into a transmission signal between the transmitting and receiving device, and is sent to the antenna. No more ms
The signal is output to the remotely installed computer 23 via the above-mentioned route.

遠隔設置のコンピューター23に前記起動応答信号が入
力され土建機械15の各装置の起動完了を確認すると遠
隔設置のコンピューター23は前もって記憶されている
各装置の点検チェックプログラムに切換はり各装置の点
検チェック指令が順次発せられ遠隔地の土建機械15の
各装置点検チェ、り111が行なわれる。該点検チェッ
ク111の結果の良否は後述する異常状態監視装置38
により判定され良又は否の信号が遠隔設置のコンピュー
ター23 K入力される。該良又は否の信号が全て良で
遠隔設置のコンピューター23に入力され各装量点検チ
ェック111が異常なしの場合には遠隔設置のコンビニ
−1−23は前もって記憶されている次の走行テストプ
ログラムに切り讐る。
When the activation response signal is input to the remotely installed computer 23 and confirmation of completion of activation of each device of the earth construction machine 15 is confirmed, the remotely installed computer 23 switches to a pre-stored inspection check program for each device and performs an inspection check for each device. Commands are issued one after another, and each device inspection check 111 of the earth construction machine 15 at a remote location is performed. The quality of the result of the inspection check 111 is determined by an abnormal condition monitoring device 38, which will be described later.
A signal indicating pass or fail is input to a remotely installed computer 23K. If all the pass/fail signals are good and input to the remotely installed computer 23, and each loading inspection check 111 shows no abnormalities, the remotely installed convenience store 1-23 executes the next running test program stored in advance. to kill.

遠隔設置のコンピューター25に記憶されている走行テ
ストプログラムにより土建機械15の走行駆動装置21
 K走行テスト指令が与えられ遠隔掻疵による走行テス
トが行なはれるやこの場合土建機械15に積載されてい
る三次現位置監視装置馴と応答器39.39との交信に
より後述する走行方向誘導テストも同時に行なはれる。
The travel drive device 21 of the earth construction machine 15 is operated by a travel test program stored in a remotely installed computer 25.
When the K running test command is given and a running test is performed using remote scratching, the running direction guidance described later is carried out through communication between the tertiary current position monitoring device mounted on the construction machine 15 and the transponder 39.39. Tests can also be conducted at the same time.

走行テスト112が異常なしの場合には、遠隔設置のフ
ンビューター23は前もって記憶されている作業運転テ
ストプログラムに切り替はり、作業運転テスト113が
行なはれる。該作業運転テスト113は遠隔設置のコン
ビニ−ターδに記憶されている作業運転テストプログラ
ムにより前記経路を経て土建機械15の作業駆動装置2
4Kfsfl業運転テスト指令が与えられ遠隔掻疵によ
り作業装置25の動作及び監視装置35.36 、37
 。
If the driving test 112 shows no abnormalities, the remotely installed funter 23 switches to a pre-stored working driving test program, and the working driving test 113 is performed. The work operation test 113 is performed by the work drive device 2 of the construction machine 15 via the above-mentioned route according to the work operation test program stored in the remotely installed convenience store δ.
4Kfsfl industrial operation test command is given and the operation and monitoring equipment of the work equipment 25 is performed by remote scratching 35, 36, 37
.

38が正常に動作するかチェックが行なはれる。A check is made to see if 38 is operating properly.

作業運転テスト113が異常なしで準備1転工程110
〜113は終了する。上述の準備運転工程110〜11
3番での作業中に異常発生があった場合は各工程におい
て、監視装置33により後述する異常発生対応プログラ
ムに−より異常個所の判定、異常状態の軽 判定、運転
停止判断吟が行なはれ異常発生信号が監視装置5より遠
隔設置のコンピューター23に異常発生信号が入力され
る。異常発生信号が入力されたコンピューター5は当該
進行中のプログラムを中断して直ちに前もって記憶され
ている後述する異常発生プログラムに切替えられ入力さ
れた異常信号の判定を行ない、全停止、一時停止または
軽異常運転続行等の指令を土建機械15に指令するとと
もに遠隔設置のコンピューター23側の監視装置51 
K異常個所の警報2表示を行なう0次に遠隔設置のコン
ピューター23は全停止又は一時停止プログラムtlJ
替はり土建機械15の運転停止115が行なはれるまた
帳異常運転続行指令の場合には遠隔設置のコンピュータ
ー23は直ちに前記中断した当該進行中のプログラムに
もとされて前記中断個所より継続して当該プログラムの
進行が行なはれる。
The work operation test 113 was completed without any abnormality, and the preparation step 110 was completed.
~113 ends. Preparation steps 110 to 11 described above
If an abnormality occurs during the work at No. 3, the monitoring device 33 will use the abnormality response program (described later) to determine the abnormality, determine whether the abnormality is minor, and determine whether to stop operation. An abnormality occurrence signal is input from the monitoring device 5 to a remotely installed computer 23. The computer 5 to which the abnormality signal has been input interrupts the ongoing program and immediately switches to the previously stored abnormality generation program, which will be described later. A monitoring device 51 on the side of the remotely installed computer 23 instructs the civil engineering machine 15 to continue abnormal operation, etc.
K The remotely installed computer 23 that displays the alarm 2 of the abnormal location has a complete stop or temporary stop program tlJ
Alternatively, the operation of the construction machine 15 is stopped 115, and in the case of a command to continue abnormal operation, the remotely installed computer 23 is immediately returned to the currently interrupted program and continues from the interrupted point. The program will proceed accordingly.

準備運転工程110〜113に異常なしの場合は116
0作業開始位置確認工程に人いる。遠隔設置のコンビニ
−ター23に前もって記憶されている自動作業プログラ
ムにより当該土建機械15が作業開始位置にあるかとお
かを三次元位置監視装置ヌより遠隔設置のコンピュータ
ー23にインプットされる。
116 if there is no abnormality in the preparation operation steps 110 to 113.
0 There is someone in the work start position confirmation process. According to the automatic work program stored in advance in the remotely installed convenience store 23, whether the earth construction machine 15 is at the work start position is inputted to the remotely installed computer 23 from the three-dimensional position monitoring device.

三次元位置情報信号と遠隔設置のコンピューター23に
前もって記憶されている作業開瞼■i囃とt突合せ演算
させて土建機械150作業作業開始位置にあるかどうか
の判定を行つ、くわしくは第7図で説明すると遠隔設置
のコンピューター23に記憶されている作業開始所定位
置かが方向で基準IILとrIの角度をなし応答器39
.39からの距離がtl及び4であるとする。か〜ると
診今遠隔設置の;ンビューター23に入力された土建機
械15の現在位置がD方向で且つ基準線りとの角度がr
を示し応答器39.39との距離が4*4であった場合
遠隔設置のコンピューター5は記憶されている位置情報
y(pAsp’sと実測信号γl*4*4とを位置判定
プログラムにより比較演算を行なう、その結果’r”’
−r w ’S =’ +4鴫の場合には土建機械15
は作業開始所定位置にあるとの判定が行なはれて自動作
業運転が実行されるが、第7図で示すよ5 ts”q 
As t4〜t2の場合は作業開始所定位置になしとの
一判定が行なはれ、遠隔設置のコンピューター23によ
り作業開始位置修正指令が出され117の作業開始位置
修正工程が行なはれる。まづこの場合は遠隔設置のコン
ピューターδに記憶されている位置修正プログラムによ
り土建機械15を現在位置P点より2点まで誘導を行な
5.その際は先づ遠隔設置のコンピューター25におい
て基線りを基準にして誘導方向偽を算出し、土建機械1
5の向きをα3方向に修正を行なう、次にα1方向に誘
導走行を開始させて時々刻々変化するtl、4の距離を
三次元位置監視装置ヌと応答器39.39との交信によ
り位置情報として測定し遠隔設置のコンビエータ23に
″C4ミs e 4 情K fL ルまで位置判定を繰
り返しながら、誘導走行を行ない、11−1s # 4
 ”k時Kll導走行停止指令を出して土建機械15を
走行停止する。その後方向修正誘導プログラムにより1
’、”−rKなるまで方向変換誘導が行なはれ土建機械
15の向ぎを所定の作業開始位置に付かせる。
It is determined whether or not the construction machine 150 is at the work start position by comparing the three-dimensional position information signal with the work eyelid opening sound (i music) stored in advance in the remotely installed computer 23. To explain with a diagram, the predetermined work start position stored in the remotely installed computer 23 is in the direction of the reference IIL and the angle of rI, and the transponder 39
.. Assume that the distance from 39 is tl and 4. The current position of the construction machine 15 input to the monitor 23 is in the D direction and the angle with the reference line is r.
If the distance from the transponder 39.39 is 4*4, the remotely installed computer 5 compares the stored position information y (pAsp's and the measured signal γl*4*4) using the position determination program. perform an operation, resulting in 'r'''
-r w 'S =' +4 In the case of Shizuku, construction machinery 15
is determined to be at the predetermined position to start work, and automatic work operation is executed.
In the case of As t4 to t2, it is determined that there is no predetermined work start position, a work start position correction command is issued by the remotely installed computer 23, and the work start position correction step 117 is performed. In this case, the construction machine 15 is guided to two points from the current position P using the position correction program stored in the remotely installed computer δ.5. In this case, first, the remotely installed computer 25 calculates the false guidance direction based on the baseline, and
The direction of 5 is corrected in the α3 direction.Next, guidance travel is started in the α1 direction, and the distance of 4, which changes from time to time, is determined by communication between the three-dimensional position monitoring device Nu and the transponder 39.39. 11-1s #4 while repeating the position determination to the remotely installed combiator 23.
”Kll guidance travel stop command is issued to stop the construction machine 15 from traveling. After that, the direction correction guidance program
The direction change guidance is performed until -rK is reached, and the earth construction machine 15 is directed to the predetermined work starting position.

土建機械15が作業開始位置にあることが確認されたら
自動作業プログラムにより自動作業運転119が実行さ
れる、 自動作業運転が自動〜業プログラム1040通りに遂行
されると作業量監視装置又より仕上り検査合格信号0が
遠隔設置のコンビエータ−23K出され遠隔設置のコン
ピューター3は第9図で示すよ5に仕上り検査走行停止
262を行ない前もって記憶されている運転停止プ四グ
ラムKl換え500で自動作業停止501を行なって作
業装置3の運転を停止する0次に終了位置移動502を
行なうが、終了位置移動502はあらかじめ記憶されで
ある終了所定三次元位置信号と自動停止501を行なっ
た時点での三次元位置信号との間で前述の作業開始所定
位置の位置修正と同じ要領で位、置修正プログラムによ
り終了位置まで移動し所定位置で停止する。
When it is confirmed that the construction machine 15 is at the work start position, the automatic work operation 119 is executed by the automatic work program. When the automatic work operation is performed according to the automatic work program 1040, the work amount monitoring device or finish inspection is performed. A pass signal 0 is outputted to the remotely installed combiator 23K, and the remotely installed computer 3 performs a finishing inspection running stop 262 at 5 as shown in FIG. 501 is performed to stop the operation of the working device 3. Next, the end position movement 502 is performed, but the end position movement 502 is based on the predetermined end three-dimensional position signal stored in advance and the tertiary position at the time when the automatic stop 501 is performed. The position correction program moves between the original position signal and the position correction program in the same manner as the above-described position correction of the predetermined work start position, and stops at the predetermined position.

その後各装置の点検チェックプログラムにより各装置の
点検チェック503を行ない全装置正常の場合には運転
終了停止504を、また異常判定が行なわれた装置があ
る場合には異常個所警報表示505を監視値量SaK行
なうとともに遠隔設置の監視装置151にも行ないつづ
いて運転終了停止504を行なう。
After that, an inspection check 503 is performed on each device using the inspection check program for each device, and if all devices are normal, the operation is terminated and stopped 504, and if there is a device that has been determined to be abnormal, the abnormal location alarm display 505 is displayed as the monitored value. At the same time, the amount SaK is carried out, and the monitoring device 151 installed remotely is also carried out, and then the operation end/stop 504 is carried out.

第10IlIは走行方向誘導フローチャートを示す。No. 11I shows a running direction guidance flowchart.

センナ−32mを全天回動させながら応答器39.39
と対向させ、応答波が最強感度となる方向で応答波の応
答時間測定120と方角偽、偽、βl、β鵞測定12′
1と1s*kek距離の演算122及び方角α、の演算
123を夫々位置監視装置34にて行ない、Zl m 
’b Zlの距離信号124と丙、α雪、αme/lo
/s方向の方向信号125を夫々遠隔設置のコンピュー
ター23に出力する。
Transponder 39.39 while rotating Senna-32m all over the sky
Measure 120 the response time of the response wave in the direction in which the response wave has the strongest sensitivity, and measure 120 the direction false, false, βl, and β.
1 and 1s*kek distance calculation 122 and direction α calculation 123 are performed by the position monitoring device 34, and Zl m
'b Zl distance signal 124 and C, α snow, αme/lo
A direction signal 125 in the /s direction is output to each remotely installed computer 23.

遠隔設置のコンピューター3は一定時間間隔で刻々入力
されて来る前記距離信号124と方向信号125とを前
記自動作業プログラムに組込まれ記憶されている計画走
行方向信号及び位置情報信号と突館合せて演算を行ない
、走行方向位置判定126を行なう。走行方向及び位置
判定において異常なしの場合は自動作業プログラム運転
継続指令を発して自動作業運転を継続する。走行方向及
び位置判定時において異常となった作業軌跡外れ信号有
り判定126aを行ない場合作業量監視装置品より作業
軌跡外れ信号Oが遠隔設置のコンピューター23に出力
されたことを条件に走行停止指令128を発し土建機械
150走行を一時停止128を行ない次いで方向修正指
令129を発して方向修正指令プログラムにより方向修
正を行なう、方向修正が完了すると自動作業運転再開指
令130を発して、自動作業運転を続行する。この第1
0図に基く走行方向誘導は自動作業運転中一定時刻間隔
で常時性なかれる。
The remotely installed computer 3 calculates by combining the distance signal 124 and the direction signal 125, which are input every moment at regular time intervals, with the planned travel direction signal and position information signal that are incorporated and stored in the automatic work program. Then, a traveling direction position determination 126 is performed. If there is no abnormality in the running direction and position determination, an automatic work program operation continuation command is issued to continue automatic work operation. When determining 126a that there is an abnormal work trajectory deviation signal when determining the traveling direction and position, a travel stop command 128 is issued on condition that the work trajectory deviation signal O is output from the work amount monitoring device to the remotely installed computer 23. The machine issues a command 128 to temporarily stop the movement of the construction machine 150, and then issues a direction correction command 129 to correct the direction according to the direction correction command program.When the direction correction is completed, an automatic work operation restart command 130 is issued to continue automatic work operation. do. This first
The driving direction guidance based on Figure 0 is constantly performed at fixed time intervals during automatic work operation.

第11図181(転)は監視装置郭が異常を検出したと
きにおける異常発生対応ツー−チャートで監視装置38
には土建機−15の運転中各種層ンサーよりの情報信号
131や他の監視装置34,35,36.37よりの情
報償号132が一定時刻間隔で記憶部の所定番地に記憶
され水、そして、各入力信号と前もって記憶されている
各装置の正常運転、異常運転時の判定基準値とを演算装
置につぎつぎ呼び出し突合せ演算を行なわせて異常判定
133を行い、異常なし征常)の場合は異常状態監視装
置38に正常運転中表示134を行なう、異常あり判定
の場合は引続館その異常が軽異常であるか否かの軽異常
判定135を行ない軽異常の場合は可視装置38に軽異
常運転継続中表示136と軽異常個所表示及び警報15
7を行ない遠隔設置のコンピューター23に軽異常信号
W158を出力する。
FIG. 11 (181) is a two-chart for responding to an abnormality when the monitoring device detects an abnormality.
During the operation of the construction machine 15, information signals 131 from various layer sensors and information signals 132 from other monitoring devices 34, 35, 36, and 37 are stored at predetermined locations in the storage unit at regular time intervals. Then, each input signal and the pre-stored judgment reference values for normal operation and abnormal operation of each device are successively called into the arithmetic unit, and a comparison operation is performed to make an abnormality judgment 133. The abnormal condition monitoring device 38 displays a normal operation display 134. If it is determined that there is an abnormality, a minor abnormality determination 135 is performed to determine whether or not the abnormality is a minor abnormality. Continuing abnormal operation display 136 and minor abnormality display and alarm 15
7 and outputs a minor abnormality signal W158 to the remotely installed computer 23.

軽異常判定135において軽異常でない(重異常)判定
である場合は全停止判定140を行なって、予備装置の
有無Kかかわらず緊急全停止を要する場合は全停止判定
となり全停止信号1141が遠隔設置のコンピューター
23に出力される。140の全停止判定が全停止でない
判定の場合は予備装置有判定・142を行なう、該予備
装置有判定142が予備装置なしの場合、すなわち予備
装置を使用し熾してしまった場合を麺瀞止信号141が
遠隔設置のコンピューター23に出力される。142の
予備装置有判定が予備装置有りの場合は自動作業運転一
時停止指令143が発せられ遠隔設置のコンピューター
23に自動運転一時停止信号璽が出力されるとともに予
備装置切換えプログラムにより予備装置切換え144を
行なう、予備装置切換え144の終了後前記予備装置切
換えプログラムに組み込まれている予備装置チェデクプ
ログラムにより予備装置チェック145を行ない、予備
装置異常なしの場合は自動作業運転再開指令146が発
せられる。これKより異常状態監視装置間は自動作業運
転再開指令璽を遠隔設置のコンピューター23に出力す
るe#記予備装置チェック145が正常でない(異常)
場合は全停止指令141が発せられ異常状態監視装置間
より遠隔設置のコンビエータ−23K全停止信号Iが出
力される。遠隔設置のコンピューター乃は各信号I。
If the minor abnormality determination 135 indicates that the abnormality is not a minor abnormality (major abnormality), a full stop determination 140 is performed, and if an emergency full stop is required regardless of the presence or absence of a backup device, a full stop determination is made and a full stop signal 1141 is remotely installed. is output to the computer 23. If the full stop judgment in step 140 is not a full stop, a spare device presence judgment 142 is performed.If the spare device presence judgment 142 indicates that there is no spare device, that is, if the standby device has been used and the accident has occurred, the standby device is stopped. A signal 141 is output to the remotely located computer 23. If the spare device presence determination in step 142 indicates that the spare device is present, an automatic work operation temporary stop command 143 is issued, an automatic operation temporary stop signal is output to the remotely installed computer 23, and a spare device switch 144 is performed by the spare device switching program. After completion of the spare device switching 144, a spare device check 145 is performed by the spare device check program incorporated in the spare device switching program, and if there is no abnormality in the spare device, an automatic work operation restart command 146 is issued. From this K, between the abnormal condition monitoring equipment, the automatic work operation restart command seal is output to the remotely installed computer 23. The preliminary equipment check 145 indicated in e# is not normal (abnormal).
In this case, a full stop command 141 is issued and a remotely installed combiator 23K full stop signal I is output from the abnormal condition monitoring device. Remotely installed computers have each signal I.

蓋及び璽のうち何れかが入力された際はたyちに異常信
号判定401を行ないそれが全停止信号Xの場合は第1
1図(ト)で示すよ5に緊急全停止指令和汁発して緊急
全停止プログラムにより各装置の全停止403を行なう
とともに監視装置51 K全停止表示と警報発生404
を行なはせる。遠隔設置のコンピューター23に入力さ
れた信号が1.1及び■の場合は先づ一時停止判定40
5を行ない、次にそれが自動作業一時停止信号璽である
とすると自動作業一時停止指令406を発して自動作業
一時停止プログラムにより自動作業一時停止407を行
なうとともに監視装置51 K一時停止表示と警報発生
408を行なはせる。また遠隔設置のコンピューター2
3 K入力された信号が璽及びWの場合は軽異常判%を
行ない、次にそれが軽異常信号■の場合は軽異常運転継
続指令410を発して軽異常中自動作業運転411を行
なけせるとともに監視装置51 K軽異常運転継続表示
と警報発生412を行なはせる。また前記軽異常判定4
09が自動作業再開信号璽の場合には自動作業再開指令
413を発して自動作業再開プログラムにより自動作業
再開414を行なう。
When either the lid or the seal is input, an abnormal signal determination 401 is performed immediately, and if it is a total stop signal X, the first
As shown in Figure 1 (G), an emergency full stop command is issued at 5, and all equipment is stopped 403 by the emergency full stop program, and the monitoring device 51 K displays a full stop display and an alarm is generated 404.
to carry out. If the signal input to the remotely installed computer 23 is 1.1 or ■, the temporary stop judgment 40 is made first.
5, and then if it is an automatic work temporary stop signal, an automatic work temporary stop command 406 is issued, an automatic work temporary stop 407 is performed by the automatic work temporary stop program, and the monitoring device 51 K temporarily stops display and alarm. A generation 408 is performed. Also, remotely installed computer 2
3 If the K input signal is Seal or W, perform a minor abnormality determination %, then if it is a minor abnormality signal ■, issue a minor abnormal operation continuation command 410 and perform automatic work operation during minor abnormality 411. At the same time, the monitoring device 51K displays a light abnormal operation continuation display and generates an alarm 412. In addition, the above-mentioned minor abnormality judgment 4
If 09 is an automatic work resumption signal, an automatic work resumption command 413 is issued and automatic work resumption 414 is performed by the automatic work resumption program.

館12図は作業情報判断フローチャートである。Figure 12 is a flowchart for determining work information.

自動作業運転時には作業区域内での地形変化9例へば崖
ゆ崩れ等や土建機械間での異常接近や、作業区域内への
作業者の立入りや土建機械への接近等安全上好ましくな
い事態も生じるので作業情況監視を必要とする。
During automated work operation, unfavorable safety situations may occur, such as terrain changes within the work area, such as landslides, abnormal proximity between construction machines, and workers entering the work area or approaching the construction machines. Therefore, it is necessary to monitor the work status.

155は各種センサーで例へば前記近距離レダー32b
や視覚情報装置32cである。この各種センサー155
よりの作業情況情報信号が時々刻々に作業情況監視装置
35に入力されてくる。この情報信号を作業情況判断プ
ログラムに基づいて前もって配憶されている作業情況判
断基準と突き合せて演算を行ない作業情況既知判定15
6を行なう。作業情況既知判定156が既知作業情況で
ない(未知作業情況)判定すなわち前もって記憶させで
ある作業情況判断基準にない作業情況の場合はたyちに
作業情況未知信号Oが遠隔設置のコンピューター23に
出力されるととも罠未知作業情況警報と表示157が作
業情況監視装置35に行なはれ、遠隔設置の監視装置5
1 K未知作業情況表示と警報発生が行なはれる。
155 is various sensors, for example the short range radar 32b
and the visual information device 32c. These various sensors 155
The work situation information signals from the above are inputted into the work situation monitoring device 35 from time to time. This information signal is compared with the work situation judgment criteria stored in advance based on the work situation judgment program, and a calculation is performed to determine whether the work situation is known (15).
Do step 6. If the work situation known determination 156 determines that the work situation is not a known work situation (unknown work situation), that is, it is stored in advance.If the work situation is not in the work situation judgment criteria, the work situation unknown signal O is immediately output to the remotely installed computer 23. As soon as the trap unknown work situation alarm and display 157 is sent to the work situation monitoring device 35, the remotely installed monitoring device 5
1 K Unknown work status is displayed and an alarm is issued.

156の作業情況既知判定が既知作業情況の場合は引続
き異常情況判定158を行な5,158の異常情況判定
が異常なしの場合は作業情況監視袋f35と遠隔設置の
監視装f51に正常作業情況表示159及び159mを
行な5,158の異常情況判定が異常ありの場合は作業
情況判断プログラムに組み込まれている作業継続判定プ
ログラムにより作業情況判御基準と突合せ演算をして作
業中止判定160を行ない、その判定が作業中止の場合
、たy+)K異常情況作業停止信号Oが遠隔設置のコン
ピューター23に出力されるとともに、作業情況監視装
置5と遠隔設置の監視装置51 K異常情況表示と警報
発生161及び161JIを行なはせる。1600作業
中止判定が中止でない(継続)場合は作業情況監視装置
5と遠隔設置の微視装置51 K異常情況下作業継続表
示と警報発生162及び1628を行なはせる。
If the work situation known judgment in 156 is a known work situation, abnormal situation judgment 158 is continued, and if the abnormal situation judgment in 5,158 is that there is no abnormality, the normal work situation is displayed in the work situation monitoring bag f35 and the remotely installed monitoring device f51. Displays 159 and 159m are performed, and if the abnormal situation judgment in step 5,158 indicates that there is an abnormality, the work continuation judgment program built into the work situation judgment program compares it with the work situation judgment standard and makes a work stop judgment 160. If the determination is to stop the work, an abnormal situation work stop signal O is output to the remotely installed computer 23, and the work situation monitoring device 5 and the remotely installed monitoring device 51 K abnormal situation display and alarm. Let occurrences 161 and 161JI occur. 1600 If the work stoppage determination is not to stop (continue), the work status monitoring device 5 and the remotely installed microscopic device 51K display the work continuation under abnormal circumstances and generate alarms 162 and 1628.

遠隔設置のコンピューター乃は作業情況未知信号◎及び
異常情況作業停止信号Oが入力されると、たyちに異常
情況自動作業運転停止指令を発して前もって記憶しであ
る異常情況対応プログラムにより自動運転停止163を
行ない、つづいて当該土建機械が異常情況下より脱出可
能か否かの異常情況脱出可能判定164を行なう。その
結果脱出不能の判定の場合はたyちに緊急自動作業停止
指令を発して緊急停止プログラムにより緊急停止165
を行なうとともに遠隔設置の監視装置51に緊急停止表
示と警報発生を行なはせる。164の異常情況脱出可能
判定が脱出可能の場合は異常作業情況対応プログラムに
より安全地点脱出移行167を行ない、各種センサー1
55が異常作業情況を検知した方向と反対方向に脱出移
行させる。1670安全地点脱出移行が行なはれるとつ
づいて安全地点脱出成功判定168すなはち脱出移行に
より異常情況作業停止信号Qの有り無し判定を行ない脱
出成功の場合は自動作業運転再開指令169を発して再
び自動作業運転再開170を行なうとともに遠隔設置の
監視装置51の停止表示及び警報発生の取消170aを
行なはせる。168の安全地点脱出成功判定が脱出失敗
の場合は緊急停止指令を発して緊急停止165を行ない
、遠隔設置の監視装置51 、に緊急z圧表示と警報発
生165mを行なはせる、 第13図は作業進行度判断フローチャートで、作業量監
視装置品には鍵もって進行度判断プログラム、作業進行
度チェ炉りプログラム、仕上り検査プログラム等の必要
なプログラムと作業進行度中間チェック基準値、仕上り
検査基準値、計画三次元作業軌跡(以下計画作業軌跡と
いう)及び計画作業軌跡勢が記憶されている。
When the remotely installed computer receives the work situation unknown signal ◎ and the abnormal situation work stop signal O, it immediately issues an abnormal situation automatic work operation stop command and starts automatic operation according to the abnormal situation response program stored in advance. A stop 163 is performed, and then a determination 164 is made as to whether or not the construction machine can escape from the abnormal situation. As a result, if it is determined that escape is impossible, an emergency automatic work stop command will be issued immediately and an emergency stop program will be used to stop the work.
At the same time, the remotely installed monitoring device 51 is made to display an emergency stop display and issue an alarm. If the abnormal situation escape determination in step 164 indicates that escape is possible, a safe point escape transition 167 is performed by the abnormal work situation response program, and various sensors 1
55 to escape and move in the direction opposite to the direction in which the abnormal work situation was detected. 1670 After the safe point escape transition is performed, the safe point escape success judgment 168, that is, the presence or absence of the abnormal situation work stop signal Q is determined by the escape transition, and if the escape is successful, an automatic work operation restart command 169 is issued. Then, the automatic work operation is resumed 170 again, and the remotely installed monitoring device 51 is displayed to be stopped and the alarm generation is canceled 170a. If the success of escape from the safe point 168 is determined to be a failure, an emergency stop command is issued to perform an emergency stop 165, and the remotely installed monitoring device 51 displays an emergency z-pressure and generates an alarm 165m. is a work progress judgment flowchart, and the work amount monitoring equipment includes necessary programs such as a progress judgment program, a work progress oven program, a finish inspection program, a work progress intermediate check standard value, and a finish inspection standard. A value, a planned three-dimensional work trajectory (hereinafter referred to as a planned work trajectory), and a planned work trajectory are stored.

今、三次元位置覧視装置馴より刻々インプットされる三
次元位置信号を第6図、第7図に示す基準WOよりのx
、y、z軸で表はされる立体座標に演算を行ない三次元
作業軌跡(以下実測作業軌跡とい5)として時系列的に
記憶装置の所定ストアーに実測前方地形と対応させて記
憶させていくとともに実IIrp業軌跡と計画作業軌跡
とを自動作業開始時点より作業進行とともに刻々突合演
算を行なって実I1作業軌跡が計tji作業軌跡の許容
範囲に在るかどうか実測作業軌跡判定172を行な5,
172の実測作業軌跡判定が許容範囲に在る場合は続い
て作業進行度計画点判定173を行なつ1730作業進
行度計画点判定は計画作業全軌跡に対し実測作業軌跡が
何パーセントまで進行しているかの作業進行度を判定し
、作業進行度チェック計画点を判定するものである。
Now, the three-dimensional position signal input from the three-dimensional position viewing device every moment is x from the reference WO shown in Figs.
, y, and z axes are computed and stored as a three-dimensional work trajectory (hereinafter referred to as the actual work trajectory 5) in a predetermined store of the storage device in chronological order in correspondence with the actual measured front terrain. At the same time, the actual work trajectory and the planned work trajectory are compared every moment from the start of automatic work as the work progresses, and the actual work trajectory is determined 172 to determine whether the actual work trajectory is within the allowable range of the total work trajectory. 5,
If the actual work trajectory determination in step 172 is within the allowable range, then work progress plan point determination 173 is performed.Work progress plan point determination 1730 determines what percentage of the actual work trajectory has progressed to the total planned work trajectory. The work progress level is determined and the work progress check plan point is determined.

172の実測作業軌跡判定が許容範囲外の場合軌跡外れ
信号のを遠隔設置のコンビエータ−23に出力する。遠
隔設置のコンビエータ−πは軌跡外れ信号Oが入力され
ると前記走行方向、位置判定異常と軌跡外れ信号Oの2
条件が重なった場合に自動作業運転を中断して方向修正
指令124を発して誘導方向修正を行なう。軌跡外れ信
号Oのみでは方向修正指令124は発せられずそのま〜
自動作業運転は進行する。 171はセンサーで例へば
前方地形センサー32eである。前方地形センサー32
eは作業量監視装置36に内蔵発信器より発信せる極超
短波等ビームを発射して地表より反射して来る反射波を
キャッチして作業量監視装置36ic入力し。
If the actually measured work trajectory determination at step 172 is outside the allowable range, a trajectory deviation signal is output to the remotely installed combiator 23. When the remotely installed combiator-π receives the off-track signal O, it detects the above-mentioned traveling direction and position determination error and the off-track signal O.
When the conditions overlap, the automatic work operation is interrupted and a direction correction command 124 is issued to correct the guidance direction. Direction correction command 124 is not issued with only the off-track signal O, and the direction correction command 124 remains unchanged.
Automated work operation will progress. 171 is a sensor, for example, the front terrain sensor 32e. Front terrain sensor 32
e emits a beam such as an extremely high frequency wave emitted from a built-in transmitter to the work amount monitoring device 36, catches the reflected wave reflected from the ground surface, and inputs the reflected wave to the work amount monitoring device 36ic.

発射波より、反射波の戻った時間、反射波の強弱又は反
射波のドプラー効果等よりセンサー32eと地表間の距
離を演算し地表形状また地表状態等を実測前方地形信号
として求め前述の実測作業軌跡と対応させて記憶装置の
所定ストアーに記憶させるとともに実測前方地形信号O
を障害物監視装置37に出力する。前記記憶された実測
作業軌跡信号と実測前方地形信号を一定時刻間隔で演算
部に取り出し実測作業出量を演算して記憶部の所定スト
アーに積算記憶させていく。前記作業進行度計画点判定
173が例へば作業進行度301,5013.801!
及び111111点の計画点のいづれかを判定した場合
、当該作業進行度において積算して記憶させである実測
作業出量と計画作業出量とより計画作業土量に対しll
1m炸業土l0作業進行度を演算させる実測土量進度演
算174を行ない演算された実測土量進行度と当該作業
進行度を突合せ計画作業進行度に対し実測出量進行度が
計画許容進度範囲内に人いっているかどうかを判定をす
る実測出量進度許容範囲内判定175を行な5,175
の実測土量進度許容範囲内判定が許容範囲内の判定の場
合は当該作業進行度チェック信号(例へば5〇一作業進
行度チェック信号)■を遠隔設置のコンビエータ−23
に出力する。
The distance between the sensor 32e and the ground surface is calculated from the emitted wave, the return time of the reflected wave, the strength of the reflected wave, the Doppler effect of the reflected wave, etc., and the ground surface shape and condition are obtained as an actual front terrain signal and the above-mentioned actual measurement work is performed. It is stored in a predetermined store of the storage device in correspondence with the trajectory, and the actual measured forward terrain signal O
is output to the obstacle monitoring device 37. The stored actual measured work trajectory signal and actual measured forward terrain signal are taken out to a calculation section at regular time intervals, and the actual measured work output is calculated and accumulated and stored in a predetermined store of the storage section. For example, the work progress planning point determination 173 is work progress 301, 5013.801!
When any of the 111,111 planning points is determined, the actual work output and the planned work output, which are accumulated and stored at the relevant work progress level, are compared to the planned work volume.
Perform the actual measured soil volume progress calculation 174 to calculate the 1m explosive soil l0 work progress level, compare the calculated actual measured earth volume progress level with the work progress level, and find out that the actual measured volume progress rate is within the plan allowable progress range with respect to the planned work progress rate. 5,175 The actual measured output progress is within the allowable range determination 175 to determine whether there are people inside.
If the actual measured earth volume progress is determined to be within the allowable range, the work progress check signal (for example, 501 work progress check signal) is sent to the remotely installed combiator 23.
Output to.

175の実測土量進行度許容範囲内判定が許容範囲外の
判定の場合は作業量監視装置お及び遠隔設置の監視装置
51 K出量許容範囲外れ警報と表?76゜177を行
ない、つづいて作業進行度チェック信号例遠隔設置のコ
ンビエータ−23にインプタトする。作業量監視装置又
は作業進行度チェック信号例遠隔設置のコンピューター
23に出力するとたyちに三次元位置監視装置ヌより入
力されて来る三次元位置信号の入力を待機する。
If the actually measured earth volume progress in 175 is determined to be within the allowable range, the work amount monitoring device and the remotely installed monitoring device 51 K output amount out of the allowable range alarm and table? 76.degree. 177, and then input the work progress check signal example into the remotely installed combiator 23. Immediately after outputting the work amount monitoring device or work progress check signal to the remotely installed computer 23, the system waits for the input of a three-dimensional position signal from the three-dimensional position monitoring device.

第14図+ll1tblは作業進行度チェックフローチ
ャートで遠隔設置のコ/ピユータ−23に当該作業進行
度チェック信号■が入力されると直ちに自動作業プログ
ラム中断201を行なう、つぎにプログラムの中断個所
と中断時点の三次元位置を記憶装置の所定ストアーにそ
れぞれ記憶202させる。つづいて自動作業停止プログ
ラム切換203を行ない自動作業運転停止204を行な
う、自動運転停止204が完了すると作業進行度チェッ
クプログラム(例へば3〇一作業゛進行度チェックプロ
グラム)205 K tFI換える。つぎに作業進行度
チェックプログラムあKよりチェック基準地点例へば第
15図に示すイ・・・ワの走行チェック運転206を行
なう。作業進行度チェックプログラム205には前記自
動作業運転中断位置より走行チェック運転207の開始
イ地点までの土建機械15の移動プログラムは組込まれ
ており前記作業位置修正工程で行なはれたと同じ容領で
位置修正プログラムにより行なはれ開始点イ地点まで移
動完了206シたのち走行チェック運転7が開始される
。三次元監視装置馴はセンサー32mと応答器39.3
9との交信信号により土建機械15の三次元位置を演算
して刻々監視装置36に三次元位置信号(以下実測位置
信号という)を入力し続けている。前記待機中の作業量
監視装置品は遠隔設置のコンピューターδより走行チェ
ック運転開始信号のが入力されると作業進行度チェック
プログラム始動208をはじめる。走行チェック運転2
07により土建機械15がチェ、ツク基準地点をつぎつ
ぎに走行していくと三次元位置監視装置ヌから実測位置
信号が作業量監視装置品に刻々インプットされて来ると
実測位置信号より立体座標のx、y、z座標演算が行な
はれ計画チェック基準地点のx、y座標値と実測位置信
号のxy座標値とが合致した時点の計画2座標値と実測
2座標値とを突合せて演算を行ない実測2座標値が基準
値の許容範囲内にあるかどうか計画チェック基準地点全
てに行ない、各基準地点とも全て許容範囲内にあれば2
座標許容範囲内判定210は計画進行度通りの判定が行
なはれ、作業量監視装置品より遠隔設置のコンビエータ
−23へ自動作業再開信号Oが出力される。また2座標
許容内判定210が計画進行度通りで無い判定が行なは
れると最終仕上り基準値と実測位置より実測進行度の演
算212を行ない実測進行度による自動作業修正再開指
令213を作業監視装置品より発し実測進行度自動作業
修正再開信号eを遠隔設置のコンビエータ−23に入力
するや遠隔設置のコンピューター23は自動作業運転再
開信号9または実測進行度自動作業修正再開信号のが入
力されると自動作業運転再開信号O判定214を行ない
、判定が自動作業運転再開信号Oの場合は直ちに自動作
業運転再開プログラム切換え215が行なはれ、前記自
動作業運転中断三次元位置まで自動作業運転再開位置移
動216を行ない、自動作業運転中断位置に土建機械1
5を位置させるやその後中断個所以降の自動作業プログ
ラム切換え217を行ない自動作業運転再開218が行
なはれる。該自動作業運転再開218と同時に遠隔設置
のコンピューター23より自動作業運転再開信号θを作
業量監視装置品に出力する。また、前記自動作業運転再
開信号O判定214が信号■でない判定すなわち実測進
行度自動作業修正再開信号Cの場合は、直ちに遠隔設置
のコンピューター乃は実測進行度自動作業運転修正再開
プログラム切換え219を行ない、前記中断して記憶さ
れている自動作業プログラム中断個所及び三次元位置2
02を取り消して代りに実測作業進行度に相当する自動
作業プログラム修正個所及び修正三次元位置記憶220
を行ない修正三次元位置まで自動作業運転修正再開位置
移動221を行ないその後自動作業プログラム修正個所
より自動作業プログラム修正切換え222を行ない自動
作業運転再開再l@ 223が再開されるとともに遠隔
設置のコンピューター23より作業量監視装置おへ実測
進行度自動作業運転修正再開信号のがインプットされる
。作業量監視装置品は自動作業運転再開信号■または自
動作業運転修正再開信号のが入力されると自動作業運転
再開信号O判定224を行ない信号■の判定の場合は直
ちKm記中断記憶されている進行度判断プログラム中断
記憶178以降の進行度判断中断プログラム切換え22
5を行ない進行度判断プログラム再開226を行ない作
業量監視を再開する。また前記信号O判定224が信号
口判定でないすなわち自動作業運転修正再開信号Oの場
合は中断記憶されている進行度判断プログラム中断記憶
178の・記憶個所を実測進行度個所に修正を行ない、
それ以降のプログラムに進行度判断プログラム実測進行
度切換え227を行ないただちに進行度判断プ冒グラム
修正再開228が行なはれ作業量監視が修正再開される
FIG. 14 +ll1tbl is a work progress check flowchart. Immediately after the work progress check signal ■ is input to the remotely installed computer 23, automatic work program interruption 201 is performed. Next, the program interruption point and interruption time are shown. The three-dimensional positions of the three-dimensional positions are respectively stored 202 in a predetermined store of the storage device. Subsequently, automatic work stop program switching 203 is performed and automatic work operation stop 204 is performed. When automatic operation stop 204 is completed, work progress check program (for example, work 301 progress check program) 205 KtFI is switched. Next, from the work progress check program AK, a running check operation 206 of I...W shown in FIG. 15 is performed to an example of a check reference point. The work progress check program 205 includes a program for moving the earth construction machine 15 from the automatic work operation interruption position to the start point A of the running check operation 207, and the program is the same as that carried out in the work position correction process. After the movement is completed (206) to the starting point A using the position correction program, the travel check operation 7 is started. The three-dimensional monitoring equipment is equipped with a sensor 32m and a transponder 39.3m.
The three-dimensional position of the construction machine 15 is calculated based on the communication signal with the construction machine 9, and a three-dimensional position signal (hereinafter referred to as an actual position signal) is continuously input to the monitoring device 36 from time to time. The work amount monitoring device on standby starts the work progress check program start 208 when a travel check operation start signal is input from the remotely installed computer δ. Driving check driving 2
07, as the construction machine 15 travels through the reference points one after another, the measured position signal is inputted from the three-dimensional position monitoring device to the work amount monitoring device moment by moment, and the three-dimensional coordinate x is determined from the measured position signal. , y, z coordinate calculations are performed, and the calculation is performed by comparing the planned 2 coordinate values and the measured 2 coordinate values at the time when the x, y coordinate values of the plan check reference point match the x and y coordinate values of the actual measured position signal. Check whether the actual measured 2 coordinate values are within the allowable range of the standard value or not at all reference points, and if all of the reference points are within the allowable range, 2.
The determination 210 that the coordinates are within the permissible range is performed according to the planned progress, and an automatic work restart signal O is output from the work amount monitoring device to the remotely installed combiator 23. Furthermore, if the 2-coordinate tolerance determination 210 determines that the progress is not as planned, the actual progress is calculated 212 from the final finishing reference value and the actual measured position, and the automatic work correction restart command 213 based on the actual measured progress is sent to monitor the work. When the actual measured progress automatic work correction restart signal e issued from the equipment is input to the remotely installed combinator 23, the remotely installed computer 23 receives the automatic work operation restart signal 9 or the actual measured progress automatic work correction restart signal. and automatic work operation restart signal O determination 214 is performed, and if the determination is automatic work operation restart signal O, automatic work operation restart program switching 215 is immediately performed, and automatic work operation is resumed to the three-dimensional position where automatic work operation was interrupted. Perform position movement 216 and move the construction machine 1 to the automatic work operation interruption position.
5, the automatic work program switching 217 after the interrupted point is then carried out, and the automatic work operation is resumed 218. At the same time as the automatic work operation restart 218, the remotely installed computer 23 outputs an automatic work operation restart signal θ to the work amount monitoring device. Further, if the automatic work operation restart signal O determination 214 is not the signal ■, that is, the actual measured progress automatic work correction restart signal C, the remotely installed computer immediately performs the actual measured progress automatic work operation correction restart program switching 219. , the interrupted and stored automatic work program interruption point and three-dimensional position 2
02 and instead store the automatic work program correction points and corrected three-dimensional positions corresponding to the actual measured work progress 220
Then, the automatic work operation correction restart position movement 221 is performed to the corrected three-dimensional position, and then the automatic work program correction switching 222 is performed from the automatic work program correction point to restart the automatic work operation. The actual measurement progress automatic work operation correction restart signal is input to the work amount monitoring device. When the automatic work operation restart signal ■ or the automatic work operation correction restart signal is input, the work amount monitoring device makes an automatic work operation restart signal O determination 224, and if the signal ■ is determined, the Km is immediately interrupted and stored. progress judgment program interruption memory 178 and subsequent progress judgment interruption program switching 22
Step 5 is performed, and progress judgment program restart step 226 is performed to restart work amount monitoring. Further, if the signal O determination 224 is not a signal exit determination, that is, the automatic work operation correction restart signal O, the stored location of the progress determination program interruption memory 178 that is interrupted and stored is corrected to the actual measured progress location,
For subsequent programs, the progress judgment program actually measured progress switching 227 is performed, and immediately the progress judgment program correction restart 228 is carried out, and the work amount monitoring is restarted with correction.

作業進行度チェック信号○が進行度1−一で遠隔設置の
コンピューター25に入力されると(第16図参照)コ
ンピューター3は直ちに自動作業運転プログツムを自動
作業停止プ四グラム切換え251を行ない同時に遠隔設
置のコンピューター23より作業量監視装置36vc仕
上り検査指令信号Oをインプットする。自動作業運転停
止252が行なはれるとつづいて仕上り検査プログラム
切換え253を行ない、仕上り検査開始地点移動254
を行なう、仕上り検査開始地点移動完了255が行なは
れると仕上り検査開始信号Oが遠隔設置のコンピュータ
ー23より作業量監視装置36に出力されると同時に仕
上り検査走行256を開始する1作業量監視装置品は仕
上り検査指令信号Oが入力されると仕上り検査プログラ
ム切換え257を行なう、仕上り検査プログラムには計
画チェック地点x、y座標値とそれに対応する2座標の
基準値と許容範囲基準値が一緒に組込まれており遠隔設
置のコンピューター23よりの仕上り検査開始信号@が
作業量監視装置36に出力されて来ると仕上り検査プロ
グラムが開始する。仕上り検査走行256とともに三次
元位置監視装置ヌより刻々入力されて来る実測位置信号
により作業進行度チェックプログラムの時と同じ要領で
X−Y座標判定259を行ない、計画X−Y座標時点の
ときKZ座標許容範囲内判定260を行なう2座標許容
範囲内判定260が全計画チェック点とも範囲内判定の
場合は仕上り検査合格決定261を行ない仕上り検査合
格信号のが作業量視装置晃より遠隔設置のコンピュータ
ーδへ出力される。遠 ゛隔設量のコンピューター23
は仕上り検査合格信号のにより仕上り検査走行停止26
2を行なう。2座標許容範囲内判定260が許容範囲外
判定の地点では仕上り不良信号0が遠隔設置のコンピュ
ーター25に入力すれる。コンビエータ−23は仕上り
不良信号Oが入力されると直ちに仕上り検査走行中止2
63を行ない、仕上り不良地点修正プログラムに切換え
局地点修正作業運転を繰り返す仕上り不良地点修正プロ
グラム運転264を行なう。修正プログラム運転264
により2座標許容範囲内判定260が許容範囲内判定と
なると許容範囲内信号■が遠隔設置のコンピューター、
23に入力され、コンピューター23は許容白信号■に
より仕上り検査走行プログラムKFI換え前記中止した
地点より仕上り検査走行再開265を行なう、全計画チ
ェック地点の2座標許容内判定260が許容白判定にな
るまで仕上り不良地点修正プログラム運転を繰り返し行
なっていき、全計画地点とも2座標許容内判定26゜が
許容白判定になった場合に仕上り検査合格決定261が
行なはれ前記仕上り検査合格信号Oが作業量監視装置品
より遠隔設置のコンピューター23に出力され仕上り検
査は終了する。
When the work progress check signal ○ is input to the remotely installed computer 25 at a progress level of 1-1 (see Fig. 16), the computer 3 immediately switches the automatic work operation program to an automatic work stop program switch 251, and at the same time remotely A finish inspection command signal O is input from the installed computer 23 to the work amount monitoring device 36vc. After the automatic work operation stop 252 is carried out, the finish inspection program is switched 253 and the finish inspection start point is moved 254.
When finishing inspection start point movement completion 255 is completed, a finishing inspection start signal O is output from the remotely installed computer 23 to the work amount monitoring device 36, and at the same time finishing inspection traveling 256 is started.1 Work amount monitoring When the finish inspection command signal O is input to the equipment, the finish inspection program is switched 257.The finish inspection program includes the x and y coordinate values of the planned check point, the reference values of the two corresponding coordinates, and the tolerance reference value. When a finish inspection start signal @ is output from the remotely installed computer 23 incorporated in the computer 23 to the work amount monitoring device 36, the finish inspection program starts. Along with the finishing inspection run 256, the X-Y coordinate determination 259 is performed in the same manner as in the work progress check program based on the actual position signal input every moment from the three-dimensional position monitoring device, and when the planned X-Y coordinate is reached, KZ If the coordinates are within the allowable range determination 260, and all the plan checkpoints are within the range, the finishing inspection pass determination 261 is performed, and the finishing inspection pass signal is sent from the work volume monitoring device to a remotely installed computer. Output to δ. Remotely installed computer 23
Finishing inspection stopped due to finish inspection pass signal 26
Do step 2. At a point where the two-coordinate within-permissible range determination 260 is outside the permissible range, a poor finish signal 0 is input to the remotely installed computer 25. Combiator 23 immediately stops finishing inspection run 2 when the poor finishing signal O is input.
63, the program is switched to the defective finishing point correction program, and the defective finishing point correcting program operation 264 is performed, which repeats the station point correcting work operation. Modification program operation 264
When the two-coordinate tolerance range judgment 260 is determined to be within the tolerance range, the tolerance range signal ■ is sent to the remotely installed computer.
23, the computer 23 changes the finish inspection run program KFI according to the permissible white signal ■ and restarts the finish inspection run 265 from the aforesaid aborted point, until the 2-coordinate tolerance judgment 260 of all planned check points becomes an allowable white judgment. The poor finishing point correction program operation is repeated, and when the 2-coordinate tolerance judgment 26° becomes an acceptable white judgment for all planned points, the finishing inspection pass decision 261 is carried out, and the finishing inspection passing signal O indicates the work. The output is output from the quantity monitoring device to a remotely installed computer 23, and the finish inspection is completed.

第17図は障害物退避及び排除フローチャートで9は障
害物監視装置で前駆作業情況監視装置5より、既知作業
情況信号Oと作業量監視装置おより前方地形信号Oとが
刻々障害物監視装置37に出方されて来る。またセンサ
ー301例へば地下埋設物センサー32fよりの地下埋
設物信号■も障害物監視装置37に出力されて来る障害
物監視装置37には前もって障害物判断プログラムと障
害物判断基準郷が記憶されており、刻々入力されて来る
信号o、o、司℃を一定時刻間隔で障害物判断プログラ
ムにより信号判断を行なっていく、入力されて来る信号
@、@)、aをまづ信号0判定302を行ない、信号O
判定の場合はつづいて作業情況信号OKより送られてく
る対象物が当該土建機械15の進行方向危険間、固自に
有るかと5かの判定すなわち進行方向危険範囲内有り判
定302を行な5e302の判定が有り判定の場合は既
知障害物判定304が行なはれる。302の判定が無し
判定の場合は作業情況信号障害物なし信号のが図示省略
の表示部に出方される。
FIG. 17 is an obstacle evacuation and removal flowchart, and reference numeral 9 is an obstacle monitoring device, in which the known work situation signal O and the forward terrain signal O from the work amount monitoring device are sent every moment from the precursor work situation monitoring device 5 to the obstacle monitoring device 37. I'm going to be summoned to the office. In addition, in the case of the sensor 301, the underground object signal (2) from the underground object sensor 32f is also output to the obstacle monitoring device 37.The obstacle monitoring device 37 stores an obstacle judgment program and an obstacle judgment standard in advance. , The signals o, o, and C that are input every moment are judged by the obstacle judgment program at regular time intervals.The signal 0 judgment 302 is first performed for the signals that are input (@, @), and a. , signal O
In the case of determination, it is then determined whether the object sent from the work status signal OK is within the danger range in the direction of travel of the earthworks machine 15, that is, the determination 302 that the object is within the danger range in the travel direction is performed 5e302. If the determination is yes, known obstacle determination 304 is performed. If the determination at step 302 is that there is no obstacle, a work status signal and a no-obstacle signal are displayed on a display section (not shown).

信号0判定302が信号Φでなし判定で信号0■の場合
はつづいて信号の判定305が行なはれる 305の判
定が信号O判定の場合はつづいて前方地形が異常地形で
あるか無しかの前方地形異常有り判定306を行ない異
常有り判定の場合は既知障害物判定304が行なはれる
。3o6の判定が異常無し判定の場合は前方地形異常無
し信号のが表示部に出力される。
If the signal 0 determination 302 is a signal Φ or no signal and the signal is 0■, then a signal determination 305 is performed.If the determination in 305 is a signal O determination, then the next step is to determine whether the terrain ahead is abnormal terrain or not. A forward terrain abnormality determination 306 is performed, and if it is determined that an abnormality exists, a known obstacle determination 304 is performed. If the determination in 3o6 is that there is no abnormality, a signal indicating that there is no abnormality in the terrain ahead is output to the display section.

信号O判定505が信号Cでない判定すなわち信号Oの
場合は、地下埋設物有り、無しの地下埋設物有り判定3
07が行なはれる。該判定307が有り判定の場合は既
知障害物判定304が行なはれム地下埋設物判定307
が無し判定の場合は地下埋設物なし信号■が表示部に出
力される。表示部に出力される前記作業情況信号障害物
なし信号■と前方地形異常なし信号0と地下埋設物なし
信号■が重なった場合に表示部は障害物なし表示308
を行なうと同時に障害物なし信号0を障害物監視装置9
より遠隔設置のコンピューター23にインプットする。
If the signal O determination 505 is not the signal C, that is, the signal O, there is an underground object presence or no underground object presence determination 3.
07 will be held. If the judgment 307 is a presence judgment, the known obstacle judgment 304 is performed.
If it is determined that there is no underground buried object, a signal ■ indicating that there are no underground objects is output to the display section. When the work status signal No Obstacle Signal ■ outputted to the display unit, the No Front Terrain Abnormality Signal 0, and the No Underground Object Signal ■ overlap, the display unit displays No Obstacle Display 308.
At the same time, the obstacle monitoring device 9 outputs a no-obstruction signal of 0.
The information is input to a computer 23 installed remotely.

既知障害物判定304は判定303.306.307の
有り判定の場合に引きつづいて行なはれる、進行方向危
険範囲内圧障害物が有る場合、また、前方地形異常の場
合また地下埋設物ありの場合の障害物の認定判定である
、記憶されている障害物判断基準信号と判定303.3
06 、307の有り判定の信号を突合せ演算を行ない
、障害物の認定を行なうもので前方に立木有り、大岩石
有り、又は埋設管有等の認定判定を行なうものである0
判定304により障害物が認定判定されるとつづいて排
除可能判定309が行なはれる判定609は認定した障
害物により排除可能な障害物例へば小立木や小中岩石等
がまたは排除不能な大木や、鉄塔、地下埋設管等の判定
を行なりもので、309り判定が排除可能判定の場合は
排除可能障害物信号■が遠隔設置のコンピューター23
にインプットされる。309の判定が排除可能でない判
定すなわち排除不能判、定の場合は排除不能障害物信号
■を遠隔設置のコンピューター23にインプットする。
Known obstacle determination 304 is performed following the presence determination of determinations 303, 306, and 307, when there is a pressure obstacle in the dangerous area in the direction of travel, when there is an abnormality in the terrain ahead, or when there is an underground object. The stored obstacle determination reference signal and determination 303.3, which is the recognition determination of the obstacle in the case of
06, 307 presence determination signals are compared and calculated to identify obstacles, such as whether there are standing trees, large rocks, or buried pipes in front.0
When an obstacle is recognized in judgment 304, an eliminatable judgment 309 is made. Judgment 609 is used to determine whether an obstacle can be removed by the recognized obstacle, such as a small tree or small-sized rock, or a large tree or tree that cannot be removed. , steel towers, underground pipes, etc., and if the 309 judgment is that they can be removed, the removeable obstacle signal ■ is sent to the remotely installed computer 23.
is input into. If the determination in step 309 is that it cannot be eliminated, that is, it is determined that it cannot be eliminated, an unremovable obstacle signal (2) is input to the remotely installed computer 23.

304の判定が未知障害物の場合は未知障害物信号■が
遠隔設置のコンピューター23に入力される。また未知
障害物信号の。
If the determination at step 304 is that the obstacle is an unknown obstacle, an unknown obstacle signal ■ is input to the remotely installed computer 23. Also unknown obstacle signal.

排除不能障害物信号■及び排除可能障害物信号■は遠隔
設置の監視装置51 Kも入力され、当該表示と警報発
生310を行なう。
The unremovable obstacle signal (2) and the removable obstacle signal (2) are also input to the remotely installed monitoring device 51K, and the relevant display and alarm generation 310 are performed.

遠隔設置のコンピューター23は障害物なし信号■、未
知障害物信号■、排除不能障害物信号■。
The remotely installed computer 23 outputs a no obstacle signal ■, an unknown obstacle signal ■, and an unremovable obstacle signal ■.

及び排除可能障害物信号■が入力されるとたyちに信号
■判定311を行ない信号O判定の場合は自動作業運転
継続312を指令する。信号■判定311が信号■でな
い判定の場合は引ぎつづき信号■判定313を行なう2
判定3131!I”−信号■の場合は自動作業運転一時
中止314を行ない自動作業運転プログラム一時中止側
所と三次元位置を配憶し、障害物排除プログラムに切換
え障害物排除作業315を行なう、障害物排除完了31
6により一時中止の自動作業プログラムに切換え自動作
業運転再開317を行なう。信号O判定が信号○でない
判定すなわち信号■又は■の場合はたyちに自動作業運
転一時中止′515を行ない自動作業プログラム一時中
止個所及び三次元位置を記憶するとともに障害物巡遊自
動作業プログラムに切換え障害物1避自動作業運転31
6を行なう、障害物巡遊終了317で自動作業プログラ
ム一時中止個所及び三次元位置を障害物1避終了地点の
プログラム個所及び三次元位置に修正した自動作業プロ
グラムに切換え自動作業運転318を行なう。
Immediately when the removeable obstacle signal ■ is input, a signal ■ judgment 311 is performed, and if the signal O judgment is made, a command is issued to continue automatic work operation 312. If the signal ■ judgment 311 is a judgment that the signal ■ is not a signal ■, continue to perform the signal ■ judgment 313 2
Judgment 3131! In the case of I”-signal ■, the automatic work operation is temporarily stopped 314, the automatic work operation program is temporarily stopped, the side location and three-dimensional position are memorized, the system is switched to the obstacle removal program, and the obstacle removal work 315 is performed. Completed 31
6, the program switches to the temporarily suspended automatic work program and resumes automatic work operation 317. If the signal O judgment is not a signal ○, that is, the signal ■ or ■, the automatic work operation is temporarily stopped '515, the automatic work program temporary stop point and three-dimensional position are memorized, and the obstacle tour automatic work program is started. Switching obstacle 1 avoidance automatic work operation 31
6 is performed, and at the end of obstacle tour 317, the automatic work program is switched to an automatic work program in which the temporary stop point and three-dimensional position of the automatic work program are corrected to the program place and three-dimensional position of the obstacle 1 avoidance end point, and automatic work operation 318 is performed.

本発明に係る土建作業方法とその装置は、土建機械本体
とこれに積載したセンサー及び監視装置と遠隔設置のコ
ンピューターと前記土建機械と遠隔設置のコンピュータ
ーにおのおの設けられた送受信装置によりあらかじめ土
建作業内容を遠隔設置のコンピューターに記憶させ、地
上または空中に固定した1個以上の標識と前記センサー
とり間で情報交換を行なはしめ、作業計画域における土
建機械の位置を演算しながら記憶されている作業プログ
ラムにより計画作業内容を無人で遂行する±4A作業方
法とその装置であり従来必要とされた掻疵者を必要とせ
ずよって昼夜連続作業も容易に行なえ作業環況の悪い場
所や、危険地帯、水中及びトンネル内等での作業にも適
する。また、基準点との情報交換により自己位置検出を
行ない、方向鐸導9位置修正が自動的に行なはれ記憶さ
れた計画作業内容を記憶されているプログラムにより遂
行できる。また積載している作業情況監視装置とセンサ
ーにより別の土建機械や作業者等が異常接近した場合に
も自動的に検知して緊急停止、警報発生を行ない、衝突
や人身事故等を未然に防止で館る。また塔載せる作業量
監視装置とセンサーにより計画作業軌跡及び作業量と実
測軌跡及び作業量を比較演算を行ないながら記憶しであ
るプログラムにしたがい自動作業を遂行していくので計
画作業内容が確実に遂行で診る。また塔載せる障害物監
視装置とセンサーにより作業前方障害物を自動的に検知
して障害物の認定を行ない排除するか、退避する等の判
定を行ないながら作業を進行するもので障害物に衝突し
て作業機械を破損させたり、また危険な障害物を破壊し
て大事故に至る様なことはない、また積載せる異常状態
監視装置とセンナ−により常時各装置の監視が行なはれ
ており異常発生時には軽異常9重異常を記憶されている
判定プ宵グラムにより自動的に判断して予備機器との切
換えまたは緊急停止等の処置を適切に行なえまた異常の
軽微のうちに警報1表示を行なうので使用不能となるよ
うな異常拡大は防止でき異常の軽微のうちに対策がとら
れる。また、コンビエータ−は遠隔地に設置され土建機
械とはそのおのおのに設けられた送受信装置を介して結
合されているので気憶容量の大ぎな大容量のコンピュー
ターも使用かでき複雑な自動作業も容易に行なえるばか
りでなく土建機械は大形なものを必要とせず小形な土建
機械でも自動作業が行なえ狭隘な土地やトンネル内や地
下作業場等での自動作業が容易に行なえる。また本発明
に係る土建機械は各種センサーを収納する頭頂部は強固
なカプセルで覆われており、しかも極超短波等の送受信
及び視覚情報に支障を与えないよう構成されているので
地上はもちろん、地下、または水中での自動作業にも使
用できる特徴を有する。
The civil engineering work method and its device according to the present invention provide information on civil construction work in advance using a civil engineering machine main body, sensors and monitoring devices loaded thereon, a remotely installed computer, and a transmitting/receiving device installed in each of the civil engineering machine and the remotely installed computer. is stored in a remotely installed computer, and information is exchanged between one or more signs fixed on the ground or in the air and the sensor, and the memorized work is performed while calculating the position of the earth construction machine in the work planning area. The ±4A work method and its equipment allow the planned work to be carried out unmanned by a program, and it does not require a scratcher, which was required in the past, making it easy to work continuously day and night. Also suitable for work underwater and inside tunnels. In addition, the self-position is detected by exchanging information with the reference point, and the direction guide 9 position correction is automatically performed, and the stored planned work contents can be executed by the stored program. In addition, the on-board work status monitoring equipment and sensors automatically detect when another construction machine or worker approaches abnormally, automatically stopping the vehicle and issuing an alarm to prevent collisions and personal accidents. House. In addition, the work amount monitoring device and sensor installed on the tower compare and calculate the planned work trajectory and amount of work with the measured trajectory and amount of work, and then automatically perform the work according to a certain program, ensuring that the planned work is carried out reliably. Check it out. In addition, the tower-mounted obstacle monitoring device and sensor automatically detect obstacles in front of the work, identify the obstacles, and decide whether to eliminate them or evacuate as the work progresses. There is no risk of damage to working machinery or destruction of dangerous obstacles, leading to major accidents, and all equipment is constantly monitored by abnormal condition monitoring equipment and sensors installed on board. When an abnormality occurs, it automatically determines whether it is a minor abnormality or 9 serious abnormalities based on the stored judgment program, and takes appropriate measures such as switching to spare equipment or emergency shutdown, and also displays Alarm 1 while the abnormality is minor. Therefore, it is possible to prevent an abnormality from expanding to the point where it becomes unusable, and countermeasures can be taken while the abnormality is still minor. In addition, since the combiator is installed in a remote location and connected to the construction machinery through a transmitter/receiver installed on each machine, it can also be used with large-capacity computers with large memory capacities, making complex automated work easier. Not only can the work be carried out automatically, but there is no need for large construction machinery, and even small construction machinery can perform automatic work, making it easy to perform automatic work in narrow spaces, tunnels, underground workshops, etc. In addition, the top of the earth construction machine according to the present invention, which houses various sensors, is covered with a strong capsule, and is configured so as not to interfere with the transmission and reception of extremely high frequency waves and visual information, so it can be used not only above ground but also underground. It also has features that allow it to be used for automatic work underwater.

以上詳述せるごとく本発明に係る土建作業方法及びその
装置は多くの秀れた効果を有するものである。尚本発明
に係る土建作業方法とその装置は実施例に説明した範囲
に限定するものではない。
As detailed above, the civil engineering work method and device according to the present invention have many excellent effects. It should be noted that the civil engineering work method and apparatus according to the present invention are not limited to the scope described in the embodiments.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図従来の遠隔掻疵土工機械の概念ブロック図、第2
図は従来の遠隔掻疵土工機械の概念図、第3図は従来の
レザービーム誘導の自動機械概念図、第4図は本発明に
係る土建機械概念図、第5図は本発明に係る土建機械に
積載さる装置の結合関係の概念ブロック接続図、第6図
、第7図は本発明に係る土建機械と基準点の情報交換説
明図、第8図は自動作業運転開始準備運転フローチャー
ト、第9図は自動作業運転終了フローチャート、第10
図は走行方向誘導フローチャート、第11図(−(1>
+異常発生対応フローチャート、第12図は作業情況監
視フローチャート、第13図は作業進行度判断フローチ
ャート、第14図1111 th1作業進行度チェック
フローチャート、第15図(−))走行検査説明図、第
16図は仕上り検査フローチャート、第17図は障害物
巡遊及び排除フローチャートである。 15・・・土建機械本体、 18,20,22,26,
29,31,32a〜32f・・・センサー、21・・
・走行駆動装置、23・・・遠隔設置のコンピューター
、24・・・作業駆動装置。 33・・・監視装置、39・・・標識、52・・・送受
信装置。 55・・・送受信装置。 特許出【、4楕弐会社 明 電 舎 弟1図 第2図 gJI3簡 し−−「−−一−− 第14図(0)
Figure 1: Conceptual block diagram of a conventional remote scratching earthmoving machine; Figure 2:
Figure 3 is a conceptual diagram of a conventional remote scratching earthmoving machine, Figure 3 is a conceptual diagram of a conventional laser beam guided automatic machine, Figure 4 is a conceptual diagram of an earthwork machine according to the present invention, and Figure 5 is a conceptual diagram of a civil engineering machine according to the present invention. 6 and 7 are conceptual block connection diagrams of the coupling relationship of devices loaded on the machine, and FIGS. 6 and 7 are explanatory diagrams of information exchange between the civil engineering machine and the reference point according to the present invention. FIG. Figure 9 is a flowchart for completing automatic work operation, No. 10
The figure is a running direction guidance flowchart, Figure 11 (-(1>
+ Abnormality occurrence response flowchart, Fig. 12 is a work status monitoring flowchart, Fig. 13 is a work progress judgment flowchart, Fig. 14 is a 1111 th1 work progress check flowchart, Fig. 15 (-)) Driving inspection explanatory diagram, Fig. 16 The figure is a finish inspection flowchart, and FIG. 17 is an obstacle tour and removal flowchart. 15... Civil engineering machine body, 18, 20, 22, 26,
29, 31, 32a to 32f...sensor, 21...
- Travel drive device, 23... Remotely installed computer, 24... Work drive device. 33... Monitoring device, 39... Sign, 52... Transmitting/receiving device. 55... Transmitting/receiving device. Patent issued [, 4 Oval 2 Company Meiden Co., Ltd. 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)作業装置を装備せる。土建機械本体と、該土建機
械に積載せる1個以上のセンナ−及び監視装置と遠隔設
置のコンビニ−ターと、前記土建機械と遠隔設置のコン
ピューターにおのおの設けられた送受信装置と前記遠隔
設置のコンピューターの指令にもとづき前記送受信装置
を介して土建機械本体を遠隔操作により走行駆動させる
走行駆動装置ね前記遠隔設置のコンピューターの指令に
もとづき前配送受信装置を介して前記作業装置を遠隔操
作により操作する作業駆動装置と前記センサーよりの情
報を監視し該情報を前記送受信装置を介し−て前記遠隔
設置のコンビエータ−に入力する監視装置より成る土建
機械装置と、該土建機械装置の作業地域内または作業地
域外の地上または空中に固定設置した1個以上の標識と
の間で交信を行なはせ、諌交信による情報を前記遠隔設
置のコンピューターに入力して該土建機械装置の位置及
び姿勢を演算させ、前記遠隔設置のコンピューターに記
憶させである作業内容と照合を行ない位置及び姿勢の制
御及び誘導を行ないながら藺配記憶されている作業内容
プログラムを遂行させることを特徴とした土建作業方法
、 (り標識を船上又は水中に設けこの標識と情報交換を行
なわせて水中にて土建機械装置の位置、姿勢の制御及び
誘導を行なう特許請求の範囲第1項記載の土建作業方法
(1) Equip work equipment. An earth construction machine main body, one or more sensors and monitoring devices loaded on the earth construction machine, a remotely installed combiner, a transmitting/receiving device installed on the earth construction machine and the remotely installed computer, and the remotely installed computer. A traveling drive device that remotely drives the construction machine main body via the transmitting/receiving device based on a command from the transmitting/receiving device.A task of remotely operating the work equipment via the pre-delivery receiving device based on a command from the remotely installed computer. An earth construction machinery device comprising a driving device and a monitoring device that monitors information from the sensor and inputs the information to the remotely installed combinator via the transmitter/receiver device, and within or in the work area of the earth construction machinery device. Communicating with one or more signs fixedly installed on the ground or in the air outside, and inputting information from the communication into the remotely installed computer to calculate the position and orientation of the civil engineering equipment. , an earth construction work method characterized in that the remotely installed computer performs the stored work content program by comparing it with the work content and controlling and guiding the position and posture; 2. The method of construction work according to claim 1, wherein a sign is provided on a ship or underwater, and information is exchanged with the sign to control and guide the position and attitude of the construction equipment underwater.
JP12513081A 1981-08-10 1981-08-10 Method of construction work Pending JPS5826130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12513081A JPS5826130A (en) 1981-08-10 1981-08-10 Method of construction work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12513081A JPS5826130A (en) 1981-08-10 1981-08-10 Method of construction work

Publications (1)

Publication Number Publication Date
JPS5826130A true JPS5826130A (en) 1983-02-16

Family

ID=14902590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12513081A Pending JPS5826130A (en) 1981-08-10 1981-08-10 Method of construction work

Country Status (1)

Country Link
JP (1) JPS5826130A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132312A (en) * 1984-07-23 1986-02-15 富士電機株式会社 Locking device of pushbutton switch
JPS6245840A (en) * 1985-08-22 1987-02-27 Tokyu Constr Co Ltd Control system for position and attitude of moving type construction machine
JPH0339525A (en) * 1989-07-07 1991-02-20 Fujita Corp Unattended operation system for bulldozer
JPH03187423A (en) * 1989-12-18 1991-08-15 Fujita Corp Safety monitoring system for unmanned construction vehicle
JPH06346489A (en) * 1993-06-10 1994-12-20 Sumitomo Constr Mach Co Ltd Discriminator of controller for actuator of construction equipment
JPH11321700A (en) * 1998-03-18 1999-11-24 Caterpillar Inc Device and method for controlling steering of crawler machine
JP2000136549A (en) * 1998-10-09 2000-05-16 Carnegie Mellon Univ Autonomous excavation and truck loading system
US6782644B2 (en) 2001-06-20 2004-08-31 Hitachi Construction Machinery Co., Ltd. Remote control system and remote setting system for construction machinery
WO2005024144A1 (en) * 2003-09-02 2005-03-17 Komatsu Ltd. Construction target instructing device
JP2007205128A (en) * 2006-02-06 2007-08-16 Ohmoto Gumi Co Ltd Remote support method and system for pneumatic caisson
CN105002943A (en) * 2015-07-17 2015-10-28 山推工程机械股份有限公司 Control system and method of working device of remote control bulldozer
JP2017172185A (en) * 2016-03-23 2017-09-28 株式会社小松製作所 Work vehicle
EP3093399A4 (en) * 2014-01-07 2018-02-28 KCM Corporation Hybrid wheel loader
JP6346375B1 (en) * 2017-02-09 2018-06-20 株式会社小松製作所 Work vehicle and display device
US20190003136A1 (en) * 2017-06-30 2019-01-03 Honda Motor Co., Ltd. Vehicle
EP3270253A4 (en) * 2015-03-11 2019-02-13 Kubota Corporation Work vehicle and travel control device for automatic travel of work vehicle
JP2019160093A (en) * 2018-03-15 2019-09-19 株式会社小松製作所 System and method for planning travel route for work machine, and work machine
JP2019190039A (en) * 2018-04-19 2019-10-31 鹿島建設株式会社 Scattering control method
JP2019196630A (en) * 2018-05-09 2019-11-14 大成建設株式会社 Unmanned construction system and bulldozer
WO2021010156A1 (en) * 2019-07-16 2021-01-21 株式会社小松製作所 Work machine and control method for work machine
JP2021526086A (en) * 2018-06-12 2021-09-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Methods and equipment for operating autonomously operating work machines
JP2022036308A (en) * 2018-09-06 2022-03-04 住友重機械工業株式会社 Excavator and method of updating excavator information
WO2022168447A1 (en) * 2021-02-02 2022-08-11 日立建機株式会社 Automated work system
WO2022209045A1 (en) * 2021-03-31 2022-10-06 日立建機株式会社 Construction machine

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132312A (en) * 1984-07-23 1986-02-15 富士電機株式会社 Locking device of pushbutton switch
JPS6245840A (en) * 1985-08-22 1987-02-27 Tokyu Constr Co Ltd Control system for position and attitude of moving type construction machine
JPH0339525A (en) * 1989-07-07 1991-02-20 Fujita Corp Unattended operation system for bulldozer
JPH03187423A (en) * 1989-12-18 1991-08-15 Fujita Corp Safety monitoring system for unmanned construction vehicle
JPH06346489A (en) * 1993-06-10 1994-12-20 Sumitomo Constr Mach Co Ltd Discriminator of controller for actuator of construction equipment
JPH11321700A (en) * 1998-03-18 1999-11-24 Caterpillar Inc Device and method for controlling steering of crawler machine
JP2000136549A (en) * 1998-10-09 2000-05-16 Carnegie Mellon Univ Autonomous excavation and truck loading system
US6782644B2 (en) 2001-06-20 2004-08-31 Hitachi Construction Machinery Co., Ltd. Remote control system and remote setting system for construction machinery
GB2413314B (en) * 2003-09-02 2006-07-26 Komatsu Mfg Co Ltd Construction target indicator device
GB2413314A (en) * 2003-09-02 2005-10-26 Komatsu Mfg Co Ltd Construction target instructing device
WO2005024144A1 (en) * 2003-09-02 2005-03-17 Komatsu Ltd. Construction target instructing device
JP2007205128A (en) * 2006-02-06 2007-08-16 Ohmoto Gumi Co Ltd Remote support method and system for pneumatic caisson
EP3093399A4 (en) * 2014-01-07 2018-02-28 KCM Corporation Hybrid wheel loader
EP3270253A4 (en) * 2015-03-11 2019-02-13 Kubota Corporation Work vehicle and travel control device for automatic travel of work vehicle
CN105002943A (en) * 2015-07-17 2015-10-28 山推工程机械股份有限公司 Control system and method of working device of remote control bulldozer
JP2017172185A (en) * 2016-03-23 2017-09-28 株式会社小松製作所 Work vehicle
WO2017163823A1 (en) * 2016-03-23 2017-09-28 株式会社小松製作所 Work vehicle
JP6346375B1 (en) * 2017-02-09 2018-06-20 株式会社小松製作所 Work vehicle and display device
WO2018146782A1 (en) * 2017-02-09 2018-08-16 株式会社小松製作所 Work vehicle and display device
US10668854B2 (en) 2017-02-09 2020-06-02 Komatsu Ltd. Work vehicle and display device
US20190003136A1 (en) * 2017-06-30 2019-01-03 Honda Motor Co., Ltd. Vehicle
JP2019011634A (en) * 2017-06-30 2019-01-24 本田技研工業株式会社 vehicle
US10844561B2 (en) 2017-06-30 2020-11-24 Honda Motor Co., Ltd. Vehicle
JP2019160093A (en) * 2018-03-15 2019-09-19 株式会社小松製作所 System and method for planning travel route for work machine, and work machine
WO2019176193A1 (en) * 2018-03-15 2019-09-19 株式会社小松製作所 System for designing travel path of work machine, method, and work machine
US11674287B2 (en) 2018-03-15 2023-06-13 Komatsu Ltd. System and method for planning travel path for work machine, and work machine
JP2019190039A (en) * 2018-04-19 2019-10-31 鹿島建設株式会社 Scattering control method
JP2019196630A (en) * 2018-05-09 2019-11-14 大成建設株式会社 Unmanned construction system and bulldozer
JP2021526086A (en) * 2018-06-12 2021-09-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Methods and equipment for operating autonomously operating work machines
JP2022036308A (en) * 2018-09-06 2022-03-04 住友重機械工業株式会社 Excavator and method of updating excavator information
JP2021014746A (en) * 2019-07-16 2021-02-12 株式会社小松製作所 Working machine, and control method of working machine
KR20220002641A (en) * 2019-07-16 2022-01-06 가부시키가이샤 고마쓰 세이사쿠쇼 Working machine and method of controlling the working machine
CN113924396A (en) * 2019-07-16 2022-01-11 株式会社小松制作所 Working machine and method for controlling working machine
CN113924396B (en) * 2019-07-16 2023-04-11 株式会社小松制作所 Working machine and method for controlling working machine
WO2021010156A1 (en) * 2019-07-16 2021-01-21 株式会社小松製作所 Work machine and control method for work machine
WO2022168447A1 (en) * 2021-02-02 2022-08-11 日立建機株式会社 Automated work system
JP2022118445A (en) * 2021-02-02 2022-08-15 日立建機株式会社 automatic work system
WO2022209045A1 (en) * 2021-03-31 2022-10-06 日立建機株式会社 Construction machine

Similar Documents

Publication Publication Date Title
JPS5826130A (en) Method of construction work
CN110888437B (en) Automatic working system and control method thereof
JP6909726B2 (en) Work machine control system, work machine, work machine management system, and work machine management method
US6539294B1 (en) Vehicle guidance system for avoiding obstacles stored in memory
US10031528B2 (en) Work machine control system, work machine, and work machine management system
JP2711612B2 (en) Automatic transport system for earthworks
US9500079B2 (en) Method and control system for a mining vehicle and a mining vehicle
US6247538B1 (en) Automatic excavator, automatic excavation method and automatic loading method
US10019007B2 (en) Work machine control system, work machine, and work machine management system
JP6032730B2 (en) Stop position determination device for transporting machine and loading machine equipped with this device
US10025313B2 (en) Management system and management method of mining machine
US6195610B1 (en) Teaching method and apparatus of unmanned vehicle traveling course
US11599108B2 (en) Localization system for underground mining applications
CN102854838A (en) Tunnel self-adaptation cutting system and self-adaptation remote control method for roadheader
US20230408289A1 (en) Guidance of a transport vehicle to a loading point
CN115075828B (en) Real-time positioning method and system for roadway operation machine and operation machine
JP2831204B2 (en) Mobile device positioning device
JP2711620B2 (en) Automatic traveling equipment for moving vehicles
CN112943282B (en) Intelligent cantilever type heading machine
JP7173627B2 (en) construction machinery
JPH05127746A (en) Method and device for controlling travel of unmanned self-running body
WO2002018749A1 (en) An apparatus for installing a support assembly for a rock structure
CN118394083A (en) Obstacle avoidance method, system, controller, engineering machine and storage medium
CN118348517A (en) AGV retreating distance detection feedback system
JPH04204108A (en) Automatic system for measuring position