JPS582365B2 - Renzokushikihishiyokubunsekisouchi - Google Patents

Renzokushikihishiyokubunsekisouchi

Info

Publication number
JPS582365B2
JPS582365B2 JP50102116A JP10211675A JPS582365B2 JP S582365 B2 JPS582365 B2 JP S582365B2 JP 50102116 A JP50102116 A JP 50102116A JP 10211675 A JP10211675 A JP 10211675A JP S582365 B2 JPS582365 B2 JP S582365B2
Authority
JP
Japan
Prior art keywords
light
circuit
monostable multivibrator
flow cell
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50102116A
Other languages
Japanese (ja)
Other versions
JPS5226273A (en
Inventor
内垣隆年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkray Inc
Original Assignee
Kyoto Daiichi Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Daiichi Kagaku KK filed Critical Kyoto Daiichi Kagaku KK
Priority to JP50102116A priority Critical patent/JPS582365B2/en
Publication of JPS5226273A publication Critical patent/JPS5226273A/en
Publication of JPS582365B2 publication Critical patent/JPS582365B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は連続的な比色分析装置に於て、比色測定を行な
うための光学測定部とその信号処理に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical measuring section for performing colorimetric measurements in a continuous colorimetric analyzer and its signal processing.

一般に連続式比色分析装置に於て河川水や工場廃水など
を対象とする自動分析を実施しようとする場合、フロー
セル内での懸濁物質などの挙動は比色測定を行なう上で
重大な誤差原因となる。
Generally, when attempting to perform automatic analysis of river water, industrial wastewater, etc. using a continuous colorimetric analyzer, the behavior of suspended solids within the flow cell causes serious errors in colorimetric measurements. Cause.

このような懸濁物質による影響はフローセル内に於て光
略を移動する際に反射および吸収現象を生じ、本来特定
の液体含有物質が発色した結果生じる吸収とは異なった
ものとなる。
The influence of such suspended matter causes reflection and absorption phenomena when light travels within the flow cell, and is different from the absorption that originally occurs as a result of color development of a specific liquid-containing substance.

更には試料液中の懸濁物質がフローセル内に滞留したり
、内壁に附着したりすると測定値に著しく誤差を与える
Furthermore, if suspended matter in the sample solution remains in the flow cell or adheres to the inner wall, it will cause a significant error in the measured value.

このような懸濁物質などの影響をなくす目的として7ロ
ーセル内に連続的又は定期的に気泡を入れる方法がある
In order to eliminate the influence of such suspended substances, there is a method of continuously or periodically introducing air bubbles into the 7-row cell.

一般に気液界面は吸着性が強くフローセルのような管路
に空気泡を流入せしめることにより洗浄効果が発揮され
懸濁物質が滞留することは容易に解消できる。
Generally, gas-liquid interfaces have strong adsorption properties, and by allowing air bubbles to flow into a conduit such as a flow cell, a cleaning effect is exerted and the accumulation of suspended matter can be easily eliminated.

しかしながらフローセル内に気泡を入れることにより気
泡力幻ローセルの光路をさえぎるたびに光源からの光束
の一部が反射され透過光量が大きく変動するのは明らか
である。
However, it is clear that each time the bubble force blocks the optical path of the flow cell by introducing a bubble into the flow cell, a portion of the light beam from the light source is reflected and the amount of transmitted light varies greatly.

一部の報告によるとこの気泡による光反射の影響をなく
し連続した安定な測定を行なう目的で補助検知器をフロ
ーセルの一部に設け気泡による反射光を検知することに
よって気泡が光路に達するのを事前に確認し、電気的又
は機械的に増幅回路又は指示計器の機能を保持状態にす
ることによって試料液のみの透過光による指示を得る方
法が用いられている。
According to some reports, an auxiliary detector is installed in a part of the flow cell in order to eliminate the influence of light reflection from bubbles and to perform continuous and stable measurements. A method is used in which an indication is obtained from the transmitted light of only the sample liquid by checking in advance and electrically or mechanically holding the function of the amplifier circuit or indicator.

しかしながらこのような補助検知器の設置は装置を複雑
にするという欠点がある。
However, the installation of such an auxiliary detector has the disadvantage of complicating the device.

本発明は前述の補助検知器を用いずに同様の効果を得る
ことが出来る測定装置を提供するものである。
The present invention provides a measuring device that can obtain similar effects without using the aforementioned auxiliary detector.

すなわちプローセル内の気泡が光路に入る過程に於で液
層と気層の境界面での反射現象によって急激な透過光量
の変化を伴なう。
That is, in the process of bubbles entering the optical path, the amount of transmitted light changes rapidly due to a reflection phenomenon at the interface between the liquid layer and the gas layer.

したがってこの現象による受光検知器の初期の過渡信号
出力を巧みに信号処理することによって気泡が光路に入
ることが出来気泡による比色値への影響をなくし連続し
て安定な渭淀を行なうことが出来る。
Therefore, by skillfully processing the initial transient signal output of the photodetector due to this phenomenon, bubbles can enter the optical path, eliminating the effect of bubbles on the colorimetric value, and allowing continuous and stable stagnation. I can do it.

以下に本発明の実施例について説明する。Examples of the present invention will be described below.

第1図に於て1は光源ランプ、2はスリット、3はコリ
メートレンズ、4は単色光学フィルター、5はスリット
、6はフローセル、7は試料液、8は気泡、9は受光検
知器である。
In Figure 1, 1 is a light source lamp, 2 is a slit, 3 is a collimating lens, 4 is a monochromatic optical filter, 5 is a slit, 6 is a flow cell, 7 is a sample liquid, 8 is a bubble, and 9 is a light receiving detector. .

第1図に於て光源1からの光束はコリメートレンズ3、
単色光学フィルター4、によって特定波長の光束となり
フローセル6に入射する。
In Fig. 1, the luminous flux from the light source 1 is transmitted through the collimating lens 3,
A monochromatic optical filter 4 converts the light into a light beam of a specific wavelength, which enters the flow cell 6 .

さらに試料液7により吸収を受け受光検知器9によって
検出され電気信号に変換される。
Further, it is absorbed by the sample liquid 7, detected by the light receiving detector 9, and converted into an electrical signal.

周知のように試料液による光の吸収と試料液濃度とはラ
ンバート・ベールの法則に従った関係を示し受光検知器
9の電気信号より濃度を知ることが出来る。
As is well known, the absorption of light by the sample liquid and the concentration of the sample liquid have a relationship according to the Lambert-Beer law, and the concentration can be determined from the electric signal of the light receiving detector 9.

第2図は第1図に於て気泡が光路に達したときに生じる
光の反射のようすを示す図である。
FIG. 2 is a diagram showing how the light is reflected when the bubble reaches the optical path in FIG. 1.

このように気泡が光路に達してから通過するまでの受光
検知器の信号出力波形の一例を第3図、及び第4図に示
す。
FIGS. 3 and 4 show examples of signal output waveforms of the light receiving detector from when the bubble reaches the optical path to when the bubble passes through the optical path.

第3図は試料による吸収が少ない場合、第4図は試料に
よる吸収が多い場合の信号出力波形であり横軸は時間軸
、縦軸は受光検知器の信号強度を任意単位で示したもの
である。
Figure 3 shows the signal output waveform when the absorption by the sample is small, and Figure 4 shows the signal output waveform when the absorption by the sample is large. The horizontal axis is the time axis, and the vertical axis shows the signal intensity of the photodetector in arbitrary units. be.

第4図は試料による吸収が多い場合であって気泡が光路
を通過する際に中央部で出力が増加しているのは気泡に
よる反射現象によって光束の減少を伴うが光路内に気層
が形成されることによって吸収の多い試料液のみの場合
よりも吸収が少なくなり透過光束が増加するためである
Figure 4 shows a case where there is a lot of absorption by the sample, and when the bubble passes through the optical path, the output increases in the center because the light flux decreases due to the reflection phenomenon by the bubble, but a gas layer forms in the optical path. This is because the absorption decreases and the transmitted light flux increases compared to the case of using only the highly absorbing sample liquid.

ここでAで示す信号波形の急激な変化に着目する必要が
ある。
Here, it is necessary to pay attention to the sudden change in the signal waveform indicated by A.

なぜならこの受光検知器の出力波形の特性が本発明の重
要な要素となるからである。
This is because the characteristics of the output waveform of the photodetector are an important element of the present invention.

このように気泡が光路に達した瞬時の波形は試料液の濃
度に関係なく常に試料液による信号出力より急激に低下
することである。
As described above, the waveform at the instant when the bubble reaches the optical path always drops sharply from the signal output due to the sample liquid, regardless of the concentration of the sample liquid.

この現象は第2図に於て気泡の上部は明らかに表面張力
によって球状を呈しており、光路に達した瞬時には光源
からの光束の一部は全反射され気泡の上部は一時的に等
価完全吸収体として作用し光路がさえぎられることに基
づくものである。
This phenomenon can be seen in Figure 2, where the upper part of the bubble clearly assumes a spherical shape due to surface tension, and at the moment it reaches the optical path, a part of the luminous flux from the light source is totally reflected, and the upper part of the bubble is temporarily spherical. This is based on the fact that it acts as a perfect absorber and the optical path is blocked.

第5図は以上の原理を応用した連続比色分析装置の構成
の一例である。
FIG. 5 shows an example of the configuration of a continuous colorimetric analyzer to which the above principle is applied.

11は連続比色反応装置、12は光源装置、13はフロ
ーセル、14は受光検知器、15はプリアンプ、16は
微分回路、17は単安定マルチバイブレーター、18は
スイッチ回路、19はサンプルホールド回略、20は指
示計回路、21は記録計である。
11 is a continuous colorimetric reaction device, 12 is a light source device, 13 is a flow cell, 14 is a photodetector, 15 is a preamplifier, 16 is a differential circuit, 17 is a monostable multivibrator, 18 is a switch circuit, and 19 is a sample hold circuit. , 20 is an indicator circuit, and 21 is a recorder.

而して第5図に於てプリアンプ15、によって増幅され
た受光検知器14の信号出力はスイッチ回路18に接続
され、一方は微分回路16に接続されている。
In FIG. 5, the signal output of the photodetector 14 amplified by the preamplifier 15 is connected to a switch circuit 18, and one side is connected to a differentiation circuit 16.

微分回路16では前述のA波形によって微分パルスが発
生し単安定マルチバイブレーター17をトリガーする、
単安定マルチバイブレーク−17の出力はスイッチ回路
」8に接続されその周期は一つの気泡がすくなくとも光
路を移動するに要する時間に設定されており本例では約
03秒である。
In the differentiation circuit 16, a differentiation pulse is generated by the above-mentioned A waveform and triggers the monostable multivibrator 17.
The output of the monostable multi-bibreak 17 is connected to a switch circuit 8, and its period is set to the time required for at least one bubble to move along the optical path, which in this example is about 0.3 seconds.

スイッチ回路18は単安定マルチバイブレーター17が
動作状態にあるときにスイッチを開にし、プリアンプ1
5の出力信号をサンプルホールド回路18に導かないよ
うに動作する。
The switch circuit 18 opens the switch when the monostable multivibrator 17 is in operation, and the preamplifier 1
5 is operated so as not to lead the output signal of No. 5 to the sample hold circuit 18.

このようにフローセル13に於てスイッチ回路18が開
状態になるのは気泡が光路を横断している時間であり、
又閉状態となるのは、光路か試料液で允たされている場
合である。
In this way, the switch circuit 18 in the flow cell 13 is in the open state during the time when the bubbles are crossing the optical path.
The closed state occurs when the optical path is filled with sample liquid.

またサンプルホールド回路19の動作はスイツヂ回路1
8が開状態になる直前の信号をホールドするので、ホー
ルド回路19の出力は常に試料液による値を示し安定な
記録計の指示が得られることになる。
The operation of the sample and hold circuit 19 is similar to that of the switch circuit 1.
Since the signal immediately before the circuit 8 becomes open is held, the output of the hold circuit 19 always shows the value due to the sample liquid, and a stable recorder indication can be obtained.

第6図は以上説明した各部の動作波形であり、aはプリ
アンプ15の出力電圧波形bは微分回路16の出力電圧
波形Cは単安定マルチバイブレーク−17の出力電圧波
形dはスイッチ回路18の動作状態図、eはサンプルホ
ールド回路19の出力電圧波形である。
FIG. 6 shows the operation waveforms of each part explained above, where a is the output voltage waveform of the preamplifier 15, b is the output voltage waveform of the differentiating circuit 16, C is the output voltage waveform of the monostable multi-vibration circuit 17, and d is the operation of the switch circuit 18. In the state diagram, e is the output voltage waveform of the sample and hold circuit 19.

次に回路動作について説明する。Next, circuit operation will be explained.

A信号を光検出器14で受光した信号はプリアンプ15
で増幅され、スイッチ回路18と微分回路16に入る。
The A signal received by the photodetector 14 is sent to the preamplifier 15.
and enters the switch circuit 18 and the differentiator circuit 16.

スイッチ回路18は、ブリアンプ15とサンプルホール
ド回路19間がOFF状態となるので、指示回路20、
記録計21は何等異常変化も見られず記録される。
Since the switch circuit 18 is in an OFF state between the preamplifier 15 and the sample hold circuit 19, the instruction circuit 20,
The recorder 21 records no abnormal changes.

一方、微分回路16はプリアンプ15の信号波形aで微
分パルス信号bを発生させ単安定マルチバイブレーター
回路17の信号波形Cをトリガーする。
On the other hand, the differentiating circuit 16 generates a differential pulse signal b based on the signal waveform a of the preamplifier 15 and triggers the signal waveform C of the monostable multivibrator circuit 17.

単安定マルチバイブレーター回路17は、通常、安定な
状態で保持しているが、微分パルス信号によりトリガー
信号が印加されたため保持状態が回路定数で予め定めら
れた時間だけ反転してスイッチ回路18を導通し(信号
波形d)サンプルホールド回路191こ入る。
The monostable multivibrator circuit 17 is normally held in a stable state, but as a trigger signal is applied by the differential pulse signal, the held state is reversed for a predetermined time period using a circuit constant, and the switch circuit 18 is turned on. (signal waveform d) A sample and hold circuit 191 is input.

サンプルホールド回路19は演算増幅器とコンデンサの
素子で回路を構成し(図示せず)入力信号は予め定めら
れた期間にサンプリングし、次のサンプリング時間まで
ココンデンサに記憶され指示回路20、記録計21は何
等問題なく指示および記録する(信号波形e)。
The sample and hold circuit 19 is composed of an operational amplifier and a capacitor (not shown), and the input signal is sampled in a predetermined period and stored in the co-capacitor until the next sampling time. is instructed and recorded without any problems (signal waveform e).

而して、本発明では比色測定及び気泡の検出の二つの動
作を一つの受光検出器によって行うので従来技術の如く
他の補助機器を用いる必要がないという特徴がある。
The present invention is characterized in that the two operations of colorimetric measurement and bubble detection are performed by one light receiving detector, so there is no need to use other auxiliary equipment as in the prior art.

又フローセル内を通過する気泡の液層と気層との境界面
での光の反射現象を捕捉して急激な透過光量の変化に対
応して急激な変化をする信号波形Aを信号として採用し
、フローセル内を気泡が通過し光路を横断している時は
スイッチ回路を開状態にして非測定状態となし、フロー
セル内が試料液で満されている時はスイッチ回路を閉彷
態にして比色測定を行うので、気泡が通過する時の検出
が確実で、且つ気泡が通過しても安定した精度の高い測
定が行い得るという効果がある。
In addition, the signal waveform A, which captures the light reflection phenomenon at the interface between the liquid layer and the gas layer of bubbles passing through the flow cell, and rapidly changes in response to a sudden change in the amount of transmitted light, is adopted as the signal. When bubbles are passing through the flow cell and crossing the optical path, the switch circuit is opened and the non-measurement state is established, and when the flow cell is filled with sample liquid, the switch circuit is closed and the comparison is made. Since color measurement is performed, it is possible to reliably detect when a bubble passes, and even when a bubble passes, stable and highly accurate measurement can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明に於ける光学測定部の説明図
、第3図及び第4図は受光検知器の信号波形図で横軸に
時間、縦軸に信号強度を示してある。 第5図は本発明装置のブロックダイヤグラム、第6図は
本発明装置に於ける各部の動作波形図である。 6.13・・・フローセル、8・・・気泡、9,14・
・・受光検知器、16・・・微分回路、18・・・スイ
ッチ回路。
Figures 1 and 2 are explanatory diagrams of the optical measuring section in the present invention, and Figures 3 and 4 are signal waveform diagrams of the photodetector, with the horizontal axis showing time and the vertical axis showing signal strength. . FIG. 5 is a block diagram of the apparatus of the present invention, and FIG. 6 is an operational waveform diagram of each part in the apparatus of the present invention. 6.13...Flow cell, 8...Bubble, 9,14.
... Light receiving detector, 16... Differential circuit, 18... Switch circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 フローセル内に試料液とともに気泡が流入する状態
下で、気泡検知と比色測定とを行うようになし、該フロ
ーセル内を通過する気泡の液層と気層との境界面での光
の反射現象を捕捉して急激な透過光量の変化に対応して
急激な変化をする信号波形Aを出力する1つの受光検出
器14と、該受光検出器14からの信号波形Aによって
微分パルスを発生する微分回路16と、該微分回略16
に接続した単安定マルチバイブレータ17と、前記受光
検出器14及び単安定マルチバイブレーター17に接続
したスイッチ回路18とから成り、前記スイッチ回路1
8は、前記単安定マルチバイブレーターが動作状態にあ
るときスイッチを開いて非測定状態になし、該単安定マ
ルチバイブレーターが不作動のときスイッチを閉じて比
色の測定を行うように成した連続式比色分析装置。
1 Bubble detection and colorimetric measurements are performed under conditions in which air bubbles flow into the flow cell along with the sample liquid, and the reflection of light at the interface between the liquid layer and air layer of the air bubbles passing through the flow cell is performed. One light-receiving detector 14 outputs a signal waveform A that captures a phenomenon and rapidly changes in response to a sudden change in the amount of transmitted light, and a differential pulse is generated by the signal waveform A from the light-receiving detector 14. Differentiating circuit 16 and differentiating circuit 16
The switch circuit 1 consists of a monostable multivibrator 17 connected to the photodetector 14 and a switch circuit 18 connected to the monostable multivibrator 17.
8 is a continuous type that is configured to open a switch when the monostable multivibrator is in an operating state to put it in a non-measuring state, and close the switch to perform colorimetric measurement when the monostable multivibrator is in an inactive state. Colorimetric analyzer.
JP50102116A 1975-08-25 1975-08-25 Renzokushikihishiyokubunsekisouchi Expired JPS582365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50102116A JPS582365B2 (en) 1975-08-25 1975-08-25 Renzokushikihishiyokubunsekisouchi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50102116A JPS582365B2 (en) 1975-08-25 1975-08-25 Renzokushikihishiyokubunsekisouchi

Publications (2)

Publication Number Publication Date
JPS5226273A JPS5226273A (en) 1977-02-26
JPS582365B2 true JPS582365B2 (en) 1983-01-17

Family

ID=14318816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50102116A Expired JPS582365B2 (en) 1975-08-25 1975-08-25 Renzokushikihishiyokubunsekisouchi

Country Status (1)

Country Link
JP (1) JPS582365B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4343552A (en) * 1979-12-28 1982-08-10 Purecycle Corporation Nephelometer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3418053A (en) * 1964-08-28 1968-12-24 Technicon Instr Colorimeter flow cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3418053A (en) * 1964-08-28 1968-12-24 Technicon Instr Colorimeter flow cell

Also Published As

Publication number Publication date
JPS5226273A (en) 1977-02-26

Similar Documents

Publication Publication Date Title
US3998591A (en) Spectrochemical analyzer using surface-bound color reagents
CA1130604A (en) Oil-in-water method and detector
US3300282A (en) Method and apparatus for hydrogen sulfide determination
US4193694A (en) Photosensitive color monitoring device and method of measurement of concentration of a colored component in a fluid
US4457624A (en) Suspended sediment sensor
EP0340184A3 (en) Method and apparatus for determining the concentration of a substance which is bonded to particles in a flowing medium
US3200700A (en) Photoelectric comparison apparatus for indicating the amount of contamination in liquids
US3404962A (en) Apparatus for detecting a constituent in a mixture
US3013466A (en) Turbidity measuring instrument
JPS582365B2 (en) Renzokushikihishiyokubunsekisouchi
US4682031A (en) Infrared gas analyzer
JPH0228541A (en) Optical concentration detector
US4120659A (en) Sulfur analysis
US4240752A (en) Process and apparatus for recognizing cloud disturbances in a sample solution which is being subjected to absorption photometry
CN208060369U (en) Total chromium water quality on-line checking analyzer
US3459947A (en) Radiation sensitive apparatus for analyzing gas
RU2139519C1 (en) Method determining concentration of mechanical impurities in liquid and gaseous media
JPH11344443A (en) Highly sensitive turbidimeter for measuring filtered water
SU905685A1 (en) Leak detector
CN2700872Y (en) Colorimetric apparatus for water quality organic monitoring instrument
SU1550376A1 (en) Method of refractometric detecting in microcolumn liquid chromatography
SU1679284A1 (en) Apparatus for determination of sizes of particles in running media
JPS5713316A (en) Method and device for measurement of sample flowing at low speed
RU2668323C1 (en) Method of determination of pollution of liquid and gas-fuel environments and device for its implementation
JPH06160368A (en) Method and device for analyzing sulfur content