JPS5825737B2 - Tetsu − Kuromugokino Seizouhou - Google Patents

Tetsu − Kuromugokino Seizouhou

Info

Publication number
JPS5825737B2
JPS5825737B2 JP50129101A JP12910175A JPS5825737B2 JP S5825737 B2 JPS5825737 B2 JP S5825737B2 JP 50129101 A JP50129101 A JP 50129101A JP 12910175 A JP12910175 A JP 12910175A JP S5825737 B2 JPS5825737 B2 JP S5825737B2
Authority
JP
Japan
Prior art keywords
boron oxide
amount
added
oxide
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50129101A
Other languages
Japanese (ja)
Other versions
JPS5252819A (en
Inventor
有彦 森田
槙 片村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP50129101A priority Critical patent/JPS5825737B2/en
Publication of JPS5252819A publication Critical patent/JPS5252819A/en
Publication of JPS5825737B2 publication Critical patent/JPS5825737B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明はクロム鉱石を固体還元することによってFe−
Cr合金を直接製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides Fe-
This invention relates to a method for directly manufacturing Cr alloy.

従来、Fe−Cr合金を製造するには、クロム鉱石に炭
素系還元剤および溶剤例えば生石灰、硅砂等を添加して
電気炉による溶融還元を行なっているのが通常である。
Conventionally, in order to produce a Fe-Cr alloy, a carbon-based reducing agent and a solvent such as quicklime, silica sand, etc. are added to chromium ore, and the chromium ore is melted and reduced in an electric furnace.

しかし電気炉法による溶融還元では、クロムを還元しか
つクロム鉱石に随伴する脈石をスラグとして分離するの
に多量の電気エネルギーを必要とし、またFe−Cr合
金の融点が高いためにいきおい高温精錬を必要とし、高
価な耐火物を使用しなければならない等の欠点を有して
いる。
However, smelting reduction using the electric furnace method requires a large amount of electrical energy to reduce chromium and separate gangue accompanying chromium ore as slag, and the high melting point of the Fe-Cr alloy makes it difficult to perform high-temperature smelting. It has drawbacks such as requiring the use of expensive refractories.

この電気炉による溶融還元法における処理温度を低下さ
せるために、電気炉に装入する前に前処理として部分還
元を行なった焼結鉱を得、これを電気炉に装入して高価
な電気エネルギーは溶融および残部未還元クロムの還元
にのみ使用する改善法が特公昭36−2153号公報に
提案されている。
In order to lower the processing temperature in this smelting reduction method using an electric furnace, we obtain sintered ore that has been partially reduced as a pretreatment before charging it into the electric furnace. An improved method in which energy is used only for melting and reducing the remaining unreduced chromium is proposed in Japanese Patent Publication No. 36-2153.

しかしこの改善法においても還元処理に長時間を要する
という欠点を有し、またスラグ分離は依然として電気炉
で行なうので前記同様の問題がある。
However, this improved method also has the disadvantage that the reduction treatment requires a long time, and since slag separation is still performed in an electric furnace, there are the same problems as described above.

本発明はこのような電気エネルギーを使用する電気炉法
とは異なり、クロム鉱石から固体還元によって直接Fe
−Cr合金を製造する方法を提供するにある。
Unlike the electric furnace method that uses electrical energy, the present invention directly produces Fe from chromium ore by solid reduction.
-Providing a method for manufacturing a Cr alloy.

一般にクロム鉱石は(Mg 、Fe)0(Cr 、AI
、Fe)20sなる化学式で表現され、FeOおよび
Cr2O3が還元されるのであるが、その化学平衡式は
次の2式で表わされる。
Generally, chromium ore is (Mg, Fe)0(Cr, AI
, Fe)20s, and FeO and Cr2O3 are reduced, and its chemical equilibrium equation is expressed by the following two equations.

7Cr203+27に2Cr7C3+21CO3FeO
+4C、l:Fe5c +3COこの反応を右方に進
行させるには生成系の各成分の活量を減する程有益であ
る。
7Cr203+27 to 2Cr7C3+21CO3FeO
+4C, 1: Fe5c +3CO In order to make this reaction proceed to the right, it is more beneficial to reduce the activity of each component in the production system.

すなわちクロム鉱石のカーボン(固体)還元において、
Pco (平衡分圧)を小さくっまりCOの分圧を減少
せしめること、および還元生成物たるCr7C3の濃度
および活量を減少させることが有益となる。
In other words, in carbon (solid) reduction of chromium ore,
It is beneficial to reduce the partial pressure of CO by lowering Pco (equilibrium partial pressure) and to reduce the concentration and activity of the reduction product Cr7C3.

この考え方を基本として、本発明者らはまずCr7C3
の活量を減少させる手段につき、種々実験検討を重ねた
結果、クロム鉱石に対してFe含有物質(鉄、鉄酸化物
、鉄粉等)を、原料中の全(Cr+Fe’。
Based on this idea, the present inventors first
As a result of various experimental studies on means of reducing the activity of chromium ore, we have found that Fe-containing substances (iron, iron oxide, iron powder, etc.) are added to chromium ore to reduce the total (Cr+Fe') in the raw material.

量に対するCr量の重量割合Cr/ (Cr +F e
、’が0.6以下となるような割合で配合すると、この
配合物にさらに炭素質還元剤を加えて微粉状に粉砕のう
え造粒して作った塊状混合物を固体還元処理した場合に
、前記生成系のCr7C3の濃度が低く保たれて反応が
必然的に進行し、クロムの還元が促進されて大気圧下で
も比較的低温度領域において著しく短時間でこの還元が
遠戚されることを知見した。
Weight ratio of Cr amount to amount Cr/ (Cr + Fe
,' is 0.6 or less, and when a lumpy mixture made by adding a carbonaceous reducing agent to this mixture, pulverizing it into a fine powder, and granulating it is subjected to solid reduction treatment, It is believed that the concentration of Cr7C3 in the production system is kept low and the reaction inevitably proceeds, promoting the reduction of chromium and achieving this reduction in a very short time in a relatively low temperature range even under atmospheric pressure. I found out.

そして得られた固体還元物は、Fe含有物質(鉄および
鉄酸化物)を上記のように原料中に配合しておくことに
より、磁力選鉱に非常に適する形態となって精鉱と脈石
を極めて効果的に磁選できることが判明した。
By blending Fe-containing substances (iron and iron oxides) into the raw materials as described above, the obtained solid reduced product becomes a form that is highly suitable for magnetic beneficiation and is used to separate concentrate and gangue. It has been found that magnetic selection can be carried out extremely effectively.

ここで、原料中の全(Cr+Fe)量に対するCr量の
重量割合Cr/ (Cr+F e )の上限0.6は、
実験的に確認されたもので、第1図に示す如く、配合原
料中のCr/ (Cr十F e )割合を変化させて後
記実施例に従う1250℃×8時間の常圧下での固体還
元の処理で、鉄鉱石をCr量(Cr +F e ) <
0.6となる範囲で添加すると、90%以上の還元が行
なわれることが判明したことによる。
Here, the upper limit of 0.6 for the weight ratio Cr/(Cr+F e ) of the amount of Cr to the total amount of (Cr+Fe) in the raw material is:
This was confirmed experimentally, and as shown in Figure 1, the solid reduction was carried out at 1250°C for 8 hours under normal pressure by changing the Cr/(Cr+Fe) ratio in the raw materials and according to the example below. In processing, iron ore is reduced in Cr content (Cr + Fe) <
This is because it has been found that when added within a range of 0.6, reduction of 90% or more is achieved.

第1図には鉄鉱石無添加のクロム鉱石のみの場合もプロ
ットしているが、この場合にはCr還元率が低下してい
る。
FIG. 1 also plots the case where only chromium ore without iron ore is added, and in this case, the Cr reduction rate is reduced.

なおCr /(Cr+Fe )の比の下限はFe−Cr
合金の用途とも関係するがおおむね0.15程度である
Note that the lower limit of the ratio of Cr/(Cr+Fe) is Fe-Cr
Although it is related to the purpose of the alloy, it is approximately 0.15.

なお本方法による還元処理は1150℃以上溶融点以下
の温度で行なうのが好ましい。
Note that the reduction treatment according to this method is preferably carried out at a temperature of 1150°C or higher and lower than the melting point.

このように本方法はCr鉱石に鉄鉱石等のFe含有物質
を適当量配合して比較的低温での固体還元処理を行なう
ことを1つの特徴とするが、この固体還元処理は後記実
施例でも明らかなように減圧下で行なうと一層有利に還
元反応を進行させることができる。
As described above, one feature of this method is that an appropriate amount of Fe-containing material such as iron ore is blended with Cr ore and solid reduction treatment is performed at a relatively low temperature. As is clear, the reduction reaction can proceed more advantageously when carried out under reduced pressure.

この還元処理後の磁力選鉱処理も本発明の特徴的工程で
あり、この磁力選鉱によって極めて効果的な精鉱の回収
に成功したのである。
The magnetic beneficiation treatment after this reduction treatment is also a characteristic step of the present invention, and this magnetic beneficiation has succeeded in extremely effective recovery of concentrate.

すなわち、本発明者らはこの磁力選鉱の効率を高めるべ
く種種実験を重ねた結果、クロム鉱石(クロム酸化物)
にFeまたはFe酸化物を添加することにより精鉱の磁
性を高めることができ、さらに原料を微粉とし、酸化ホ
ウ素または酸化ホウ素含有物質を原料に配合することに
よって磁選効率が非常に向上することが判明したのであ
る。
In other words, as a result of repeated experiments by the present inventors to improve the efficiency of magnetic beneficiation, we found that chromium ore (chromium oxide)
By adding Fe or Fe oxide to the concentrate, the magnetic properties of the concentrate can be increased, and by pulverizing the raw material and adding boron oxide or a boron oxide-containing substance to the raw material, the efficiency of magnetic separation can be greatly improved. It became clear.

この酸化ホウ素の磁選に及ぼす添加効果は顕著であり、
これは固体還元処理を経る間に精鉱粒子として望ましい
ある大きさの粒子に凝集する現象が生ずることに依ると
考えられる。
The effect of this addition of boron oxide on magnetic separation is remarkable,
This is thought to be due to the phenomenon that agglomeration into particles of a certain size, which is desirable as concentrate particles, occurs during the solid reduction treatment.

従って本発明は、この酸化ホウ素の添加を1つの要件と
して、原料中の全(Cr+Fe)量に対するCr量の重
量割合Cr/(Cr+Fe)が0.6以下となるように
Cr酸化物にFe含有物質を配合し、炭素質還元剤およ
び必要に応じて結合剤の添加に加えさらに酸化ホウ素ま
たは酸化ホウ素含有物質を酸化ホウ素換算で0.1〜1
0重量%添加混合して塊状に造粒し、この塊状物を大気
圧下または減圧下で加熱して固体還元し、得られた固体
還元物を磁力選鉱して脈石分の分離を行なうことを特徴
とするFe−Cr合金の製造法を提供する。
Therefore, in the present invention, the addition of boron oxide is one of the requirements, and Fe is added to the Cr oxide so that the weight ratio Cr/(Cr+Fe) of the amount of Cr to the total amount of (Cr+Fe) in the raw material is 0.6 or less. In addition to adding a carbonaceous reducing agent and, if necessary, a binder, boron oxide or a boron oxide-containing substance is added in an amount of 0.1 to 1 in terms of boron oxide.
0% by weight is added and mixed and granulated into a lump, this lump is heated under atmospheric pressure or reduced pressure to reduce it to a solid, and the obtained solid reduced product is separated by magnetic beneficiation to separate the gangue component. A method for producing an Fe-Cr alloy is provided.

ここで酸化ホウ素の添加量は0.1%以上でその効果を
発現するが、10%以上の添加では経済上の負担が大き
くなるので0.1〜10%の範囲で添加するのが好まし
い。
Here, the effect is exhibited when the amount of boron oxide added is 0.1% or more, but since the addition of 10% or more increases the economic burden, it is preferably added in the range of 0.1 to 10%.

また減圧下での還元処理を実施する場合ではその真空度
は加熱途中最高真空度5Torr前後であるのが好適で
ある。
Further, when performing the reduction treatment under reduced pressure, it is preferable that the degree of vacuum is approximately 5 Torr, which is the maximum degree of vacuum during heating.

なお不活性ガス雰囲気で還元処理を行なっても好ましい
結果を得ることができる。
Note that preferable results can be obtained even if the reduction treatment is performed in an inert gas atmosphere.

酸化ホウ素の添加効果を試験例によって示すと、クロム
鉱石(Cr;39重量%、Fe;12重量%)104重
量部 鉄鉱石(Fe;67重量%) 65重量部炭素
32重量部からなる配合原料に
表1の如く酸化ホウ素を無添加または添加して微粉状態
で均一に混合し、造粒後表1の還元処理条件で固体還元
を行ない、得られた固体還元ペレットを約100メツシ
ユに粉砕し、これを600ガウスの磁選条件で磁選した
結果、表1の如きCrの回収が得られ、Fe−Cr合金
精鉱を得た。
The effect of adding boron oxide is shown by a test example: Chromium ore (Cr; 39% by weight, Fe; 12% by weight) 104 parts by weight Iron ore (Fe; 67% by weight) 65 parts by weight Carbon
A blended raw material consisting of 32 parts by weight is uniformly mixed in a fine powder state with or without the addition of boron oxide as shown in Table 1, and after granulation, solid reduction is performed under the reduction treatment conditions shown in Table 1 to obtain solid reduced pellets. was crushed into about 100 meshes and subjected to magnetic separation under magnetic separation conditions of 600 Gauss. As a result, Cr was recovered as shown in Table 1, and Fe--Cr alloy concentrate was obtained.

表1の結果から酸化ホウ素無添加の対照例Aに比し、酸
化ホウ素を10重量部添加し、同一還元処理を行なった
実施例BはCr還元率の向上が見られるうえ、Cr磁選
効率が飛躍的に上昇していることがわかる。
From the results in Table 1, compared to Control Example A without the addition of boron oxide, Example B, in which 10 parts by weight of boron oxide was added and the same reduction treatment was performed, showed an improvement in the Cr reduction rate, and the Cr magnetic separation efficiency. It can be seen that it has increased dramatically.

還元処理時間を短かくしかつ酸化ホウ素添加量を低減し
た実施例Cにおいても、Cr還元率およびCr磁選効率
は非常に向上して**いる。
Even in Example C, in which the reduction treatment time was shortened and the amount of boron oxide added was reduced, the Cr reduction rate and Cr magnetic separation efficiency were greatly improved**.

さらに具体的実施例を挙げて本方法を説明し、その効果
を示す。
Further, the present method will be explained by giving specific examples, and its effects will be shown.

実施例 1 供試したクロム鉱石および鉄鉱石の組成(重量%)を表
2に示す。
Example 1 Table 2 shows the compositions (% by weight) of the chromium ore and iron ore tested.

その他供試材として、炭素質還元剤は電極粉を使用し、
酸化ホウ素は試薬を使用し、これら供試材を表3に示す
配合量で配合し、1重量%のベントナイトを結合剤とし
て添加混合した後、ボールミルに装入して250メツシ
ユ以下に粉砕した。
Other test materials include electrode powder as a carbonaceous reducing agent;
A reagent was used for boron oxide, and these test materials were blended in the amounts shown in Table 3. After adding and mixing 1% by weight of bentonite as a binder, the samples were charged into a ball mill and ground to 250 meshes or less.

この微粉体配合原料を直径約10〜15間の生ペレット
に造粒し、これを200℃に3時間保持して乾燥後、炭
素抵抗発熱式加熱炉に装入し、常圧Ar雰囲気中で12
50℃まで2時間、1250°Cで1時間の加熱を行な
った。
This fine powder blended raw material was granulated into green pellets with a diameter of about 10 to 15 mm, kept at 200°C for 3 hours, dried, charged into a carbon resistance heating furnace, and placed in a normal pressure Ar atmosphere. 12
Heating was carried out to 50°C for 2 hours and at 1250°C for 1 hour.

この固体還元処理後のベレット分析値(重量%)を表4
に示す。
Table 4 shows the pellet analysis values (wt%) after this solid reduction treatment.
Shown below.

得られた還元ペレットを100メツシユ以下の粒度に粉
砕し、600ガウスにて磁選を行なった。
The obtained reduced pellets were pulverized to a particle size of 100 mesh or less, and subjected to magnetic separation at 600 Gauss.

この磁選後の精鉱品位(重量%)を分析し表4に示すF
e−Cr合金を得た。
The concentrate grade (wt%) after this magnetic separation was analyzed and shown in Table 4.
An e-Cr alloy was obtained.

本実施例におけるCr磁選効率は91%であった。The Cr magnetic separation efficiency in this example was 91%.

実施例 2 実施例1と同一の供試材を表5に示す配合量で配合した
Example 2 The same test materials as in Example 1 were mixed in the amounts shown in Table 5.

この混合配合物をボールミルにより250メツシユ以下
の粒度に粉砕し、直径約10〜15間の生ペレットに造
粒した。
This mixed formulation was ground to a particle size of 250 mesh or less using a ball mill and granulated into green pellets having a diameter of about 10 to 15 mm.

この生ペレットを200℃に3時間保持して乾燥後、抵
抗加熱式真空炉に装入し、下記条件で固体還元処理した
After drying the raw pellets by keeping them at 200° C. for 3 hours, they were placed in a resistance heating vacuum furnace and subjected to solid reduction treatment under the following conditions.

加熱条件;1250℃まで2時間 1250℃で1時間 真空度 ;加熱開始時 0.4Torr 加熱途中最高1.7Torr 冷却後 0.3Torr この固体還元ペレットの分析値を表6に示す。Heating conditions: 2 hours to 1250℃ 1 hour at 1250℃ Vacuum degree: 0.4 Torr at the start of heating Maximum 1.7 Torr during heating After cooling 0.3 Torr Table 6 shows the analytical values of this solid reduced pellet.

本還元ペレットを約100メツシユ以下の粒度に粉砕し
、600ガウスの乾式磁選を行なった。
The reduced pellets were pulverized to a particle size of about 100 mesh or less, and subjected to dry magnetic separation at 600 Gauss.

得られた精鉱を分析し、表6に示す品位の粉末Fe−C
r合金を得た。
The obtained concentrate was analyzed and powdered Fe-C of the grade shown in Table 6 was obtained.
An r alloy was obtained.

本実施例におけるCr磁選効率は89%であった。The Cr magnetic separation efficiency in this example was 89%.

以上の如く、本発明方法によれば、低温でかつ短時間の
還元処理を行ない、引続き磁選を極めて効果的に行なう
ので、エネルギー的に有利にFe−Cr合金を製造でき
、低品位クロム鉱石も充分使用できる利点と相俟って著
しい経済的効果を発揮する。
As described above, according to the method of the present invention, reduction treatment is performed at a low temperature and in a short time, and magnetic separation is subsequently performed extremely effectively, so that Fe-Cr alloy can be produced with an energy advantage, and low-grade chromium ore can also be produced. Combined with the advantage of being fully usable, it has a significant economic effect.

得られたFe−Cr合金はCr合金鋼やステンレス鋼の
製造に安価にして提供できる。
The obtained Fe-Cr alloy can be provided at low cost for manufacturing Cr alloy steel and stainless steel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCr/(Cr+Fe)の比がCr還元率に及ぼ
す影響を調べた実験結果のグラフである。
FIG. 1 is a graph of experimental results in which the influence of the ratio of Cr/(Cr+Fe) on the Cr reduction rate was investigated.

Claims (1)

【特許請求の範囲】 1 原料中の全(Cr+Fe)量に対するCr量の重量
割合Cr/(Cr十Fe)が0.6以下となるようにC
r酸化物にFe含有物質を配合し、炭素質還元剤の添加
に加えさらに酸化ホウ素または酸化ホウ素含有物質を酸
化ホウ素換算で0.1〜10重量%添加混合して塊状に
造粒し、この塊状物を大気圧下で加熱して固体還元し、
得られた固体還元物を磁力選鉱して脈石分の分離を行な
うことを特徴とするFe−Cr合金の製造法。 2 原料中の全(Cr+Fe)量に対するCr量の重量
割合Cr/(Cr+Fe)が0.6以下となるようにC
r酸化物にFe含有物質を配合し、炭素質還元剤の添加
に加えさらに酸化ホウ素または酸化ホウ素含有物質を酸
化ホウ素換算で0.1〜10重量%添加混合して塊状に
造粒し、この塊状物を減圧下で加熱して固体還元し、得
られた固体還元物を磁力選鉱して脈石分の分離を行なう
ことを特徴とするFe−Cr合金の製造法。
[Claims] 1. Carbon is added so that the weight ratio Cr/(Cr + Fe) of the amount of Cr to the total amount of (Cr + Fe) in the raw material is 0.6 or less.
A Fe-containing substance is blended with r-oxide, and in addition to the addition of a carbonaceous reducing agent, boron oxide or a boron oxide-containing substance is added and mixed in an amount of 0.1 to 10% by weight in terms of boron oxide, and the mixture is granulated into a lump. The lumps are heated under atmospheric pressure to reduce them to solids,
A method for producing an Fe-Cr alloy, characterized in that the obtained solid reduced product is subjected to magnetic beneficiation to separate gangue components. 2 C so that the weight ratio Cr/(Cr+Fe) of the amount of Cr to the total amount of (Cr+Fe) in the raw material is 0.6 or less.
A Fe-containing substance is blended with r-oxide, and in addition to the addition of a carbonaceous reducing agent, boron oxide or a boron oxide-containing substance is added and mixed in an amount of 0.1 to 10% by weight in terms of boron oxide, and the mixture is granulated into a lump. A method for producing an Fe-Cr alloy, which comprises heating a lump under reduced pressure to reduce it to a solid, and magnetically sorting the obtained solid reduced product to separate the gangue component.
JP50129101A 1975-10-27 1975-10-27 Tetsu − Kuromugokino Seizouhou Expired JPS5825737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50129101A JPS5825737B2 (en) 1975-10-27 1975-10-27 Tetsu − Kuromugokino Seizouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50129101A JPS5825737B2 (en) 1975-10-27 1975-10-27 Tetsu − Kuromugokino Seizouhou

Publications (2)

Publication Number Publication Date
JPS5252819A JPS5252819A (en) 1977-04-28
JPS5825737B2 true JPS5825737B2 (en) 1983-05-30

Family

ID=15001084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50129101A Expired JPS5825737B2 (en) 1975-10-27 1975-10-27 Tetsu − Kuromugokino Seizouhou

Country Status (1)

Country Link
JP (1) JPS5825737B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101053365B1 (en) 2003-12-23 2011-08-01 재단법인 포항산업과학연구원 Method for manufacturing ferro-chromium alloy using steel by-products

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4967810A (en) * 1972-11-02 1974-07-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4967810A (en) * 1972-11-02 1974-07-01

Also Published As

Publication number Publication date
JPS5252819A (en) 1977-04-28

Similar Documents

Publication Publication Date Title
CN101280361B (en) Process method of tailings in vanadium extraction
US8557019B2 (en) Process for production of nickel and cobalt using metal hydroxide, metal oxide and/or metal carbonate
JP7439540B2 (en) Oxidized ore smelting method
CN1861265B (en) Ore-dressing process by using carbon-contg. block to reduce lean iron ore for prodn. of magnetite
US4416688A (en) Direct reduction of ores and concentration of metallic values
US2944884A (en) Method of beneficiating reducing and briquetting iron ore
JPS60255937A (en) Manufacture of cold-bound briquette
US4113479A (en) Vacuum smelting process for producing ferrotungsten
JPH06172916A (en) Manufacturing of stainless steel
CA2137714C (en) Method for producing high-grade nickel matte from at least partly pyrometallurgically refined nickel-bearing raw materials
CN115404339B (en) Method for developing and utilizing oolitic high-phosphorus iron ore
US3849113A (en) Process for the production of crude ferronickel
US3645717A (en) Process of producing sponge iron pellets
JP3305674B2 (en) Hydrometallurgical refining of ores containing iron group metals
US3403018A (en) Method of treating precipitator dust
Braga et al. Prereduction of self-reducing pellets of manganese ore
JPS5825737B2 (en) Tetsu − Kuromugokino Seizouhou
US3737301A (en) Process for producing iron-molybdenum alloy powder metal
US3469970A (en) Pelletization of a sponge iron produced by direct reduction
Pickles et al. Production of Ferronickel and Ferrovanadium from Fly Ash in an Extended Arc Flash Reactor
CN112410541A (en) Preparation method of magnetic concentrate, magnetic concentrate and application thereof, and method for enriching heavy metal by metallization reduction of iron-containing multi-metal oxide ore
EP2597165B1 (en) Iron and molybdenum containing pellets
JP2021031705A (en) Smelting method of oxide ore
JP2021102797A (en) Method for smelting oxide ore
CN1053705C (en) Cobalt-bearing oxidized ore treatment by microwave-heat plasma