JPS5825049B2 - Arsenous acid oxidation method - Google Patents
Arsenous acid oxidation methodInfo
- Publication number
- JPS5825049B2 JPS5825049B2 JP559179A JP559179A JPS5825049B2 JP S5825049 B2 JPS5825049 B2 JP S5825049B2 JP 559179 A JP559179 A JP 559179A JP 559179 A JP559179 A JP 559179A JP S5825049 B2 JPS5825049 B2 JP S5825049B2
- Authority
- JP
- Japan
- Prior art keywords
- acid
- arsenous acid
- activated carbon
- arsenous
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Catalysts (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
【発明の詳細な説明】
本発明は亜砒酸を酸化して砒酸を製造する方法において
、亜砒酸を含むパルプ溶液に活性炭を添加し、圧力釜を
使用して高温、高酸素加圧下で反応させることにより、
極めて効率良く亜砒酸を酸化せしめて砒酸を製造する方
法を提供するものである。Detailed Description of the Invention The present invention provides a method for producing arsenic acid by oxidizing arsenous acid, by adding activated carbon to a pulp solution containing arsenous acid and reacting it at high temperature and under high oxygen pressure using a pressure cooker. ,
The present invention provides a method for producing arsenic acid by oxidizing arsenous acid extremely efficiently.
従来から亜砒酸を酸化して砒酸を製造する方法には種々
あるが、硝酸、塩素あるいは過酸化水素等の酸化剤を使
用する方法あるいは電解酸化による湿式法が一般に採用
されている。Conventionally, there are various methods for producing arsenic acid by oxidizing arsenous acid, but generally a method using an oxidizing agent such as nitric acid, chlorine, or hydrogen peroxide, or a wet method using electrolytic oxidation is employed.
硝酸による酸化法は空気を吹き込み、硝酸の損失を押え
て反応を行なうもので、硝酸の濃度や酸素圧、滞留時間
等の要因に比例して亜砒酸の酸化率は向上するが、この
方法は装置の材質の面や反応中に発生するNOx対策等
の問題がある。In the oxidation method using nitric acid, air is blown into the reaction to suppress the loss of nitric acid, and the oxidation rate of arsenous acid increases in proportion to factors such as the concentration of nitric acid, oxygen pressure, and residence time. There are problems with the materials used and measures against NOx generated during the reaction.
また、塩素、重クロム酸、□過マンガン酸塩等を酸化剤
として酸化した場合には生成した砒酸の溶解度が大きい
ため、使用した塩類のイオンと砒酸との分離が難かしく
、酸化剤として使用するこれら薬品の価額が高いなど工
業的に実施するには極めて不利である。In addition, when oxidizing with chlorine, dichromic acid, permanganate, etc. as an oxidizing agent, the arsenic acid produced has a high solubility, so it is difficult to separate the ions of the salts used from the arsenic acid, so it is not used as an oxidizing agent. The high cost of these chemicals makes it extremely disadvantageous for industrial implementation.
さらに、過酸化水素を酸化剤として使用する方法は酸化
反応や環境公害の面では比較的優れた方法であるが、薬
品の価格の点で問題があり工業的には不適である。Furthermore, although the method of using hydrogen peroxide as an oxidizing agent is relatively superior in terms of oxidation reactions and environmental pollution, it is unsuitable for industrial use because of the problem of the cost of chemicals.
電解酸化法はコスト的に問題はないが、反応時に発生す
る砒化水素の環境公害上の問題があり、工業的に採用す
るためには問題点が多い。Although the electrolytic oxidation method has no problems in terms of cost, there are problems in terms of environmental pollution due to the hydrogen arsenide generated during the reaction, and there are many problems in using it industrially.
また、中性溶液で空気酸化する方法もあるが、反応程度
が遅く生成した砒酸によるpHの低下をアルカリ剤で中
和して酸化しなければならないため中和に使用した塩類
と砒酸との分離が非常に困難となる。There is also a method of air oxidation with a neutral solution, but the reaction is slow and the drop in pH caused by the arsenic acid produced must be neutralized with an alkaline agent before oxidation, so the salts used for neutralization must be separated from the arsenic acid. becomes extremely difficult.
以上のように従来法にはそれぞれ多くの問題点を有し、
工業的に有利な方法は末だ提案されていないので現状で
ある。As mentioned above, each of the conventional methods has many problems.
At present, no industrially advantageous method has been proposed.
本発明はこれら従来法の諸問題点を解決した極めて優れ
た方法であり、亜砒酸を含むパルプを圧力釜に導き、該
液中へ酸化触媒として活性炭を添加して高温化し、これ
に酸素を圧入して反応させ亜砒酸を砒酸に転化させる方
法に関するものである。The present invention is an extremely excellent method that solves the problems of these conventional methods. Pulp containing arsenous acid is introduced into a pressure cooker, activated carbon is added to the liquid as an oxidation catalyst to raise the temperature, and oxygen is forced into the liquid. The present invention relates to a method for converting arsenous acid into arsenic acid by reaction.
本発明法で使用する試薬は酸化触媒としての活性炭と酸
素ガスのみであり、生成した砒酸と他の塩類との分離の
問題や環境公害の発生等の問題もなく、非常に簡単な操
作で純粋な砒酸を製造することができる。The reagents used in the method of the present invention are only activated carbon as an oxidation catalyst and oxygen gas, and there are no problems such as separation of the generated arsenic acid from other salts or environmental pollution, and it can be purified with very simple operations. arsenic acid can be produced.
次に、本発明法を詳細に述べる。Next, the method of the present invention will be described in detail.
約200 fi/II〜300 g/13の亜砒酸含有
パルプを作り、該パルプを圧力釜に装入し、活性炭を約
5%添加する。An arsenous acid-containing pulp of about 200 fi/II to 300 g/13 is made, the pulp is charged into a pressure cooker, and about 5% activated carbon is added.
該パルプを100〜250℃好ましくは150〜200
℃位に加熱し、酸素圧3〜15kg/c4好ましくは5
に9/ffl程度に保って反応を行なわせる。The pulp is heated to 100 to 250°C, preferably 150 to 200°C.
Heating to about ℃, oxygen pressure 3 to 15 kg/c4, preferably 5
The reaction is carried out while maintaining the ratio at about 9/ffl.
反応が進行して砒酸が生成し始めるに従って亜砒酸が溶
解し、砒酸によるpHの低下が起り、反応終了時には亜
砒酸の結晶は全て溶解しており、pHも最初7付近であ
ったのが、pH約1.5程度にまで低下する。As the reaction progresses and arsenic acid begins to be produced, arsenous acid dissolves and the pH decreases due to the arsenic acid. By the end of the reaction, all the arsenous acid crystals have been dissolved, and the pH was initially around 7, but it has decreased to approximately It decreases to about 1.5.
この反応終了後液を圧力釜から取り出し、固液分離して
活性炭を分離し、該活性炭は再度使用する。After completion of this reaction, the liquid is taken out from the pressure cooker and subjected to solid-liquid separation to separate activated carbon, which is then used again.
一方、前記分離後液は加熱濃縮することにより純粋な砒
酸の結晶を得ることができるのである。On the other hand, pure arsenic acid crystals can be obtained by heating and concentrating the separated liquid.
本発明法で使用する酸化触媒としての活性炭は通常使用
されている市販のものでよく、活性炭を使用しない場合
には酸化率が低いが、約5%程度の活性炭を添加すると
急激に反応が向上し、反応時間を極めて短縮することが
できる。Activated carbon as an oxidation catalyst used in the method of the present invention may be a commonly used commercially available one.If activated carbon is not used, the oxidation rate is low, but when about 5% activated carbon is added, the reaction improves rapidly. However, the reaction time can be extremely shortened.
なお、前述のように活性炭は砒酸溶液と分離後再生使用
が可能であり、繰り返し使用しても活性炭の劣化もなく
、優れた触媒として使用できる。As mentioned above, activated carbon can be recycled after being separated from the arsenic acid solution, and even after repeated use, the activated carbon does not deteriorate and can be used as an excellent catalyst.
また、反応温度は100〜250℃でよいか、約150
℃付近から急激に酸化反応が進み、温度ならびに酸素加
圧に比例して促進される。In addition, the reaction temperature may be 100 to 250°C, or about 150°C.
The oxidation reaction rapidly progresses from around ℃ and is accelerated in proportion to the temperature and oxygen pressure.
上記の如く、本発明は酸化触媒として活性炭を添加する
ことにより、酸素のみで簡単に亜砒酸を酸化して極めて
効率良く砒酸を生成せしめることができる優れた方法で
ある。As described above, the present invention is an excellent method that can easily oxidize arsenous acid using only oxygen and generate arsenic acid very efficiently by adding activated carbon as an oxidation catalyst.
実施例 1
200 !l/13の亜砒酸を含むパルプ溶液に活性炭
を5%量添加し、圧力釜に導いて酸素圧5.0に9/a
rt、温度180℃で5時間反応を行なった。Example 1 200! Activated carbon was added in an amount of 5% to a pulp solution containing l/13 arsenous acid, and the mixture was introduced into a pressure cooker and the oxygen pressure was increased to 9/a to 5.0.
The reaction was carried out at rt and a temperature of 180° C. for 5 hours.
亜砒酸の酸化率は100%であった。The oxidation rate of arsenous acid was 100%.
比較例
20011/11の亜砒酸を含むパルプ溶液を圧力釜中
で酸素圧5.0 kg/crit、温度180℃で5時
間反応を行なった後の亜砒酸の酸化率は22.8%であ
った。After reacting the pulp solution containing arsenous acid of Comparative Example 20011/11 in a pressure cooker at an oxygen pressure of 5.0 kg/crit and a temperature of 180° C. for 5 hours, the oxidation rate of arsenous acid was 22.8%.
実施例 2
200g/13の亜砒酸を含むパルプ溶液について実施
例1と同じ実験を行ない、砒酸溶液と活性炭とを炉別し
、活性炭を再使用した。Example 2 The same experiment as in Example 1 was conducted using a pulp solution containing 200 g/13 arsenic acid, the arsenic acid solution and activated carbon were separated in the furnace, and the activated carbon was reused.
活性炭は10回使用したが10回とも亜砒酸の酸化率は
100%で活性炭の劣化は認められなかった。Activated carbon was used 10 times, but the oxidation rate of arsenous acid was 100% all 10 times, and no deterioration of the activated carbon was observed.
Claims (1)
砒酸を含むパルプ溶液に酸化触媒として活性炭を添加し
、圧力釜中に導き高温、高酸素加圧下で反応させること
を特徴とする亜砒酸の酸化法。 2 前記圧力釜中の温度は100〜250℃、酸素圧力
は3〜15kg/cJである特許請求の範囲第1項記載
の亜砒酸の酸化法。[Claims] 1. A method for producing arsenic acid by oxidizing arsenous acid, which is characterized by adding activated carbon as an oxidation catalyst to a pulp solution containing arsenous acid, introducing the solution into a pressure cooker, and causing the reaction to occur at high temperature and under high oxygen pressure. oxidation method of arsenous acid. 2. The method for oxidizing arsenous acid according to claim 1, wherein the temperature in the pressure cooker is 100 to 250°C and the oxygen pressure is 3 to 15 kg/cJ.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP559179A JPS5825049B2 (en) | 1979-01-23 | 1979-01-23 | Arsenous acid oxidation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP559179A JPS5825049B2 (en) | 1979-01-23 | 1979-01-23 | Arsenous acid oxidation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55100223A JPS55100223A (en) | 1980-07-31 |
JPS5825049B2 true JPS5825049B2 (en) | 1983-05-25 |
Family
ID=11615472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP559179A Expired JPS5825049B2 (en) | 1979-01-23 | 1979-01-23 | Arsenous acid oxidation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5825049B2 (en) |
-
1979
- 1979-01-23 JP JP559179A patent/JPS5825049B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS55100223A (en) | 1980-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3682592A (en) | Treatment of waste hci pickle liquor | |
US3856673A (en) | Purification of spent sulfuric acid | |
CS274470B2 (en) | Method of acids winning or recovery from their metals containing solutions | |
US3054653A (en) | Method of removing acidic organic constituents from gases | |
US11203527B2 (en) | Acid recovery from acid-rich solutions | |
CN106277129A (en) | A kind of spent acid processing method | |
CN113955733B (en) | Method for preparing ferric phosphate by utilizing waste hydrochloric acid containing iron | |
US5449503A (en) | Process for separating arsenic acid from an aqueous mixture comprising sulfuric and arsenic acids | |
US3852412A (en) | Nitric acid recovery system | |
US4279878A (en) | Process for freeing phosphoric acid from organic contaminants | |
JPS5825049B2 (en) | Arsenous acid oxidation method | |
US2196584A (en) | Manufacture of ferric sulphate | |
US4200620A (en) | Decontamination of wet-processed phosphoric acid | |
US3673245A (en) | Treatment of off-gases from nitric acid oxidation of anolone | |
JP2554357B2 (en) | Method for recovering NO from waste gas produced during ammonium nitrite production | |
US3875287A (en) | Removing mercury from concentrated sulfuric acid using iodides | |
US3440011A (en) | Process for the manufacture of chlorine by oxidation of hydrogen chloride or nitrosyl chloride | |
US4277459A (en) | Process for working up organic reaction mixtures | |
US2764470A (en) | Purification of uranium peroxide | |
US1102715A (en) | Purification of mixtures containing nitrids. | |
US3660030A (en) | Method of preparing nitrosyl chloride | |
CN108178127A (en) | The minimizing technology of arsenic in hydrofluoric acid | |
US2678290A (en) | Process of removing surface oxide films on metal | |
US3410877A (en) | Process for the preparation of 2, 3-dichloro-5, 6-dicyanobenzoquinone | |
JPH075307B2 (en) | Decomposition method of rare earth ore |