JPS5825454B2 - In-vivo impedance distribution measuring device - Google Patents

In-vivo impedance distribution measuring device

Info

Publication number
JPS5825454B2
JPS5825454B2 JP55003396A JP339680A JPS5825454B2 JP S5825454 B2 JPS5825454 B2 JP S5825454B2 JP 55003396 A JP55003396 A JP 55003396A JP 339680 A JP339680 A JP 339680A JP S5825454 B2 JPS5825454 B2 JP S5825454B2
Authority
JP
Japan
Prior art keywords
electrodes
electrode
impedance
measuring device
impedance distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55003396A
Other languages
Japanese (ja)
Other versions
JPS56100040A (en
Inventor
阿耶雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP55003396A priority Critical patent/JPS5825454B2/en
Publication of JPS56100040A publication Critical patent/JPS56100040A/en
Publication of JPS5825454B2 publication Critical patent/JPS5825454B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

【発明の詳細な説明】 この発明は、肺機能などの診断に有用な生体内インピー
ダンス分布測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an in-vivo impedance distribution measuring device useful for diagnosing lung function and the like.

近年、大気汚染や人口の老令化に伴う呼吸器疾患の増大
により、肺機能検査装置への要求が高まっている。
In recent years, demand for pulmonary function testing devices has increased due to the increase in respiratory diseases associated with air pollution and the aging of the population.

特に肺機能を全体的に把握する従来の方法から、局所的
に検査できるものに要求が移りつつある。
In particular, demand is shifting from traditional methods that assess lung function globally to methods that allow local testing.

その1つに局所の換気分布を検査するものがある。One of them is to examine local ventilation distribution.

従来、この換気分布の検査方法としては患者にラジオア
イソトープを吸入させシンチレータにより換気分布をみ
るもの、あるいは左右の気管支にスパイロメータを接続
し、左右別の換気分布をみるもの等が知られている。
Conventionally known methods for testing ventilation distribution include having the patient inhale a radioisotope and observing the ventilation distribution using a scintillator, or connecting spirometers to the left and right bronchi to observe the left and right ventilation distribution. .

しかし、これらはいずれも患者に与える苦痛ないしは負
担が無視できす、しかも換気分布を動的に把えることが
困難である等の問題があった。
However, all of these methods have problems such as negligible pain or burden on the patient, and furthermore, it is difficult to dynamically grasp the ventilation distribution.

この発明は上記のような問題点を解決するためになされ
たもので、2次元配列された電極群を用い肺の換気分布
その他の生体の情報をインピーダンス分布として把えて
2次元的に表示することにより、無侵襲的にかつ動的に
生体機能を把握することができる生体内インピーダンス
分布測定装置を提供するものである。
This invention was made to solve the above-mentioned problems, and uses a two-dimensionally arranged electrode group to understand the ventilation distribution of the lungs and other biological information as an impedance distribution and display it two-dimensionally. This provides an in-vivo impedance distribution measuring device that can non-invasively and dynamically grasp biological functions.

以下、この発明を実施例により詳細に説明する。Hereinafter, this invention will be explained in detail with reference to Examples.

第1図はこの発明の一実施例を下す構成図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

1は2次元に配列された電極群であり、例えば可撓性を
有する板もしくはシートからなる基材2上に配設され、
その表面が何らかの圧接手段によって生体の体表、例え
ば胸部に装着されるものとなっている。
1 is a two-dimensionally arranged electrode group, which is arranged on a base material 2 made of, for example, a flexible plate or sheet,
Its surface is attached to the body surface of a living body, for example, the chest, by some kind of pressure contact means.

電極群1には個別にリード線3が結線されており、この
リード線3は通電電極選択回路4および検出電極選択回
路5に接続されている。
Lead wires 3 are individually connected to the electrode group 1, and these lead wires 3 are connected to a current-carrying electrode selection circuit 4 and a detection electrode selection circuit 5.

通電電極選択回路4は制御装置6からの制御により電極
群1の任意の2電極を選択して、その電極間に高周波電
源7よりの高周波電流を供給するものである。
The energized electrode selection circuit 4 selects any two electrodes of the electrode group 1 under the control of the control device 6 and supplies a high frequency current from the high frequency power source 7 between the selected electrodes.

検出電極選択回路5は通電電極選択回路4により選択さ
れ通電がなされた電極近傍の任意の2電極を電極群1か
ら選択して、その電極間の電圧を増幅器8に供給するも
のである。
The detection electrode selection circuit 5 selects, from the electrode group 1, any two electrodes near the electrode selected and energized by the energized electrode selection circuit 4, and supplies the voltage between the electrodes to the amplifier 8.

なお、これらの各選択回路4,5は例えば電極群1の電
極数と同数のトランジスタ等の電子スイッチ群によって
構成される。
Note that each of these selection circuits 4 and 5 is constituted by a group of electronic switches such as transistors, the number of which is the same as the number of electrodes of the electrode group 1, for example.

また高周波電源7としては、検出電極選択回路5で選択
された2電極間にこの電極間の胸部インピーダンスに対
応した電圧が正確に現われるようにするため、定電流源
であることが望ましい。
Further, the high frequency power source 7 is preferably a constant current source so that a voltage corresponding to the chest impedance between the two electrodes selected by the detection electrode selection circuit 5 appears accurately between the two electrodes.

検出電極選択回路5で選択された2電極間の電圧は増幅
器8で増幅され、CRT等の表示装置9のZ軸入力端子
に輝度変調信号として供給される。
The voltage between the two electrodes selected by the detection electrode selection circuit 5 is amplified by an amplifier 8 and supplied as a brightness modulation signal to a Z-axis input terminal of a display device 9 such as a CRT.

また、この表示装置9のX、Y軸入力端子には制御装置
6からX、Y両軸方向の表示位置指定信号が加えられる
ようになっている。
Further, display position designation signals in both the X and Y axis directions are applied from the control device 6 to the X and Y axis input terminals of the display device 9.

次に、この実施例の装置の動作を肺機能の検査に用いた
場合について説明する。
Next, a case will be described in which the operation of the apparatus of this embodiment is used for testing lung function.

動作が開始すると、制御装置6は予め定められたプログ
ラムに従ってます電極群1のうちのある4電極の組合せ
、例えばE、〜E4の組合せを選択し、E、 、 E4
に対応する選択信号を通電電極選択回路4に供給し、E
2〜E3に対応する選択信号を検出電極選択回路5に供
給すると同時に、電源7に駆動信号を供給する。
When the operation starts, the control device 6 selects a certain combination of four electrodes from the electrode group 1, for example, a combination of E, to E4, according to a predetermined program.
A selection signal corresponding to E is supplied to the energized electrode selection circuit 4,
Selection signals corresponding to E2 to E3 are supplied to the detection electrode selection circuit 5, and at the same time, a drive signal is supplied to the power supply 7.

これにより、電源7から通電電極選択回路4を通して電
極E1. E4に矩形パルス状ないしは正弦波の高周波
電流が供給され、かつこれに伴い電極E2.E3間に生
じた電圧が検出電極選択回路5を通して増幅器8に供給
され表示装置9のZ軸入力端子に加えられる。
As a result, electrode E1. A rectangular pulsed or sinusoidal high frequency current is supplied to electrode E4, and along with this, electrode E2. The voltage generated between E3 is supplied to the amplifier 8 through the detection electrode selection circuit 5 and applied to the Z-axis input terminal of the display device 9.

一方、制御装置6はこのとき電極E1〜E4の位置関係
で定まる生体内のインピーダンス検出感度最大位置の情
報を表示装置9のX、Y軸入力端子に供給する。
On the other hand, the control device 6 at this time supplies information on the maximum impedance detection sensitivity position in the living body determined by the positional relationship of the electrodes E1 to E4 to the X and Y axis input terminals of the display device 9.

すなわち、4電極を用いて生体内のインピーダンスを検
出する場合、生体内の4電極近傍の全つの位置のインピ
ーダンスが一様に検出されるのではfi <、4電極の
位置関係で定まる特定位置のインピーダンスが最も感度
よく検出される。
In other words, when detecting impedance in a living body using four electrodes, the impedance at all positions near the four electrodes in the living body is detected uniformly. Impedance is most sensitively detected.

その特定位置がインピーダンス検出感度最大位置であり
、例えば上記の如く選択された4電極E、〜E4が一直
線上にある場合は、第2図に示すようにE2.E3の中
点(一点鎖線で示す)がインピーダンス検出感度最大位
置となり、この位置の座標(xty)の情報が表示位置
指定信号として表示装置9のX、Y軸入力端子に供給さ
れることになる。
If the specific position is the maximum impedance detection sensitivity position and, for example, the four electrodes E, -E4 selected as described above are on a straight line, E2. The midpoint of E3 (indicated by the one-dot chain line) is the maximum impedance detection sensitivity position, and information on the coordinates (xty) of this position is supplied to the X and Y axis input terminals of the display device 9 as a display position designation signal. .

表示装置9の画面は、電極群1の配列面と対応している
ので、結局その画面上の座標(Xty)の位置が増幅器
8の出力電圧の大きさに応じて、つまり電極E2.E3
間の胸部インピーダンスの大きさに応じて輝度変調され
る。
Since the screen of the display device 9 corresponds to the array surface of the electrode group 1, the position of the coordinates (Xty) on the screen ultimately depends on the magnitude of the output voltage of the amplifier 8, that is, the position of the electrode E2. E3
The brightness is modulated according to the size of the thoracic impedance between the two.

以下、上記と同様な動作が電極群1の異なる4電極の組
合せ全てについて行なわれる。
Thereafter, operations similar to those described above are performed for all different combinations of four electrodes in electrode group 1.

すなわち、4電極の組合せを第1図でX方向に順次1電
極分ずつずらせながら同様な動作を行ない、終了したら
Y方向に1電極分すらせて同様な動作を行なう。
That is, the same operation is performed while sequentially shifting the combination of four electrodes by one electrode in the X direction in FIG. 1, and when completed, the same operation is performed by shifting the combination of four electrodes by one electrode in the Y direction.

このようにして電極群1の全部についての通電および検
出と、それに基づく表示、つまり1回の走査が終了した
ら、また最初から同様な動作により繰返し走査を行なう
When the energization and detection of the entire electrode group 1 and the display based thereon, that is, one scan, are completed in this way, the same operation is repeated again from the beginning to perform the scan again.

この結果、表示装置9の画面上には1回の走査で胸部の
インピーダンス分布状態、換言すれば肺の換気分布状態
を表わす第3図に示す如き画像が表示される。
As a result, an image as shown in FIG. 3 representing the impedance distribution state of the chest, in other words, the ventilation distribution state of the lungs, is displayed on the screen of the display device 9 in one scan.

そして、同様な走査が繰返されることにより換気分布状
態の時々刻々の変化が動的に表示されることになる。
Then, by repeating similar scans, moment-to-moment changes in the ventilation distribution state are dynamically displayed.

なお、4電極E1〜E4の組合せ(位置関係)で定まる
深さ方向でのインピーダンス検出感度最大位置はElと
E2、E3とE4がそれぞれ近接している場合 E2と
E3の中点からE2.E3までの距離、つまりE2,8
3間の間隔の1/2となる。
Note that the maximum impedance detection sensitivity position in the depth direction determined by the combination (positional relationship) of the four electrodes E1 to E4 is when El and E2 and E3 and E4 are close to each other.From the midpoint of E2 and E3 to E2. Distance to E3, that is E2,8
This is 1/2 of the interval between 3.

すなわち、第2図に示すように深さ方向も考えたいわば
3次元のインピーダンス検出感度最大位置pとして、一
点鎖線上の深さdの位置を設定するためには、ElとE
2、E3とE4をそれぞれ近接させた上で、E2.E3
を中点(一点鎖線)より距離dの位置に定めればよい。
That is, in order to set the position p at depth d on the dashed-dotted line as the maximum position p of three-dimensional impedance detection sensitivity considering the depth direction as shown in FIG.
2. After bringing E3 and E4 close to each other, E2. E3
may be set at a distance d from the midpoint (dotted chain line).

従って、4電極の組合せを種種変えれば、任意の深さの
胸部インピーダンス分布を測定することができ、それに
よって任意の断面での換気分布を測定することが可能で
ある。
Therefore, by changing the combination of the four electrodes, it is possible to measure the thoracic impedance distribution at any depth, and thereby the ventilation distribution at any cross section.

なお、以上の説明ではインピーダンス分布の測定によっ
て肺の換気分布を測定する場合について述べたが、呼吸
停止下で使用すれば、肺循環血流の分布を測定すること
も可能である。
In the above explanation, a case has been described in which the ventilation distribution in the lungs is measured by measuring the impedance distribution, but it is also possible to measure the distribution of pulmonary circulation blood flow if used under respiratory arrest.

また、この発明は肺機能のみならす、一般にインピーダ
ンス変化として把え得るような生体機能の検査装置とし
て用いることができる。
Furthermore, the present invention can be used as a testing device for not only lung function but also biological functions that can generally be detected as changes in impedance.

また、前記実施例では電源7を制御装置6によって電極
群1の電極の組合せを選択する毎に間欠的に駆動したが
、勿論連続的に発振1駆動してもよい。
Furthermore, in the embodiment described above, the power source 7 was driven intermittently every time the control device 6 selected a combination of electrodes in the electrode group 1, but it is of course possible to drive the power source 7 continuously with one oscillation.

以上説明したように、この発明は体表に電極群を装着す
るという患者に苦痛を与えることなく負担も比較的少な
い非侵襲的な手段により生体内のインピーダンス分布を
測定して、肺機能などの生体機能を検査することができ
、しかもその機能を時間的に連続して動的に把えること
ができるという利点を有する。
As explained above, this invention measures the impedance distribution in the living body using a non-invasive method that does not cause pain to the patient and places a relatively small burden on the patient by attaching a group of electrodes to the body surface. It has the advantage of being able to test biological functions and to dynamically grasp the functions continuously over time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る生体のインピーダン
ス分布測定装置の構成図、第2図はその動作説明図、第
3図はこの発明による表示例を示す図である。 1・・・・・・電極群、4・・・・・・通電電極選択回
路、5・・・・・・検出電極選択回路、9・・・・・・
表示装置。
FIG. 1 is a block diagram of a biological impedance distribution measuring device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of its operation, and FIG. 3 is a diagram showing an example of display according to the present invention. 1... Electrode group, 4... Current-carrying electrode selection circuit, 5... Detection electrode selection circuit, 9...
Display device.

Claims (1)

【特許請求の範囲】[Claims] 12次元に配列され生体の体表に装着される電極群と、
この電極群の任意の2電極を順次選択してその電極間に
通電を行なう通電手段と、この通電手段により通電され
た電極近傍の2電極を前記電極群から選択してその電極
間の電圧を検出する検出手段と、この検出手段により検
出された電圧をインピーダンス情報として前記通電手段
により通電された電極および前記検出手段により電圧が
検出された電極の位置関係で定まる生体内のインピーダ
ンス検出感度最大位置と対応させて2次元的に表示する
手段とを具備してなる生体内インピーダンス分布測定装
置。
A group of electrodes arranged in 12 dimensions and attached to the body surface of a living body,
An energizing means that sequentially selects any two electrodes of this electrode group and energizes between the electrodes; and energizing means that selects two electrodes near the electrodes energized by the energizing means from the electrode group and calculates the voltage between the electrodes. The maximum impedance detection sensitivity position in the living body is determined by the positional relationship between the detection means to be detected, the electrode energized by the energization means, and the electrode whose voltage is detected by the detection means, using the voltage detected by the detection means as impedance information. An in-vivo impedance distribution measuring device comprising means for two-dimensionally displaying the information in correspondence with the in-vivo impedance distribution.
JP55003396A 1980-01-16 1980-01-16 In-vivo impedance distribution measuring device Expired JPS5825454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55003396A JPS5825454B2 (en) 1980-01-16 1980-01-16 In-vivo impedance distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55003396A JPS5825454B2 (en) 1980-01-16 1980-01-16 In-vivo impedance distribution measuring device

Publications (2)

Publication Number Publication Date
JPS56100040A JPS56100040A (en) 1981-08-11
JPS5825454B2 true JPS5825454B2 (en) 1983-05-27

Family

ID=11556193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55003396A Expired JPS5825454B2 (en) 1980-01-16 1980-01-16 In-vivo impedance distribution measuring device

Country Status (1)

Country Link
JP (1) JPS5825454B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918456U (en) * 1972-05-19 1974-02-16
JPS53120880A (en) * 1977-03-29 1978-10-21 Nippon Kouden Kougiyou Kk Lung function measuring instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918456U (en) * 1972-05-19 1974-02-16
JPS53120880A (en) * 1977-03-29 1978-10-21 Nippon Kouden Kougiyou Kk Lung function measuring instrument

Also Published As

Publication number Publication date
JPS56100040A (en) 1981-08-11

Similar Documents

Publication Publication Date Title
Henderson et al. An impedance camera for spatially specific measurements of the thorax
US3757778A (en) Electrocardiograph lead distribution and contact testing apparatus
HUT77227A (en) Probe, multi-element probe,catheter or endoscopic probe, apparatus for impedance imaging of a breast, as well as method of impedance imaging of a breast, for guidance in the placement of an elongate element in portion of a patient, method of displaying...
CN109864712B (en) Electrical impedance imaging apparatus and method
US3882851A (en) Impedance plethysmograph
US3971366A (en) Apparatus and method for measuring the condition of the meridians and the corresponding internal organs of the living body
US6167300A (en) Electric mammograph
CN101259017B (en) Abdominal impedance measurement apparatus and body composition determination apparatus
CN106618569A (en) Measuring device and method for contact impedance between electrodes and skin
US9119548B2 (en) Device and method for secondary dental caries diagnosis
US3750649A (en) Pulmonary impedance bridge
JPS6244491B2 (en)
JPH11313814A (en) Bioptic device
US4078553A (en) Methods for investigating internal physiological phenomena
JP2003093365A (en) Electric impedance scanner also used for ultrasonography
EP0094113A2 (en) Tomography
JP2001269322A (en) Electrode device for guiding electrocardiogram signal, and measuring device for electrocardiogram signal
US3624744A (en) Ultrasonic tester
US4269195A (en) Apparatus for measuring a pulmonary function
US3294084A (en) Potential measuring and display apparatus, especially for electrocardiographic or like use
JPS5825454B2 (en) In-vivo impedance distribution measuring device
JPH09103430A (en) Ultrasonic bone analyzing device and method to detect part of body
Woltjen et al. Bladder motility detection using the Hall effect
JPS59131330A (en) Display apparatus of body surface potential
RU2082315C1 (en) Device for setting diagnosis based on biologically active points state