JPS5824791A - Whole heat exchange method - Google Patents

Whole heat exchange method

Info

Publication number
JPS5824791A
JPS5824791A JP12277381A JP12277381A JPS5824791A JP S5824791 A JPS5824791 A JP S5824791A JP 12277381 A JP12277381 A JP 12277381A JP 12277381 A JP12277381 A JP 12277381A JP S5824791 A JPS5824791 A JP S5824791A
Authority
JP
Japan
Prior art keywords
heat
fluid
heat exchange
transfer member
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12277381A
Other languages
Japanese (ja)
Other versions
JPH0240956B2 (en
Inventor
Yoshio Imamura
今村 嘉男
Takeshi Kishimoto
岸元 武士
Toshihiko Sonoda
園田 敏彦
Teruo Daito
大東 照夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP12277381A priority Critical patent/JPS5824791A/en
Publication of JPS5824791A publication Critical patent/JPS5824791A/en
Publication of JPH0240956B2 publication Critical patent/JPH0240956B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Central Air Conditioning (AREA)

Abstract

PURPOSE:To enhance the whole heat exchange capability by a method wherein the sensible heat is rapidly exchange and at the same time the heat released when the moisture in the air is adsorbed by moistuer absorbing material, resulting in preventing the adsorbed amount from lowering due to the temperature rise caused by the adsorption of moisture. CONSTITUTION:A whole heat exchanger 1 is partitioned into fluid passages A and B with a partitin body 2, through which at least one heating member 3 fixed with moisture absorbing materials 4 is provided across both the fluid passages A and B. At the operationI, wet fluid a is led into the flow passage A, while fluid b, the temperature of which is different from that of the fluid a, is led into the flow passage B so as to form contraflow between the two fluids a and b by operating a motor 7 in order to heat-exchange the total heat through the heating member 3. In succession, at the operation II, the fluid b is led into the flow passage A, while the fluid a is led into the flow passage B so as to form contraflow between the two fluids a and b by operating a motor 11 in order to heat-exchange the total heat through the heating member 3. The operationsIand II are repeated in order.

Description

【発明の詳細な説明】 本発明社命熱量の興なる8種類の流体(&)、(b)の
全熱(顕熱及び潜熱)を交換する余熱交換方法に関する
ものである・ 従来、室内の汚れた空気を排出し新鮮な空気をとり入れ
、顕熱と潜熱とを回収する交換器として全熱交換器が利
用されて−る。従来のもの祉繊維状基材をシート状に加
工し、これに除湿性能をも之ぜる為に塩化リチウムを担
持させこれを円筒状忙して熱交換素子を形成し、中央部
にamを設けて8分割し、それぞれの部分に全熱量の異
なる空気(高温高温空気及び低温低湿空気)を導入し、
該熱交換素子を回転させることにより全熱交換を行うも
のである。
[Detailed description of the invention] The present invention relates to a residual heat exchange method for exchanging the total heat (sensible heat and latent heat) of eight types of fluids (&) and (b) that have a vital heat amount. A total heat exchanger is used as an exchanger that exhausts dirty air, takes in fresh air, and recovers sensible heat and latent heat. A conventional fibrous base material is processed into a sheet shape, and in order to provide dehumidification performance, lithium chloride is supported on this sheet, and this is shaped into a cylinder to form a heat exchange element, and an am is provided in the center. It is divided into 8 parts, and air with different total heat amount (high temperature air and low temperature low humidity air) is introduced into each part.
Total heat exchange is performed by rotating the heat exchange element.

ここで高温高湿側の空気に対して祉、空気の有する全熱
量のうち顕熱祉熱交換素材に蓄熱させ潜熱紘空気中の水
分を熱交換素子に@着させ、一方低温低湿側の空気に対
しては該熱交換素子が高温側から低温lII/Cl15
1転してきたとき熱交換素子に蓄積された熱によって加
熱され、温度が上がると関係湿度が低下するので吸着さ
れていた水分が空気に移り、余熱交換がなされる。
Here, the air on the high-temperature, high-humidity side is heated, the sensible heat of the total heat of the air is stored in the heat exchange material, and the moisture in the latent heat air is deposited on the heat exchange element, while the air on the low-temperature, low-humidity side For example, the heat exchange element changes from the high temperature side to the low temperature lII/Cl15
When it turns once, it is heated by the heat accumulated in the heat exchange element, and as the temperature rises, the relative humidity decreases, so the adsorbed moisture is transferred to the air, and residual heat is exchanged.

しかしながらかかる全熱交換器は末だ満足なもので社な
く次のような不都合点を内在させて−た〇即ち1高温高
湿空気側にお−て顕熱、及び水分吸着熱線熱交換素材に
蓄積されるので熱交換素子の温度が上がるに伴い除熱さ
れるべき空気の温度も高くなシ、その結果顕熱交換能力
が低下すること及び高温高湿空気側にお−て空気の温度
が高くなると関係湿度が低下し吸着量が低下すること等
が惹起される。
However, such total heat exchangers are unsatisfactory and have the following disadvantages: (1) Sensible heat and moisture adsorption on the hot wire heat exchange material on the high-temperature, high-humidity air side. As heat is accumulated, as the temperature of the heat exchange element rises, the temperature of the air that should be removed also becomes high.As a result, the sensible heat exchange capacity decreases and the temperature of the air increases on the high temperature and high humidity side. If this happens, the relative humidity will decrease, leading to a decrease in the amount of adsorption.

一方他の全熱交換器の例として@濠性多孔体整弁して全
熱量の興なるzつの流体を接触せしめ、顕熱及び空気中
の湿分をそのまま多孔体を通して交換するものがある。
On the other hand, as another example of a total heat exchanger, there is one in which two fluids having a total amount of heat are brought into contact with each other through a moated porous body, and sensible heat and moisture in the air are directly exchanged through the porous body.

しかしこの交換器も実用的なものでな−。つtり空気の
直接の通過を除く念めに吸湿性多孔体を厚くすれd該多
孔体中での湿分の拡散、移動速度が減少し、一方厚みの
薄≠吸湿性多孔体を得るためlIclt強度的に弱くな
り、かつコスト高なものkなる欠点があった。
However, this exchanger is also not practical. In order to prevent the direct passage of air, the hygroscopic porous material is thickened to reduce the diffusion and movement speed of moisture in the porous material, and on the other hand, to obtain a thin ≠ hygroscopic porous material. It has the drawbacks of being weak in strength and high in cost.

本発明は上記の欠点を除くべく鋭意研究の結果得られた
もので、仕切体により流体流路(ム)、(1)が区劃さ
れ、かつ該仕切体を貫通して両流路にまたがって少なく
とも1個の伝熱部材が配置され、しかも該伝熱部材にW
k湿材が固着されてなる全熱交換装置を用−1流体流路
(ム)に湿り流体(1)を導入し、他方流路(1)に該
流体(&)と温度の異なる流体(′b)を向流状態で導
入して伝熱部材を介して全熱を熱交換する操作(1)と
、流体流路(ム)K上記流体0)を導入し、他方流路(
B) Jtc上記流体(、)を向流状態で導入して伝熱
部材を介して余熱を熱交換する操作(1)とを順次くり
返す余熱交換方法である。
The present invention was obtained as a result of intensive research to eliminate the above-mentioned drawbacks, and the present invention has a fluid flow path (mu), (1) which is separated by a partition, and which extends through the partition and straddles both flow paths. at least one heat transfer member is disposed, and the heat transfer member is provided with W.
When using a total heat exchange device in which a damping material is fixed, a dampening fluid (1) is introduced into one fluid flow path (mu), and a fluid (&) having a different temperature from the fluid (&) is introduced into the other flow path (1). 'b) is introduced in a countercurrent state and all heat is exchanged via the heat transfer member (1);
B) Jtc This is a residual heat exchange method in which operation (1) of introducing the above fluid (,) in a countercurrent state and exchanging residual heat via a heat transfer member is repeated in sequence.

本発明方法によれば、顕熱をすみやかに交換すると同時
に空気中の水分が吸着材又祉吸収材に@着される際発生
する熱をも交換して除失し、吸着時に□温度上昇に伴う
吸着量の低下を防ぎ全熱交換能力を向上させることがで
きる。
According to the method of the present invention, sensible heat is quickly exchanged, and at the same time, the heat generated when moisture in the air is deposited on the adsorbent or the absorbent material is also exchanged and eliminated, and the temperature rises during adsorption. The accompanying decrease in adsorption amount can be prevented and the total heat exchange capacity can be improved.

以下図面にて本発明を説明する◎ 第1図は本発明に用≠る全熱交換装置を示す・余熱交換
器lは仕切体8によシ流体流路(ム)、(B)が区−さ
れ、かつ該仕切体2を貫通して両流路にまたがって少な
くとも1個の伝熱部材3が配置されて−る◎伝熱部材3
には吸湿材番が固着されている0伝熱部材skはフィン
6が取シ付けられてもよく、吸湿材番は伝熱部材3に直
接祉りつけるか、または該フィンa/はりつけてもよ−
。壁6は室内と室外を隔てるものであって瓢モータフ【
回転すると7アンa(sa、ab)が動き、ダクト9で
は9′bから1lai室外空気を室内にとり入れ、同時
にダク)10では10mからlobに室内空気を室外に
排出する@モータ11を回転するとファンl怠(ll&
、11m5)が動き、ダクト9では9&からtbW:、
室内空気を復姓に排出させ、同時にダク)10では10
11からio&に室外空気を室内忙とり入れるようkな
って−る。
The present invention will be explained below with reference to the drawings. ◎ Fig. 1 shows a total heat exchange device used in the present invention ◎Heat transfer member 3
A fin 6 may be attached to the heat transfer member sk to which a moisture absorption material number is fixed, and the moisture absorption material number may be attached directly to the heat transfer member 3, or the fin a/glue may be attached to the heat transfer member sk. Yo-
. The wall 6 separates the indoors and outdoors, and is
When it rotates, 7 an a (sa, ab) moves, and duct 9 takes in 1 la outdoor air from 9'b into the room, and at the same time, duct) 10 discharges indoor air from 10 m to the lob @ When motor 11 is rotated Fan l lazy (ll &
, 11m5) moves, and in duct 9 tbW from 9&:,
10 in 10
From November 11th onwards, outdoor air will be brought into the room.

また本発明で使用する伝熱部材はヒートパイプあるーは
内部に金属水素化物を内蔵した伝熱管が好まし一〇ヒー
トパイプとはその内部に封入されてなる作動液の蒸発と
凝縮とkより熱の移動を行うもので、通常空気調和のた
めに使う場合温度範囲は一10℃から40′o程度であ
るので作動液としては7レオン、液体アンモニア、メタ
ノール、水などを使用する。ビートパイプの直径、長さ
は熱交換容量により適宜選択できる。かかるヒートパイ
プではその一端が加熱されると内部の作動液が蒸発し、
他端へ移動し凝縮して凝縮熱が発生し熱交換に供される
。一方金属水素化物伝熱管とはその内部に金属水素化物
及び水素ガスが収容されており、金属水素化物の水素ガ
ス放出、吸蔵作用を利用して熱の移動がなされるもので
ある。この伝熱管ではその一端が加熱されると内部の活
性化金属水素化物が水素ガスを放出し、他端へ移動し吸
蔵されて吸蔵熱が発生し熱交換に供される。使用する金
属水素化物は、za−it金合金Mm−11#M11合
金% Mm−Mi−Oo金合金Mu−Ni−ム1合金、
Mm−11合金、Oo−Mu−Xi合金、a〇−夏1合
金、1・−丁1合金、Ti−Mu金合金があげられこれ
らを水素化して活性化し、パイプの中に充填して伝熱管
が作製される。なお、上記合金社員なった温度域での使
用を可能にする為一種でなくても解離圧の興なる合金を
21種以上混合して用−てもよ−〇 また本発明で使用する吸部材ti、m維状のWk湿材が
好ましい・例えtflll維状活性脚状活性炭は潮解性
塩類tm持させた繊維状活性炭、多孔質ガラス繊維及び
/又状潮解性塩類を担持させた多孔質ガラス繊維、親水
性繊維及び/又状吸湿性ポリマーもしくは潮解、性塩類
を塗布又は含浸させた親水性繊維であるが、特に好まし
−ものは繊維状活性炭(又はこれに塩化リチウムの様な
吸水性塩類を担持させたものを書む)のみ若しく社これ
を主材として形成した、編織布帛1不織布等である。そ
して繊維状活性炭は、ベンゼン平衡吸着量が20011
9/1以上のものが好ましく1その原料繊維とCては、
木綿、麻等の天然七ルW−ス繊維の瞠かバルブ繊維、再
生セル書−ス繊織、メリビエルアルコール繊維、アクリ
ル繊維、ポリアミド繊維等であって、必要に応じて耐災
化剤を含有させた後炭化させ、更に高温で賦活させるこ
とkよって優られる。また炭素繊維単独では強度が十分
でな≠ので、ポリエチレン、ボリプ四ピレン、ポリアク
リ田ニトリル又はぎリビエルアルコール、#IIpの熱
可謹性短繊維又はガラス1!m總、木材パルプ等の非熱
可厘性短繊維と混合してシー)状にする。繊維状活性炭
の含有量はR6〜9B重量弧が好ましい0又吸水性塩類
を相持させるためKは、このシート類を塩化リチウム等
の水溶液に浸してから乾燥させる。例えばz o % 
z1ox本溶液に浸した後遠心分騙等によって水分を除
き、しかる後乾燥させる・Li01拒持量は水分吸着剤
量に対し10%以下が好ましく、これよシ大きくなると
Diolが使用中に分離することがあって好ましくない
0次に本発明に係る全熱交換装置を用いる余熱交換方法
の具体例についてのべる0 冬季使用の場合;モ艷1の作動によシ室内鉤の汚れた高
温湿り気体が第1図のダタ)loaか°ら101#方向
に導入される。湿り気体が伝熱部材(この場合ヒートパ
イプを使用)3Km触すると、空気中の水分が殴漣材4
I/c汲着される・この際発生する段着熱(潜熱)と空
気の顕熱との作用でと−トパイプ内部の作動液が蒸発し
、ヒートパイプ他端へ移動し凝縮して凝縮熱が発生する
。かかる熱はダク)9kから9&方向Km人される室外
の空気(冷空気)k与えられ全熱交換がなされる。
In addition, the heat transfer member used in the present invention is preferably a heat pipe or a heat transfer tube containing a metal hydride inside. It transfers heat, and when used for air conditioning, the temperature range is usually from -10°C to 40'°C, so the working fluid used is 7 Leon, liquid ammonia, methanol, water, etc. The diameter and length of the beat pipe can be appropriately selected depending on the heat exchange capacity. When one end of such a heat pipe is heated, the working fluid inside evaporates,
It moves to the other end, condenses, generates condensation heat, and is used for heat exchange. On the other hand, a metal hydride heat transfer tube contains a metal hydride and hydrogen gas therein, and heat is transferred by utilizing the hydrogen gas releasing and occluding action of the metal hydride. When one end of this heat transfer tube is heated, the activated metal hydride inside releases hydrogen gas, which moves to the other end and is occluded to generate stored heat, which is then used for heat exchange. The metal hydrides used are za-it gold alloy Mm-11#M11 alloy% Mm-Mi-Oo gold alloy Mu-Ni-mu1 alloy,
Mm-11 alloy, Oo-Mu-Xi alloy, a〇-Xia 1 alloy, 1-Ding 1 alloy, and Ti-Mu gold alloy are listed. These are hydrogenated to activate and filled into pipes for transmission. A heat tube is created. In addition, in order to enable the use of the above-mentioned alloys in the temperature range, it is possible to use a mixture of 21 or more types of alloys that exhibit high dissociation pressure. ti, m fibrous Wk wet material is preferred. For example, tflll fibrous activated leg-shaped activated carbon is fibrous activated carbon supported with deliquescent salts, porous glass fibers, and/or porous glass supported with deliquescent salts. Fibers, hydrophilic fibers and/or hydrophilic fibers coated or impregnated with hygroscopic polymers or deliquescent salts, but particularly preferred are fibrous activated carbon (or fibrous activated carbon, or hydrophilic fibers coated with or impregnated with hygroscopic polymers or deliquescent salts). These are knitted and woven fabrics, non-woven fabrics, etc., which are made from salt-carrying materials as the main material. And the fibrous activated carbon has a benzene equilibrium adsorption amount of 20011
It is preferable that the raw material fiber is 9/1 or more.
Materials such as ball fiber, recycled cellulose fibers, Meribiel alcohol fibers, acrylic fibers, polyamide fibers, etc., which are made of natural 7W-lace fibers such as cotton and hemp, and are treated with disaster-resistance agents as necessary. It is advantageous to carbonize the material after containing it, and then activate it at a high temperature. In addition, carbon fiber alone does not have sufficient strength, so polyethylene, polypyrene, polyacrylate nitrile, glycerin alcohol, #IIp thermoplastic staple fibers, or glass 1! It is mixed with non-thermoplastic short fibers such as wood pulp to form a sheet. The content of the fibrous activated carbon is preferably R6 to 9B weight arc 0, and in order to support the water-absorbing salts, the sheets are soaked in an aqueous solution of lithium chloride or the like and then dried. For example, z o %
After soaking in the z1ox solution, water is removed by centrifugation, etc., and then dried. - The amount of Li01 rejected is preferably 10% or less of the amount of water adsorbent, and if it is larger than this, Diol will separate during use. Next, we will discuss a specific example of the residual heat exchange method using the total heat exchange device according to the present invention.0 When used in winter; when the mower 1 is operated, the dirty high-temperature moist gas in the inner hook is released. Data in FIG. 1) is introduced in the direction 101# from loa. When moist gas touches a heat transfer member (in this case, a heat pipe is used) for 3 km, the moisture in the air
The working fluid inside the heat pipe evaporates due to the action of the stage heat (latent heat) generated at this time and the sensible heat of the air, moves to the other end of the heat pipe, condenses, and generates condensation heat. occurs. This heat is supplied with outdoor air (cold air) k which is transferred from 9k to 9&km and total heat exchange takes place.

室内の汚れた空気が換気され、一方、室内の熱は室外へ
もち出されず全熱量が再び室内へもちこまれる・この余
熱交換操作(1)が一定時間進行すると[W材の水分吸
着量が平衡IIcなるのでこの場合モータ〒をとめモー
、夕11を作動させる・これにより室内側の湿り気体が
ダクト9&から913方向に導入される。湿り気体が伝
熱部材JIK接触すると、空気中の水分が@部材4に*
着される。この際発生する潜熱と空気の顕熱との作用で
ヒートパイプ内部の作動液が蒸発し、と−ドパイブ他端
へ移動し凝縮して凝縮熱が発生する。かかる熱線ダタ)
lobからloaの方向に導入される室外の空気に与え
られ全熱交換がなされる。室内の汚れた空気が換気され
、一方室内の熱は室外へもち出されず全熱量が再び室内
へもちこまれる0この全熱交換操作(1)が一定時間進
行するとg&湿材の水分吸着量が平衡になるのでζや場
合モータ11をとめ毫−夕7を作動させる。以下前記の
全熱交換操作(1)及び(1)が順次くり返されること
になる・に導入される。me気体が伝熱部材3に接触す
ると、空気中の水分がrIk湿材4に吸着される。この
際発生する吸着熱(潜熱)と空気の顕熱との作用でヒー
トパイプ内部の作動液が蒸発し、ヒートパイプ他端へ移
動し凝縮して凝縮熱が発生する。かかる熱はダタ)lo
aからLO’b方向に導入される汚れた室内の空気(冷
空気)に与えられ全熱交・換がなされる。室内の汚れた
空気が換気され、一方痙外の熱祉室内へもちこまれず全
熱量が再び室外へもち出される。この余熱交換操作(1
)が一定時間進行すると設深材の水分吸着量が平衡にな
るのでこの場合啼−夕7をとめモータ11を作動させる
。これKよ)室外の高温湿り気体が第1図のダタ)l(
lbからloa方向に導入される。湿υ気体が伝熱部材
3に接触すると、空気中の水分が教淘材4に吸着される
。この際発生する潜熱と空気の顕熱との作用でと−トパ
イプ内部の作動液が蒸発し、ヒートパイプ他端へ移動し
凝縮して凝縮熱が発生する。か必る熱はダクト91から
91方向に導入される汚れた室内の空気に与えられた全
熱交換がなされる。室内の汚れた空気が換気され、一方
塞外の熱は室内へもちこまれず全熱量が再び室外へもち
出される。こ・の全熱交換操作(1)が一定時間進行す
ると吸湿材の水分吸着量が平衡になるのでこの場合モー
タ11をとめ螢−タフを作動させる。以下前記の余熱交
換操作(1)及び(1)が順次くり返されるととkなる
The dirty air inside the room is ventilated, and on the other hand, the heat inside the room is not carried out outside, but the total amount of heat is brought back into the room. ・When this residual heat exchange operation (1) continues for a certain period of time, [the amount of moisture adsorbed by the W material increases] Since the equilibrium is IIc, in this case, the motor 1 is stopped and the motor 11 is operated. As a result, the humid gas inside the room is introduced from the duct 9 & in the direction 913. When moist gas comes into contact with the heat transfer member JIK, the moisture in the air is transferred to @member 4*
It will be worn. Due to the action of the latent heat generated at this time and the sensible heat of the air, the working fluid inside the heat pipe evaporates, moves to the other end of the heat pipe, and condenses, generating heat of condensation. heat ray data)
It is given to the outdoor air introduced in the direction from the lob to the loa, and a total heat exchange is performed. Dirty air inside the room is ventilated, and on the other hand, the heat inside the room is not taken outside, but the total amount of heat is brought back into the room.0 When this total heat exchange operation (1) continues for a certain period of time, the amount of moisture adsorbed by the g & wet material increases. Since equilibrium is reached, the motor 11 is stopped and the motor 7 is operated. Hereinafter, the above-mentioned total heat exchange operations (1) and (1) will be sequentially repeated. When the me gas contacts the heat transfer member 3, moisture in the air is adsorbed by the rIk damping material 4. Due to the action of the heat of adsorption (latent heat) generated at this time and the sensible heat of the air, the working fluid inside the heat pipe evaporates, moves to the other end of the heat pipe, and condenses, generating heat of condensation. The heat involved is data) lo
It is given to the dirty indoor air (cold air) introduced from a to the LO'b direction, and total heat exchange is performed. Dirty air inside the room is ventilated, while all the heat is carried outside again without being carried into the heat treatment room. This residual heat exchange operation (1
) progresses for a certain period of time, the amount of moisture adsorbed by the depth material reaches equilibrium, so in this case, the singing 7 is stopped and the motor 11 is operated. This is K) The high temperature and humid gas outside is the data in Figure 1)
It is introduced from lb to loa direction. When the moist υ gas comes into contact with the heat transfer member 3, moisture in the air is adsorbed by the teaching material 4. Due to the action of the latent heat generated at this time and the sensible heat of the air, the working fluid inside the heat pipe evaporates, moves to the other end of the heat pipe, and condenses, generating heat of condensation. All of the resulting heat is exchanged with the dirty indoor air introduced from the duct 91 in the 91 direction. The dirty air inside the room is ventilated, while the heat from outside is not brought into the room, and all the heat is carried outside again. When this total heat exchange operation (1) proceeds for a certain period of time, the amount of moisture adsorbed by the moisture absorbing material reaches equilibrium, so in this case, the motor 11 is stopped and the firefly tuff is operated. Thereafter, when the above-mentioned preheat exchange operations (1) and (1) are repeated in sequence, k is obtained.

このような本発明の全熱交換方法は顕熱交換効率がよ−
のみならず、空気中の湿分がWk湿材IIcg&着する
時発生する熱をもすみやかに他方の流体に移すので水分
吸着能力が向上し、その結果潜熱交換能力がよい。
The total heat exchange method of the present invention has a high sensible heat exchange efficiency.
In addition, the heat generated when the moisture in the air comes into contact with the WK wet material IIcg& is quickly transferred to the other fluid, so the moisture adsorption ability is improved, and as a result, the latent heat exchange ability is good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用−る全熱交換装置の概略図を示す−
のである。 l寡熱交換器 に:仕切体 38伝熱部材 4:li[材 !I : )  ィ  ン 6:仕切壁 ’F、lλ84−タ a、xgs7アン 9*LO:ダクト
Figure 1 shows a schematic diagram of the total heat exchange device used in the present invention.
It is. l For the low heat exchanger: partition body 38 heat transfer member 4: li [material! I:) In 6: Partition wall 'F, lλ84-ta a, xgs7 Anne 9*LO: Duct

Claims (1)

【特許請求の範囲】 (1)  仕切体により流体流路(ム)%(ml)が区
ll1lされ、かつ該仕切体を貫通して両流路kまたが
って少なくとも1個の伝熱部材が配置され、しかも該伝
熱部材に吸湿材が固着されてなる余熱交換装置を用−1
流体流路(ム)KiIり流体(亀)を導入し、他方流路
(B)Ic該原流体&)と温度の異なる流体(′b)を
向流状態で導入して上記伝熱部材を介して全熱を熱交換
する操作(1)と、流体流路(ム)k上記流体(′b)
を導入し、他方流路(ml) K上記流体(&)を向流
状態で導入して前記伝熱部材を介して余熱を熱交換する
操作(1)とを順次(シ返す仁とを特徴とする全熱交換
方法。 (2)  伝熱部材としてと−トパイプを用−る特許請
求の範囲第(1)項記載の余熱交換方法。 (8)伝熱部材として内部に金属水素化物を内蔵し良伝
熱管を用ψる特許請求の範囲第(1)項記載の全熱交換
方法・
[Scope of Claims] (1) A fluid flow path (ml) is divided by a partition, and at least one heat transfer member is disposed passing through the partition and spanning both flow paths k. Using a residual heat exchange device in which a moisture absorbing material is fixed to the heat transfer member-1
A fluid (Ki) is introduced through the fluid channel (M), and a fluid ('b) having a temperature different from that of the original fluid &) is introduced in the other flow channel (B) in a countercurrent state to form the heat transfer member. Operation (1) of exchanging total heat through the fluid flow path (mu) k and the above fluid ('b)
and the operation (1) of introducing the fluid (&) in a countercurrent state to the other flow path (ml) and exchanging residual heat through the heat transfer member (returning the heat exchanger) sequentially. (2) The residual heat exchange method according to claim (1), which uses a pipe as a heat transfer member. (8) A metal hydride is incorporated inside as a heat transfer member. A total heat exchange method according to claim (1) using a heat exchanger tube.
JP12277381A 1981-08-05 1981-08-05 Whole heat exchange method Granted JPS5824791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12277381A JPS5824791A (en) 1981-08-05 1981-08-05 Whole heat exchange method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12277381A JPS5824791A (en) 1981-08-05 1981-08-05 Whole heat exchange method

Publications (2)

Publication Number Publication Date
JPS5824791A true JPS5824791A (en) 1983-02-14
JPH0240956B2 JPH0240956B2 (en) 1990-09-13

Family

ID=14844251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12277381A Granted JPS5824791A (en) 1981-08-05 1981-08-05 Whole heat exchange method

Country Status (1)

Country Link
JP (1) JPS5824791A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124778A (en) * 2011-12-13 2013-06-24 Daikin Industries Ltd Humidity control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219337A (en) * 1975-08-07 1977-02-14 Takasago Kogyo Kk Liquid fuel burner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219337A (en) * 1975-08-07 1977-02-14 Takasago Kogyo Kk Liquid fuel burner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124778A (en) * 2011-12-13 2013-06-24 Daikin Industries Ltd Humidity control device

Also Published As

Publication number Publication date
JPH0240956B2 (en) 1990-09-13

Similar Documents

Publication Publication Date Title
US6003327A (en) Method and apparatus for cooling warm moisture-laden air
US5890372A (en) Air conditioning system for cooling warm moisture-laden air
SU1342514A1 (en) Moisture-heat-exchanger of respiratory system based on chemically bound oxygen
US3398510A (en) Humidity changer
US5727394A (en) Air conditioning system having improved indirect evaporative cooler
US4113004A (en) Air conditioning process
US5580369A (en) Adsorption air conditioning system
JPH0118335B2 (en)
RU2008147120A (en) CHEMICAL HEAT PUMP WORKING WITH HYBRID SUBSTANCE
US20080276640A1 (en) Evaporative cooler and desiccant assisted vapor compression AC system
US9174164B2 (en) Apparatus for dehumidifying gas and methods of use
JPH08189667A (en) Dehumidifying-humidifying device
US4014380A (en) Air conditioning process
JP2002126441A (en) Desiccant dehumidifying device and desiccant air- conditioning system
JPS5824791A (en) Whole heat exchange method
CN105953632A (en) Heat mass weak coupling adsorbent coating and heat exchanger utilizing adsorbent coating
JP7032076B2 (en) Fiber structure and its manufacturing method
JP5662545B1 (en) High performance total heat exchanger
JP2002115868A (en) Desiccant air conditioning system
JP2000356481A (en) Heat exchanger, heat pump and dehumidifier
CN114383242A (en) Fresh air system
JPH0115780B2 (en)
JP3594486B2 (en) Moisture exchange element
JP2000233131A (en) Adsorbent, humidity adjuster provided with the adsorbent, adsorption refrigerator, adsorption air conditioner and adsorption heat transformer
JP3543752B2 (en) Humidity control ventilator