JPS5826003A - Manufacture of methanol synthetic gas - Google Patents

Manufacture of methanol synthetic gas

Info

Publication number
JPS5826003A
JPS5826003A JP57118749A JP11874982A JPS5826003A JP S5826003 A JPS5826003 A JP S5826003A JP 57118749 A JP57118749 A JP 57118749A JP 11874982 A JP11874982 A JP 11874982A JP S5826003 A JPS5826003 A JP S5826003A
Authority
JP
Japan
Prior art keywords
gas
scrubber
methanol synthesis
methanol
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57118749A
Other languages
Japanese (ja)
Inventor
ペ−タ−・デイ−マ−
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krupp Koppers GmbH
Original Assignee
Krupp Koppers GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krupp Koppers GmbH filed Critical Krupp Koppers GmbH
Publication of JPS5826003A publication Critical patent/JPS5826003A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/04Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は圧脂した粗ガスを深冷i1度で実施するH2S
洗浄に続いて分流に分割し、この分流を種々の範囲でさ
らにガス処理する、低玉石戻ガス化の粗ガスからそのH
2S洗浄、変換およびCo2洗浄によってメタノール合
成ガスを墨造する方法Kvaする。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an H2S method in which pressurized crude gas is cryogenically cooled at 1 degree.
The H
Method of producing methanol synthesis gas by 2S washing, conversion and Co2 washing Kva.

いわゆる部分酸化ガスすなわち固体または液体燃料のガ
ス化(部分酸化)によって製造したガスからメタノール
合成ガスを製造することは古(から公知である。この場
合使用するガス化法に応じて使用燃料は種々の圧力でガ
ス化される。低圧範囲すなわち約1〜1.2 A−ルで
作業する公知ガス化法の1つはコツパースートチェック
法である。この方法の特殊な利点はすべての石炭のガス
化がその粒度およびi分含量と無関係に可能なことであ
る。このような低圧石炭ガス化法はメタノール合成ガス
の製造に使用する限り、現在まで条遺した粗ガス(S分
酸化ガス)を排熱Iイラで冷却し、圧力水で洗浄1.た
後、まずいわゆる粗ガスコンプレッサで約30〜40パ
ールの圧力に圧縮し、続いてH2S洗浄するよ5に行わ
れた。H2S洗浄にはこの場合適当な極性有機洗浄剤た
とえばメタノールにより−20〜−60℃の温度範囲で
作業するいわゆる深冷温度洗浄がとくに適することが実
証された。
It has been known since ancient times to produce methanol synthesis gas from so-called partially oxidized gases, i.e. gases produced by gasification (partial oxidation) of solid or liquid fuels.Depending on the gasification method used, various fuels can be used in this case. One of the known gasification methods working in the low pressure range, i.e. about 1 to 1.2 This is possible regardless of particle size and i content.As long as this low-pressure coal gasification method is used for the production of methanol synthesis gas, it is possible to After cooling with waste heat Ira and washing with pressure water, it was first compressed to a pressure of about 30 to 40 par with a so-called crude gas compressor, followed by H2S washing.For H2S washing, So-called deep-temperature cleaning, which operates in the temperature range from -20 DEG to -60 DEG C. with suitable polar organic detergents, such as methanol, has proven particularly suitable in this case.

H2S洗浄に続いてガスを再加熱し、メタノール合成ガ
スの最適組成を調節するため3つの分流に分割し、これ
らの分流を種々の範囲でさらにガス処理した。この場合
第1分流のみは肇換およびCO2洗浄を実施し、第2分
流は単に変換を実施した。ga分流はこれに反し変換も
C02洗浄も行われなかった。このように処理した分流
な絖い【再び合流させ、メタノール合成に供給した。し
かしこの場合H2S洗浄のみを行ったガスの分流の残留
イオウ含量ならびk H2S洗浄および変換を行った分
流の残留イオウ含量がなお高過ぎることが明らかKなっ
た。メタノール合成に使用する触媒は著しくイオウに敏
感なので、とのイオウのためメタノール合成触媒の寿命
が著しく短縮された。それゆえ前記2つのガス分流を第
3分流と再合流する前に付加的に仕上脱硫し、残留イオ
ウ含量を約0.1−の値まで低下することが必要であっ
た。仕上脱硫剤としてはこの場合通常敗北亜鉛が使用さ
れる。
Following the H2S scrub, the gas was reheated and split into three sub-streams to adjust the optimal composition of the methanol synthesis gas, and these sub-streams were further gassed to various extents. In this case only the first branch carried out the reconditioning and CO2 scrubbing, and the second branch simply carried out the conversion. The ga branch, on the other hand, underwent neither conversion nor C02 cleaning. The thus treated branched pipes were combined again and fed to methanol synthesis. In this case, however, it became clear that the residual sulfur content of the gas stream with only H2S scrubbing and the residual sulfur content of the gas stream with H2S scrubbing and conversion was still too high. Since the catalyst used for methanol synthesis is extremely sensitive to sulfur, the lifetime of the methanol synthesis catalyst has been significantly shortened due to sulfur. It was therefore necessary to carry out an additional final desulphurization of the two gas streams before recombining them with the third stream to reduce the residual sulfur content to a value of approximately 0.1. Defective zinc is usually used as final desulfurization agent in this case.

しかしこの仕上脱硫が装置費用の点でも作業費用の点で
もメタノール合成ガス製法の費用を付加的に高くするこ
とは明らかである。それゆえ本発明の目的は低圧石炭ガ
ス化の粗ガスからメタノール合成ガスを製造する方法を
仕上脱硫が不用であるように改善することである。
However, it is clear that this final desulfurization adds to the cost of the methanol synthesis gas process, both in terms of equipment costs and operating costs. It is therefore an object of the present invention to improve the process for producing methanol synthesis gas from the crude gas of low pressure coal gasification in such a way that final desulfurization is not required.

この目的は a)  n、s洗浄塔から出る低温ガス流を2つの分流
に分割し、その一つの分流を同様深冷温度で作業するC
O□洗浄塔の上部または中央部へ直接導入し、他の分流
を適当な再加熱の後変換し、続いて適当な再冷却の後C
O2洗浄塔の下部へ導入し、 b)  2つの分流が再合流したCO2洗浄塔から出る
ガス流を仕上脱硫なしにメタノール合成に供給し、 C)  H2SおよびCO□洗浄塔を共通の洗浄剤回路
によつ【互いに結合し、H2S洗浄塔からくる再生した
洗浄剤をCO□洗浄塔の上部に供給し、CO□洗浄塔か
らくるストリップした洗浄剤の1部をH2S洗浄塔へ供
給し、ストリップした洗浄剤の他の部分なCO3洗浄塔
の上部へ再供給することをI!!1gILとする前記の
方法によって解決される。
The purpose of this is to a) split the cold gas stream leaving the n,s scrubbing column into two sub-streams, one of which is also operated at cryogenic temperatures;
O□ is introduced directly into the top or middle of the washing column and the other substreams are converted after appropriate reheating, followed by C after appropriate recooling.
b) feeding the gas stream leaving the CO2 scrubbing tower, where the two substreams are recombined, to the methanol synthesis without final desulfurization, and c) combining the H2S and CO□ scrubbing towers into a common scrubber circuit. By combining with each other, the regenerated cleaning agent coming from the H2S cleaning tower is fed into the top of the CO□ cleaning tower, a portion of the stripped cleaning agent coming from the CO□ cleaning tower is fed into the H2S cleaning tower, and the stripped cleaning agent is Another part of the washed cleaning agent is re-supplied to the top of the CO3 cleaning tower. ! 1gIL is solved by the method described above.

すなわち本発明の方法によればガスは単に2つの分流に
分割され、その1つの分流は3つのすべてのガス処理工
、i (H2S洗浄、変換およびCO3洗浄)を通過し
、第2分流はH211洗浄およびCO3洗浄のみが実施
される。第2分流はこの場合低温状態でH28洗浄塔の
頭部から取出され、他の処理なしに同様深冷温度で作業
するCO2洗浄塔の上部または中央部へ導入される。こ
の作1[&cよりメタノール合成ガスのほぼ完全な脱硫
が達成されるので、その付加的仕上脱硫はもはや必要で
ない。
Thus, according to the method of the invention, the gas is simply split into two sub-streams, one of which passes through all three gas processing plants, i (H2S wash, conversion and CO3 wash), and the second sub-stream passes through H211 Only cleaning and CO3 cleaning are performed. The second substream is in this case taken off at low temperature from the head of the H28 scrubbing column and introduced without further treatment into the upper or middle part of the CO2 scrubbing column, which also operates at cryogenic temperatures. From this work 1 [&c] almost complete desulfurization of the methanol synthesis gas is achieved so that its additional final desulfurization is no longer necessary.

本発明の他の詳細は特許請求の範囲第2項〜第5項の記
載および図面のフローシートによる方法例により明らか
にされる。
Further details of the invention emerge from the description of the claims 2 to 5 and from the method examples shown in the flow sheets of the drawings.

この場合フローシートは方法の説明にどうしても必要な
製造部分のみを示し、補助装置ならびに石炭ガス化およ
びメタノール合成装置は示されていない。
In this case, the flow sheet shows only the production parts absolutely necessary for the process description; auxiliary equipment and coal gasification and methanol synthesis equipment are not shown.

方法例は圧力1.1/々−ルのコツパースートチェック
法による石炭i87 t / hのガス化で発生する約
332000 N+a”/ h の粗ガスの処理に関す
る。冷却および圧力水洗浄の後図示されていない粗ガス
コンプレッサで38/S−ルの圧力まで圧縮した粗ガス
は次の組成を有する: co2s、 s容量シ CO62,8N H229・6 “ ’ZS1.Ott cos          o・1  ′N 、Ar 
、an、    1.0  〃粗ガスコンプレッサから
くる粗ガスは導管1を介して熱交換器2に入り、次にガ
ス深冷冷却器3に達する。この場合粗ガスはまず熱交換
器2内で塔5かも導管5を通ってくるガスとの間接熱交
換により冷却され、続いて粗ガスの−30〜−40℃ま
での深冷冷却がガス深冷冷却器3内で行われ、そのため
この冷却器に導管6から冷媒が流され、この冷媒は導管
7から取出される。
The example method relates to the treatment of approximately 332,000 N+a"/h of crude gas generated in the gasification of coal i87 t/h by the copper soot check method at a pressure of 1.1/hour. After cooling and pressure water washing, the The crude gas, compressed to a pressure of 38/S-le with a crude gas compressor without a gas, has the following composition: co2s, s volume CO62,8N H229.6 "'ZS1. Ott cos o・1′N, Ar
, an, 1.0 The crude gas coming from the crude gas compressor enters the heat exchanger 2 via the conduit 1 and then reaches the gas cryogenic cooler 3 . In this case, the crude gas is first cooled in the heat exchanger 2 by indirect heat exchange with the gas coming through the column 5 or the conduit 5, and then the crude gas is deep cooled to -30 to -40°C. This takes place in a cold cooler 3 , through which a refrigerant is flowed through a line 6 and which is removed through a line 7 .

前記深冷温度をもって粗ガスはH2S洗浄に役立つ組込
体(たな段)を備える塔5の下部へ導入される。ここで
H2SのほかにもちろんCO8およびC8のような他の
イオク化合物も粗ガスから除去される。H2S洗浄は一
35℃の温度で導管8を介して塔6の頭部に供給される
メタノールにより行われる。塔s内で粗ガスは約2Pの
イオク含量まで脱硫され、−33℃の温度をもって塔5
の頭部から導管9によって取出される。
At the cryogenic temperature, the crude gas is introduced into the lower part of the column 5, which is equipped with a tray serving for H2S scrubbing. In addition to H2S, of course other ionic compounds such as CO8 and C8 are also removed from the crude gas here. The H2S wash is carried out with methanol fed to the top of column 6 via line 8 at a temperature of -35.degree. The crude gas is desulfurized in column s to an ion content of approximately 2P and passed to column 5 at a temperature of -33°C.
is taken out by a conduit 9 from the head of the.

導管9の低温ガス流は次に2つの分流に分割され、その
1つの分流は導管lOを介して同様組込体(たな段)を
備えるCO□洗浄用の塔1工の上部または中央部へ直接
導入される。導管10を流れるガス量は導管9の全ガス
量の約38容量5である。この分流はこの場合塔11の
上から第40段の高さに導入される。
The cold gas stream in conduit 9 is then split into two sub-streams, one of which is connected via conduit 10 to the upper or central part of the CO□ washing column 1, which also has an assembly (shelf). will be introduced directly into The amount of gas flowing through conduit 10 is approximately 38 volumes 5 of the total gas amount in conduit 9. This branch stream is introduced in this case from the top of the column 11 to the level of the 40th stage.

導管9からの残りのガス量を含む第2分流は導管4を介
して取出され、熱交換器2を介して変換装置12に達す
る。熱交換器2内でこのガスは25℃に再加熱される。
A second substream containing the remaining gas quantity from conduit 9 is taken off via conduit 4 and reaches converter device 12 via heat exchanger 2 . In heat exchanger 2 this gas is reheated to 25°C.

変換装置12内でガス中に存在するCOはいわゆる変換
反応:co+■20→CO2+H2 により反応する。
The CO present in the gas in the converter 12 reacts according to the so-called conversion reaction: co+20→CO2+H2.

変換装置12の詳細にはここで 入らない。We will not go into details of the conversion device 12 here.

工業的に公知の原理により作業する常用装置である。変
換はこの場合水蒸気存在のもとに350〜500℃の温
度で鉄−クロム触媒を使用して行われる。変換および脱
水したガスは導管13を介して変換値[12を去り、そ
の際このガスは次の組成を有する: CO□     40.O容量多 COL7   N H255,6# N  Ar+CH+    0.7  ’1 熱交換器14内で変換されたガスは導管16内のメタノ
ール合成ガスとの間接熱交換により約−40〜−45℃
の温度まで冷却される。ガスはこの温度で導管15を介
して塔11の下部に導入される。
It is a commonly used device that works according to principles known in the industry. The conversion is carried out in this case using an iron-chromium catalyst at a temperature of 350 DEG to 500 DEG C. in the presence of steam. The converted and dehydrated gas leaves the converted value [12 via line 13, this gas having the following composition: CO□ 40. O Capacity Multi COL7 N H255,6# N Ar+CH+ 0.7'1 The gas converted in the heat exchanger 14 is heated to about -40 to -45°C by indirect heat exchange with the methanol synthesis gas in the conduit 16.
is cooled to a temperature of The gas is introduced at this temperature via line 15 into the lower part of column 11.

塔11内のCO2洗浄は同様深冷温度のメタノールで実
施される。この場合CO8除去のほかに同時にガスのほ
ぼ完全な脱硫が達成される。このために必要なメタノー
ルの供給は塔1102つの異なる位置で行われる。導管
17を介して塔110頭部にいわ号る衿生メタノールが
供給される。このメタノールは塔5の底部から導管19
を介して取出され、再生装置18へ導入される。ここで
メタノールの蒸留再生が公知法で約95℃の熱処1[K
よって行われる。再生装置18から導管17を介して取
出される再生メタノールは塔11へ導入する前にもちろ
ん適当に再冷却し、約−54℃の温度で塔11に入らな
ければならない、さらに導管8を流れるストリップされ
たメタノールの分流が導管20を介して塔11に供給さ
れる。導管20の塔11への入口位置はこの場合導管1
7の入口位置より下33段にある。導管20のメタノー
ルは塔11の底部から導管21を介して取出され、スト
リッパ22へ導入される。ここでメタノールは吸収した
ガス状成分がストリッピングにより、すなわち不活性ガ
スの減圧下の吹込によつ【除去される。ストリップした
メタノールはストリッツ臂22から導管8を介して取出
され、塔5へ導かれ、2つの塔Sおよび110間の溶剤
回路が閉鎖される。メタノールのストリッピングは一6
0℃の温度で行われるので、塔5および11へ再導入す
る際その付加的冷却は必要でない。
The CO2 cleaning in the column 11 is similarly carried out with methanol at cryogenic temperature. In addition to the removal of CO8, almost complete desulfurization of the gas is achieved at the same time. The methanol necessary for this purpose is supplied to the column 110 at two different locations. Via conduit 17, raw methanol is supplied to the head of column 110. This methanol flows from the bottom of column 5 into conduit 19.
and introduced into the reproducing device 18. Here, distillation regeneration of methanol is carried out by heat treatment at about 95°C 1 [K
Therefore, it is done. The regenerated methanol taken off from the regenerator 18 via line 17 must of course be appropriately recooled before being introduced into column 11 and enter column 11 at a temperature of approximately -54°C; A sub-stream of methanol produced is fed to column 11 via conduit 20. The inlet position of conduit 20 to column 11 is in this case conduit 1
It is located 33 steps below the entrance position of 7. Methanol in line 20 is removed from the bottom of column 11 via line 21 and introduced into stripper 22. Here, the methanol is removed from the absorbed gaseous components by stripping, ie by blowing inert gas under reduced pressure. The stripped methanol is removed from the strut arm 22 via conduit 8 and led to column 5, and the solvent circuit between the two columns S and 110 is closed. Methanol stripping is 16
Since it is carried out at a temperature of 0.degree. C., no additional cooling of the reintroduction into columns 5 and 11 is necessary.

2つの分流が再合流している塔11の頭部から出るガス
流は導管16を介して取出され、熱交換器14を通過し
た後図示され【いないメタノール合成装置に入る。この
場合32000ON凰3/hのメタノール合成ガスが取
出される。このガスは0.1ppより低いイオク含量し
か示さない。それゆえガスの仕上脱硫は不用である。こ
の場合ガス組成は次のとおりである: Co、      3.0容量% CO28,4# 1(267,5# N2.Ar、CH,1,1g 製造したメタノール合成ガスの組成は導管16内に備え
た測定部23&Cよつ【連続的に自動的に監視される。
The gas stream leaving the head of column 11, where the two substreams are recombined, is taken off via conduit 16 and, after passing through a heat exchanger 14, enters a methanol synthesis unit (not shown). In this case, 32,000 ON 3/h of methanol synthesis gas is taken out. This gas exhibits an ion content of less than 0.1 pp. Final desulfurization of the gas is therefore unnecessary. In this case, the gas composition is as follows: Co, 3.0% by volume CO28,4#1 (267,5#N2.Ar, CH,1,1g) The composition of the methanol synthesis gas produced is provided in conduit 16. The measurement unit 23 & C is continuously and automatically monitored.

測定部23はtRルス導線24および25を介して導管
10および20Vc設置した制御弁26および27と結
合する。この場合メタノール合成ガス中のCO2會量含
量管20を介し【塔11へ供給するストリップしたメタ
ノールの量によって制御される。測定部23で求めたC
O,含量が所定の標準値より高くなると、パルスが発信
され、この〕々ルスはパルス導線24を介して制御弁2
6の調節モータ28に伝達され、制御弁26がさらに開
く。それによってもちろん導管20を介して塔11に供
給されるストリップしたメタノールの量が増大し、塔1
1内のC02洗浄が改豐される。CO□き量が所定の標
準値より低下すると制御はもちろん逆の方向に行われる
。すなわち制御弁26の作動によって導管20から塔1
1へ流入するストリップしたメタノールの量が絞られる
。通常導管20を介して取出されるメタノール分流は導
管8を流れるメタノール全量の約70〜80容量うであ
る。
The measuring part 23 is connected via tRrus conductors 24 and 25 to control valves 26 and 27 installed in the conduits 10 and 20Vc. In this case, the CO2 content in the methanol synthesis gas is controlled by the amount of stripped methanol fed via line 20 to column 11. C determined by the measuring section 23
When the O content is higher than a predetermined standard value, a pulse is emitted which is transmitted via the pulse conductor 24 to the control valve 2.
6 and the control valve 26 is further opened. This of course increases the amount of stripped methanol fed to column 11 via conduit 20 and
The C02 cleaning within 1 is revised. If the amount of CO□ falls below a predetermined standard value, the control is of course carried out in the opposite direction. That is, by actuation of the control valve 26, from the conduit 20 to the column 1.
The amount of stripped methanol flowing into 1 is throttled. Typically, the methanol fraction removed via conduit 20 is about 70 to 80 volumes of the total methanol flowing through conduit 8.

メタノール合成ガス中の望ましいガス成分の比 CO+CO2 の制御は導管lOを介して塔5 (H28洗浄)から直
接塔1l(CO2洗浄)へ導入するガス量の制御によっ
て行われる。プロセスコ/ビュークによって評価される
測定部23で得たデータからガス成分の前記比に対して
2より小さい値が生ずる場合、導管lOを介する塔11
への未変換ガスの供給を絞らなければなら゛ない。この
場合再びパルスが発信され、この、eルスは制御弁27
の調節モータ29に伝達され、制御弁27は絞られる。
The desired ratio of gas components CO+CO2 in the methanol synthesis gas is controlled by controlling the amount of gas introduced directly from column 5 (H28 wash) to column 11 (CO2 wash) via line 1O. If the data obtained in the measuring section 23 evaluated by the processco/buke result in a value smaller than 2 for the said ratio of gas components, the column 11 via the line lO
The supply of unconverted gas to the reactor must be throttled. In this case, a pulse is sent again, and this e pulse is transmitted to the control valve 27.
The control valve 27 is throttled.

それによって未変換ガスの塔11への供給が減少し、同
時に導管4を介して変換装置12に供給されるガスの分
流が増大する。
The supply of unconverted gas to the column 11 is thereby reduced, and at the same time the fractional flow of gas supplied to the conversion device 12 via the line 4 is increased.

しかしガス成分の前記比が2の値を着しく超える場合、
制御はもちろん逆の方向にも行われ、未変換ガスの塔1
1への供給が増大し、変換ガスの分流が減少する。通常 co 十co□ の比は導管10を介して塔11のCO2洗浄に直接供給
する未変換ガスの分流が塔5から出るガスの全量の30
〜45容量%であれば維持される。
However, if said ratio of gas components significantly exceeds a value of 2,
Control is of course also carried out in the opposite direction, with unconverted gas column 1
1 is increased and the conversion gas diversion is decreased. Usually the ratio of co 10 co
~45% by volume is maintained.

この方法例の場合H2SおよびCO2洗浄に洗浄剤とし
てメタノールが使用される。この洗浄を深冷温度範囲で
の使用に適する他の洗浄剤とくに極性有機液体で実施し
うろことは明らかである。同様本発明の方法は低圧ガス
化の原料として石炭の代りに他の燃料例えばピッチ、タ
ール、コークス、泥炭または重油を使用する場合にも適
用することができる。
In this example method, methanol is used as a cleaning agent for H2S and CO2 cleaning. It is clear that this cleaning could be carried out with other cleaning agents suitable for use in the cryogenic temperature range, especially polar organic liquids. The process according to the invention can likewise be applied if instead of coal, other fuels such as pitch, tar, coke, peat or heavy oil are used as feedstock for low-pressure gasification.

【図面の簡単な説明】 図面は本発明の方法のフローシートである。 2.3.14・・・熱交換器、5・・・H2S洗浄塔、
11・・・CO□洗浄塔、12・・・変換装置、18・
・・メタノール再生装置、22・・・ストリッパ、23
・・・測定部
BRIEF DESCRIPTION OF THE DRAWINGS The drawing is a flow sheet of the method of the invention. 2.3.14... Heat exchanger, 5... H2S cleaning tower,
11... CO□ cleaning tower, 12... conversion device, 18.
...methanol regenerator, 22... stripper, 23
...Measurement part

Claims (1)

【特許請求の範囲】 1、圧1した粗ガスを深冷温度で実施するH2S洗浄に
絖いて分流に分割し、この分流を種々の範囲でさらにガ
ス処理する、低圧旧訳ガス化の粗ガスから粗ガスのH,
8洗浄、変換およびCO8洗浄によってメタノール合成
ガスを製造する方法において、 a)  H!B洗浄塔から出る低温のガス流を2つの分
流に分割し、その1つの分流を同様深冷温度で作業する
CO,洗浄塔の上部または中央部へ直接導入し、他の分
流を再加熱の後変換し、これに絖いて再冷却の稜C02
洗浄塔の下部へ導入し、 b)  2つの分流が再合流したCO,洗浄塔から出る
ガス流を仕上脱硫することな(メタノール合成に供給し
、 C)  H!gおよびCO,洗浄塔を共通の洗浄剤回路
によって互いに結合し、H2S洗浄塔からくる再生した
洗浄剤をCO2洗浄塔の上部へ供給し、CO2洗浄塔か
らくるストリップした洗浄剤の1部をH2S洗浄塔へ供
給し、ストリップした洗浄剤の他の部分なCO2洗浄塔
の上部へ再供給する ことを特徴とするメタノール合成ガスを製造する方法。 2、製造したメタノール合成ガス中のCO2含量をCO
2洗浄塔へ再供給するス) IJツブした洗浄剤の量の
調節によつ℃制御する特許請求の範囲第1項記載の方法
。 3 灸遺したメタノール合成ガス中のガス成分の所望の
比 co + co□ ttH2S洗浄塔からCO2洗浄塔の上部または中央部
へ直接導入するガス量の制御によって調節し、その際こ
の分流がH2S洗浄塔から出るガスの全量の30〜45
容量%である特許請求の範囲第1項または第2項記載の
方法。 4. 変換前のガスの再W熱を圧縮した粗ガスとの熱交
換により実施し、変換したガスの再冷項〜第3項の1つ
に記載の方法。 5、  H2SおよびC02洗浄に−20〜−60℃の
温度のメタノールを使用する特許請求の範囲第1項〜第
4項の1つに記載の方法。
[Claims] 1. From the crude gas of low-pressure gasification, the crude gas at a pressure of 1 is subjected to H2S cleaning carried out at a cryogenic temperature, divided into divided streams, and the divided streams are further gas-treated in various ranges. H of crude gas,
In a method for producing methanol synthesis gas by 8 washing, conversion and CO8 washing, a) H! B The cold gas stream leaving the scrubbing tower is divided into two sub-streams, one of which is introduced directly into the top or middle of the CO, also working at cryogenic temperatures, and the other sub-stream is used for reheating. Post-conversion and re-cooling of the ridge C02
b) the recombined CO of the two sub-streams, without final desulfurization of the gas stream exiting the washing tower (feeding to the methanol synthesis; C) H! g and CO, the scrubbers are coupled together by a common scrubber circuit, the regenerated scrubber coming from the H2S scrubber is fed to the top of the CO2 scrubber, and a portion of the stripped scrubber coming from the CO2 scrubber is fed to the top of the CO2 scrubber. A method for producing methanol synthesis gas, characterized in that it is fed to a scrubbing tower and re-feeding another portion of the stripped scrubbing agent to the top of the CO2 scrubbing tower. 2. The CO2 content in the produced methanol synthesis gas is
2) The method according to claim 1, wherein the temperature is controlled by adjusting the amount of cleaning agent added to the IJ. 3. The desired ratio of gas components in the moxibusted methanol synthesis gas co + co 30-45 of the total amount of gas leaving the tower
3. The method according to claim 1 or 2, wherein the amount is % by volume. 4. 3. The method according to one of the items 3 to 3, wherein the re-W heat of the gas before conversion is carried out by heat exchange with compressed crude gas, and the converted gas is recooled. 5. Process according to one of claims 1 to 4, in which methanol at a temperature of -20 to -60°C is used for the H2S and CO2 washing.
JP57118749A 1981-07-14 1982-07-09 Manufacture of methanol synthetic gas Pending JPS5826003A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE31277063 1981-07-14
DE19813127706 DE3127706A1 (en) 1981-07-14 1981-07-14 Process for generating methanol synthesis gas

Publications (1)

Publication Number Publication Date
JPS5826003A true JPS5826003A (en) 1983-02-16

Family

ID=6136836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57118749A Pending JPS5826003A (en) 1981-07-14 1982-07-09 Manufacture of methanol synthetic gas

Country Status (5)

Country Link
JP (1) JPS5826003A (en)
AU (1) AU547936B2 (en)
DD (1) DD202448A5 (en)
DE (1) DE3127706A1 (en)
ZA (1) ZA844485B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7880981B2 (en) 2007-05-09 2011-02-01 Satoshi Do Imaging lens
CN103030111A (en) * 2011-10-09 2013-04-10 中国石油化工股份有限公司 Preparation method of synthetic gas needed by methanol production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1296133B (en) * 1965-05-06 1969-05-29 Metallgesellschaft Ag Process for the production of methanol synthesis gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7880981B2 (en) 2007-05-09 2011-02-01 Satoshi Do Imaging lens
CN103030111A (en) * 2011-10-09 2013-04-10 中国石油化工股份有限公司 Preparation method of synthetic gas needed by methanol production

Also Published As

Publication number Publication date
AU547936B2 (en) 1985-11-14
DD202448A5 (en) 1983-09-14
ZA844485B (en) 1983-04-27
AU8596082A (en) 1983-01-20
DE3127706C2 (en) 1989-06-15
DE3127706A1 (en) 1983-02-10

Similar Documents

Publication Publication Date Title
Hochgesand Rectisol and purisol
US6033456A (en) Integration of partial oxidation process and direct reduction reaction process
US5538706A (en) Hydrogen and carbon monoxide production by partial oxidation of hydrocarbon feed
US4050909A (en) Process and apparatus for the production of hydrogen and carbon dioxide
US3959972A (en) Power plant process
CN105948046B (en) A kind of method for being recycled without stripping gas and producing pure hydrogen and pure carbon monoxide simultaneously that gasifies
US8821760B2 (en) Method and device for producing a raw synthesis gas
CA1247651A (en) Process for the production of oxygenated organic compounds such as methanol
JPS58127790A (en) Manufacture of methanol and ammonia synthetic gas simultaneously from coal gasified gas
US4241032A (en) Process for the removal of hydrogen sulfide from gas streams
NL8101433A (en) METHOD FOR CONVERTING CARBON AND / OR HEAVY PETROLEUM FRACTIONS IN HYDROGEN OR AMMONIA SYNTHESIS GAS.
US4064156A (en) Methanation of overshifted feed
JPS6036321A (en) Manufacture of ammonia from carbon-containing supply flow
CA1269819A (en) Plural absorption stages for hydrogen purification
US4478799A (en) Control of carbon monoxide partial pressure in sour gas absorption system
EP0749939B1 (en) Continuously controlling the heat content of a partial oxidation unit feed-gas stream
CN209917585U (en) Absorption tower for cleaning crude synthesis gas
CA1311357C (en) Process and apparatus for the purification of crude gases with simultaneous production of synthesis gas and fuel gas
US7259288B2 (en) Enhanced hydrogen recovery for hydroprocessing units
JPS5826003A (en) Manufacture of methanol synthetic gas
EA007305B1 (en) Plant for shift conversion and process for operating same
AU2012280728A1 (en) Method and device for obtaining gas products
GB1572071A (en) Production of purified synthesis gas and carbon monoxide
CN220317710U (en) Liquid nitrogen washing device capable of feeding raw material gas at low temperature and normal temperature simultaneously
CA2150783C (en) Process for continuously controlling the heat content of a partial oxidation unit feed-gas stream