JPS5823593A - Sintered flux for submerged arc welding - Google Patents

Sintered flux for submerged arc welding

Info

Publication number
JPS5823593A
JPS5823593A JP12085481A JP12085481A JPS5823593A JP S5823593 A JPS5823593 A JP S5823593A JP 12085481 A JP12085481 A JP 12085481A JP 12085481 A JP12085481 A JP 12085481A JP S5823593 A JPS5823593 A JP S5823593A
Authority
JP
Japan
Prior art keywords
flux
slag
less
consumption rate
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12085481A
Other languages
Japanese (ja)
Other versions
JPS6218277B2 (en
Inventor
Naoki Okuda
直樹 奥田
Masaharu Rokujo
六条 正治
Akira Nakano
彰 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12085481A priority Critical patent/JPS5823593A/en
Publication of JPS5823593A publication Critical patent/JPS5823593A/en
Publication of JPS6218277B2 publication Critical patent/JPS6218277B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3608Titania or titanates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To obtain a titled flux where the flux consumption rate is low and the peeling property of the slag and the stability of the arc are high, by containing a specific composition of SiO2, TiO2, Al2O3, ZrO2, CaF2 and MgO, and blending Fe and etc. as required. CONSTITUTION:A flux for submerged arc welding which contains 15-37wt% SiO2, 25-44wt% TiO2, 5-28wt% Al2O3, <=21wt% ZrO2, <=10wt% CaF2, and <=12wt% MgO and has <=0.5 ratio of ZrO2/TiO2 is obtained by the sintering method, and consists of <=65% rough particles of >=20 meshes and <=35% fine particles of <=48 meshes in respect to particles. Further, <=10% BaO is blended in the flux to suppress the generation of pockmarks. Physical properties of a weld metal are improved and the flux consumption rate is reduced by blending <=40% iron powder and/or <=8% metallic powder other than iron powder.

Description

【発明の詳細な説明】 本発明性7フツクス消費率(フラックス消費量/vフイ
ヤ溶融量)の少ない潜弧溶接用焼結型フラックスに関す
るものであり、更にフラックス消費率が少ないことでス
ラグ剥離性及びアーク安定性をも向上させた澄弧溶接用
焼結型フラックスに関するものである。
Detailed Description of the Invention The present invention relates to a sintered flux for submerged arc welding that has a low flux consumption rate (flux consumption amount/v fire melting amount), and furthermore, the low flux consumption rate improves slag removability. The present invention also relates to a sintered flux for clear arc welding that also has improved arc stability.

潜弧連接方法は手溶接法やガスシールド溶接方法等と比
較して高電流の使用が可能であるから、高能率連接方法
として賞月されている。この方法は、予め散布されたフ
ラックス内(メルトパートン内)でアーク溶接するもの
で、溶接熱によって溶解したフラックスは溶接全翼のV
−ルドや冶金反応等に係わり、溶接部の健全性に対して
大きな役割9を果すと共に、とニームやアーク光を発生
しないから作−環境からみても極めて優れた方法と考え
られている。これらの効果はフラックスの成分によって
左右されることが多く、フラックス成分組成については
、これ迄種々の研究がされ溶接の適用例が増大している
。しかるに適用例の増大に伴なって新しい問題が認識さ
れるに至り、一つの転換期に来ている。その第1はスラ
グの生成量(フラックスの消費量)でありその第2はス
ラグの剥離性であるが、本発明者等の研究によると、ス
ラグの生成量とスラグの剥離性の間に重大な関係がある
ことも分かつてきた。
Since the submerged arc connection method allows the use of higher currents than manual welding, gas shield welding, etc., it has been praised as a highly efficient connection method. In this method, arc welding is performed within flux that has been sprinkled in advance (inside the melt parton), and the flux melted by welding heat is applied to the V of the welding blade.
It is involved in metallurgical reactions, metallurgical reactions, etc., and plays a major role in the integrity of the welded joint.It is also considered to be an extremely excellent method from the production environment point of view, as it does not generate neem or arc light. These effects are often influenced by the components of the flux, and various studies have been conducted on the composition of flux components, and the number of applications for welding is increasing. However, as the number of applications increases, new problems have come to be recognized, and we are now at a turning point. The first is the amount of slag produced (amount of flux consumed), and the second is the removability of the slag.According to research by the present inventors, there is a significant difference between the amount of slag generated and the removability of the slag. I have come to realize that there is a relationship.

従来汎用されているフラックスのフラックス消費率は概
略1.2であり、多いもので1.6を越えるとともある
。即ちマイヤ使用量に対して少なくとも同等以上のフラ
ックスが消費され、スラグ化していることになり、潜弧
溶接の経済性にとって重要なファクターを占めている。
The flux consumption rate of conventionally used fluxes is approximately 1.2, and it is said that it exceeds 1.6 in most cases. In other words, at least the same amount of flux as the amount of Mayer used is consumed and turned into slag, which is an important factor for the economic efficiency of submerged arc welding.

他方潜弧溶接による高能率化を一層顕著なものとする目
的で厚板の大入熱壷電極溶接が進められているが、厚鋼
板を多層溶接する場合の難点としては、開先底部特に1
層lバス溶接部におけるスラグの低剥離性を挙げること
ができる。スラグの剥離性を良好にする手段としては、
■開先角度を広げる方法、■溶接条件に制限を加え低電
流、低速度で溶接を行なう方法、■第1図に示す如く開
先底部にCO8溶接部1、その上に潜弧溶接部−を積層
する方法醇が知られている。しかし開先角度を広けると
溶接材料の使用量が多くなり、溶接経済性という点で別
の問題を発生するし又せっかくの大入熱化や多電極化に
もかかわらず溶接熱影響部の脆化をともなう等スラグ剥
離性の数倍による作業能率の向上を相殺してしまうとい
う欠点がある。又他の溶接方法と併用することも考えら
れるが作業を繁雑にするので、むしろ開先角度を狭くし
て一層O高能率化を図9つつスラグの剥離性を別の手段
で改良する方向が強まっている。しかし1層1パス溶接
部は一般に溶接条件許容範囲が狭く、低電流及び低速度
の条件を設定するのが菅通であるが、開先角度を狭くす
ることによって更にf#接条件許容範囲が狭ばまるので
、この様な1層1バス溶接部におけるスラグ剥離性の数
倍だけでなく、アークの安定性を更に向上させることが
必要になった。そこでスラグ剥離性の劣化やアーク不安
定の原因等を追求したところ、溶接時に生成するスラグ
の量によるところが大きいことが分かp、前述の目的「
フラックス消費率の低減」を達成すればスラグ生成量が
減少してスラグの剥離性が良好になり、且つアークの安
定性も向上するとの知見を得て本発明の完成に至った。
On the other hand, high heat input pot electrode welding of thick steel plates is being promoted in order to make the high efficiency achieved by submerged arc welding even more remarkable.
One example of this is the low peelability of slag in the layer I bus weld. As a means to improve the slag releasability,
■Method of widening the groove angle, ■Method of restricting welding conditions and performing welding at low current and low speed, ■As shown in Fig. 1, CO8 weld 1 at the bottom of the groove, and a submerged arc weld above it. The method of laminating the layers is known. However, widening the groove angle increases the amount of welding material used, which causes another problem in terms of welding economy.Also, despite the large heat input and multi-electrode, the welding heat affected zone There is a drawback that the improvement in work efficiency due to several times the slag removability is offset by embrittlement. It is also conceivable to use it in conjunction with other welding methods, but since this would complicate the work, it would be better to narrow the groove angle to further improve the O efficiency while improving the slag releasability by other means. It's getting stronger. However, for single-layer, one-pass welds, the allowable range of welding conditions is generally narrow, and Sugami sets the conditions of low current and low speed, but by narrowing the groove angle, the allowable range of f# contact conditions is further increased. Because of the narrowing, it became necessary not only to improve the slag removability several times as much as in such a one-layer, one-bus weld, but also to further improve the arc stability. When we investigated the causes of deterioration in slag removability and arc instability, we found that the cause was largely due to the amount of slag generated during welding, and we found that
The present invention was completed based on the knowledge that if a reduction in flux consumption rate was achieved, the amount of slag produced would be reduced, slag peelability would be improved, and arc stability would also be improved.

即ち本発明はフラックス組成及びその製造形式を特定す
ることによってフラックス消費率を低減し、同時にスラ
グ剥離性及びアーク安定性を合わせて向上することを目
的とするもので、この目的を達成し得るr至った7フツ
クスとは、Sin。
That is, the present invention aims to reduce the flux consumption rate by specifying the flux composition and its manufacturing method, and at the same time improve the slag removability and arc stability. The 7 futsus that arrived is Sin.

:16〜8丁饅(重量哄の意味、以下同じ)、T息0.
:26〜449II%jl、O5:5〜28−1zro
、≦gts%cair、≦1(1、MgO≦1!IIt
含有し、且つZrO,/TIO,≦0.50を満足する
焼結型の7フツクスであり必要によre粉或いは合金用
の金属粉等を配合することができる。尚本フヲツクスは
1011.以下の3aσを含んでいてもよい、尚上記成
分組成を満足する限り、フラックス消費率を低減できる
が粒度構成により7フツクス消費率や溶接作業性が異な
ることを知ったので、本明細書ではこれらについても説
明を加える。
: 16-8 chouman (meaning of weight, the same applies hereafter), T breath 0.
:26-449II%jl, O5:5-28-1zro
, ≦gts%cair, ≦1 (1, MgO≦1!IIt
It is a sintered type 7-box which contains ZrO, /TIO, ≦0.50, and can be blended with re powder or metal powder for alloying if necessary. Naomoto Fox is 1011. The following 3aσ may be included.As long as the above component composition is satisfied, the flux consumption rate can be reduced, but as we have learned that the flux consumption rate and welding workability differ depending on the particle size structure, we will not discuss these in this specification. I will also add an explanation.

まず本発明フラックスにおける成分組成の限定理由を示
す。
First, the reason for limiting the component composition in the flux of the present invention will be explained.

810、は本質的にスラグ形成剤であるが含有量が多く
なるにつれてフラックス消費率が減少する傾向にある。
810 is essentially a slag forming agent, but as its content increases, the flux consumption rate tends to decrease.

しかしながら含有量の増加にともないビード巾が狭くな
9、ビード中央部にポックマーク中へりンボーンが発生
してビード外観を劣化させると共にスラグの剥離性1劣
化させるので87哄が上限である。逆に15哄未満では
フラックスの消費率が低減されないと共に、溶接中に吹
上げ現象が生じたpビードの蛇行を招き溶接作業性が劣
化する。従って5to2c適正範囲は16〜8丁−と定
めた。
However, as the content increases, the bead width becomes narrower9, pockmarks and herringbones occur in the center of the bead, deteriorating the bead appearance and deteriorating the slag releasability1, so the upper limit is 87 g. On the other hand, if it is less than 15 liters, the consumption rate of flux is not reduced, and the p-bead meandering occurs due to the blow-up phenomenon during welding, resulting in deterioration of welding workability. Therefore, the appropriate range for 5to2c was determined to be 16 to 8 teeth.

丁108の含有量を高めると、Sin、とは逆にビード
外観や形状は良好になるがフラックス消費率は増加する
。又含有量を高め過ぎるとしわ状ビードが形成されてア
ンダーカットを発生すること%あるので好ましくない、
このためTlO2の上限は44sとした。逆にTlO2
が25%未満ではスラグが焼付き易く剥離性を損なうば
かりでなくビード形状が凸形となるのでTlO2の範囲
は!!6〜44嘔と定めた。
When the content of 108 is increased, the bead appearance and shape become better, but the flux consumption rate increases, contrary to the case of sine. Also, if the content is too high, wrinkled beads may be formed and undercuts may occur, which is undesirable.
Therefore, the upper limit of TlO2 was set to 44 s. On the contrary, TlO2
If it is less than 25%, the slag is likely to seize, which not only impairs the peelability but also makes the bead shape convex, so the range of TlO2 is limited! ! It was set as 6 to 44 vomits.

A#20.社、フラックス消費率に対して余り大きい影
響は及ぼさないが、溶接作業性を調整するのに有効な成
分である。しかし28哄を越えると凸型ビードとなる。
A#20. Although it does not have a large effect on the flux consumption rate, it is an effective component for adjusting welding workability. However, if it exceeds 28 yen, it becomes a convex bead.

又S−未満ではアークの安定性が劣化するためAl2O
3のm囲は5〜28−と定めた。
Also, if it is less than S-, the stability of the arc deteriorates, so Al2O
The m radius of 3 was determined to be 5 to 28-.

フラックス中KZτ0.を含有せしめておけばフラック
ス消費率が減少する。しかし21−を越えると溶融状態
のスラグが凝固するときに2層に分れて表層部の畷固が
速くなり、溶接時に発生するガスが十分に抜けきらない
状態で固化するため。
Flux medium KZτ0. If the flux is contained, the flux consumption rate will be reduced. However, if it exceeds 21-, when the molten slag solidifies, it will split into two layers, and the surface layer will solidify more quickly, and the gas generated during welding will solidify before it can fully escape.

溶接金属とスラグ下層部の間に発生ガスを残留した状態
となり、ビードに大きな凹凸を生じた9、ガスの跡が残
る。又zjO□は作業性に対してTie!!と同じ様な
傾向を示す成分であるが、含有量が多くなるにつれてビ
ード形状は巾が狭い凸型となり、特にZrO,/TIO
,の比率が高い場合にこの傾向が強くなってビード外観
や溶接作業性を損なう、しかし上記比率がO,SS以下
であれば良好な溶接性を得ることができる。
The generated gas remains between the weld metal and the lower layer of the slag, resulting in large unevenness on the bead 9 and gas traces. Also, zjO□ is a tie for workability! ! However, as the content increases, the bead shape becomes narrower and convex, especially for ZrO and /TIO.
When the ratio of , is high, this tendency becomes strong and impairs the bead appearance and welding workability. However, if the ratio is below O, SS, good weldability can be obtained.

cap2は本発明において溶接金属の衝撃性能を確保す
るために配合されるものである。しかし、含有量が多く
なり過ぎるとフラックスの消費率が増加し、又溶接時に
発生するガスが臭気をともなうので、上限を10哄とす
る。
cap2 is blended in the present invention to ensure the impact performance of the weld metal. However, if the content is too large, the consumption rate of flux will increase, and the gas generated during welding will be accompanied by an odor, so the upper limit is set at 10 liters.

MgOはスラグの焼付きを防止する上で不可欠であり、
又溶融スラグに適度のtj性t%危せるために含有され
るが、過量になると7フツクヌ消費率が増加し、ビード
表面にボッ?マークが生じるため1211以下が良い。
MgO is essential for preventing slag seizure,
Also, it is included in the molten slag to reduce the tj property, but if it is in excess, the consumption rate will increase and the bead surface will be exposed. A value of 1211 or less is preferable since marks are generated.

以上で本侮明の必須成分を説明したが、これらの他廖接
命属中に歩留まって溶接金属の物性を数倍するものとし
て鉄粉及び金属粉が挙げられる。
The essential components of the present invention have been explained above, and iron powder and metal powder can be mentioned as materials that can increase the yield and increase the physical properties of weld metal by several times.

叉鉄粉は溶接金属の高溶着化をもたらす作用も発揮する
自復りて開先内に鉄系充填材を配置する場合と同様フラ
ックス消費率を低減させる働きを示すが、余り過剰に入
れてフラックス消費率を低下し遥「ると溶接性が損なわ
れるので40−を上限と走める。鉄粉以外の合金粉は、
母材や溶接用ワイヤの成分によっても異なるが一般的に
は8sを上限とし、鉄粉及び金属粉は、いずれか一方配
合するだけでもよいが必要に応じて両方泥倉することも
ある。尚鉄粉系フラックスを用いたり、開先内に鉄系充
填材を配置して溶接する場合は、非鉄粉茶フラックスを
用いる場合や充填材を1iallLない場合に比べてフ
ラックス消費率は少なくなる傾向を示す− 尚上記以外の成分については潜弧溶接の実施に際して悪
影響を与えないI19、各種の成分を配合することがで
き、その種類及び配合量は夫々の目的に応じて自由に定
めれば良いが1代表的な成分としてBaOをと9上げて
説明する。BmOは本発明フラックスを用いたすみ肉潜
弧溶接等におけるlツクマークの生成を抑える効果があ
り、10−以下の含有量であればフラックス消費率を増
大させる仁ともな−、しかし10$t−越えると7ヲツ
クス消費率の増加だけでな(ビードのなじみを劣化させ
るので10哄以下で抑えることが望ましい。
Powdered iron powder also has the effect of increasing the adhesion of the weld metal. It also works to reduce the flux consumption rate, similar to when iron-based fillers are placed inside the groove. However, if too much is added, If the flux consumption rate is reduced too much, the weldability will be impaired, so the upper limit should be 40. Alloy powders other than iron powders are
Although it varies depending on the base material and the composition of the welding wire, the upper limit is generally 8s, and only one of the iron powder and the metal powder may be mixed, but if necessary, both may be mixed. When welding using iron powder-based flux or placing iron-based filler in the groove, the flux consumption rate tends to be lower than when using non-iron powder brown flux or when there is no filler. - In addition to the above ingredients, various ingredients can be blended in I19 that do not have an adverse effect on submerged arc welding, and the types and amounts can be determined freely according to each purpose. This will be explained with BaO as a representative component. BmO has the effect of suppressing the formation of marks during fillet submerged arc welding using the flux of the present invention, and if the content is less than 10%, it will increase the flux consumption rate. If it exceeds 7 liters, it will not only increase the consumption rate (it will deteriorate the bead conformability, so it is desirable to keep it below 10 liters).

上述のフラックス組成によってフラックス消費率が減少
する為には該フラックスが焼結法によって製造される焼
結型フラックスでなければならなi、即ちフラックスの
消費率を少なくすると、スラグの熱容量が少なくなるの
で、スラグの凝固速度は当然ながら早くなるが、溶接時
に発生したガスがメA/)パートンの外へ速やかに抜け
ない場合はガスを内包したt′tで凝固が完了し、ビー
ド形状に凹凸を生じた9、ポックマークを生じる等の不
都合が生じる。又一般にフラックスの嵩比重が高くなる
と上記現象の他、ビードが中高になり易いと−う問題が
ある。これらの現象を防止するには、フラックス粒子間
の空隙を広くシ、ガスの抜けを良くすることが必要であ
るが、溶融型フラックスで粒子を粗くした場合は嵩比重
が高くなってビード外観及び形状が劣化する。他方溶融
型7フツクスを発泡タイプとし嵩比重を低くすることも
不可能ではないが溶接金属中の拡散性水素が増加する傾
向にあり、いずれにしても問題が残るーこれに対し焼結
型フラックスではフラックス粒子を比較的粗く形成して
もビード外観が良好であり、且つ発生ガスが抜は易いの
で、フラックス消費率の低減に伴なうスラグの素速い凝
固にもかかわらず不都合社無i、又前述の様にスラグ凝
固速度の早いフラックスは概して高融点のものであるが
In order for the flux consumption rate to be reduced by the above-mentioned flux composition, the flux must be a sintered type flux produced by a sintering method, i.e., as the flux consumption rate is reduced, the heat capacity of the slag is reduced. Therefore, the solidification speed of the slag will naturally be faster, but if the gas generated during welding does not escape quickly to the outside of the parton, solidification will be completed at t't when the gas is contained, and the bead shape will become uneven. 9. Inconveniences such as pockmarks occur. In general, when the bulk specific gravity of flux increases, in addition to the above-mentioned phenomenon, there is a problem that the bead tends to become mid-height. To prevent these phenomena, it is necessary to widen the voids between flux particles to improve gas release, but if the particles are coarsened with molten flux, the bulk specific gravity becomes high and the bead appearance and The shape deteriorates. On the other hand, it is not impossible to make the molten type 7 flux a foam type to lower the bulk specific gravity, but this tends to increase the amount of diffusible hydrogen in the weld metal, and in any case, a problem remains.In contrast, the sintered type flux Therefore, even if the flux particles are formed relatively coarse, the bead appearance is good, and the generated gas is easily removed, so there are no inconveniences despite the rapid solidification of the slag that accompanies the reduction in flux consumption rate. Furthermore, as mentioned above, fluxes with a fast slag solidification rate generally have a high melting point.

溶融型フラックスは製造上の理由によって比較的低融点
であるから上記フラックス組成を採用してもフラックス
消費率の低減効果を得ることができず、又前述の如くビ
ード外観も悪くなる。これに対し焼結型のものは高融点
を満足しビード外観を損なうむとなくフラックス消費率
低減効果を遺憾無く発揮することができる。この様な条
件を満足する焼結型フラックスを使用して潜弧溶接を施
すことにより、入熱の大小や溶接速度の大小停の如何を
問わず、常にスラグ剥離性は良好で溶接作業能率の向上
を図ることができると共に、フラックス消費率が少なく
、経済的な潜弧溶接を行なうことができる。又溶接の結
果ビード外観及び形状並びに機械的性質の優れた溶接継
手を得ることができる。尚上記構成に近似のものとして
裏当てフラックスが知られているが、裏当てフラックス
は単にビードを支持するものである為元々溶融量が少す
く、表側への散布フラックスの様に溶融量が多い場合に
こそ、本発明における課題が重要になってくる。又表側
への散布フラックスは溶融金属に対する冶金反応或いは
アーク現象に対して重要な影響を発揮するから裏当てフ
ラックスの課題は表側への散布フラックスでは、解決課
題自体が異なる0例えば上記の公知フラックスにはフェ
ノール樹脂が含まれているので7フツクス同士の粘結性
が高まり浴融金属の支持機能を向上させるものであるが
、この様な点拡本発明の潜弧溶接におけるフラックスの
機能とは全く異なるところである。
Because molten flux has a relatively low melting point due to manufacturing reasons, even if the above-mentioned flux composition is employed, the effect of reducing the flux consumption rate cannot be obtained, and as described above, the appearance of the bead also deteriorates. On the other hand, the sintered type satisfies the high melting point and can fully exhibit the effect of reducing the flux consumption rate without damaging the bead appearance. By performing latent arc welding using a sintered flux that satisfies these conditions, slag removability is always good and welding work efficiency is improved regardless of the magnitude of heat input or the welding speed. In addition, it is possible to perform economical submerged arc welding with a low flux consumption rate. Further, as a result of welding, a welded joint with excellent bead appearance and shape and mechanical properties can be obtained. Note that backing flux is known as something similar to the above structure, but since backing flux simply supports the bead, the amount of melting is originally small, whereas the amount of melting is large like flux sprinkled on the front side. In these cases, the problem of the present invention becomes important. Furthermore, since the flux sprayed on the front side exerts an important influence on the metallurgical reaction of the molten metal or the arc phenomenon, the problem of the backing flux is different from that of the flux sprayed on the front side. contains phenolic resin, which increases the caking between the 7 fluxes and improves the supporting function of the bath molten metal. However, the function of the flux in the submerged arc welding of the present invention is completely It's different.

崗本発明に係る上述の7ツツクスは潜弧溶接′に用−て
はじめてその効果を発揮するものであり、その他の溶接
法、例えば帯状電極を用いる肉感溶接法(工Vクトロス
ラグ溶接)に適用する場合は、Vニール熱を得る為に大
量のスラグを形成する必要がToす、フラックス消費率
が却って増大するのみならず、スラグの剥離性も極めて
悪くなる。
The above-mentioned seven methods according to the present invention are effective only when used in submerged arc welding, and can also be applied to other welding methods, such as sensual welding using a strip electrode (V-cut slag welding). In this case, it is necessary to form a large amount of slag in order to obtain V-annealing heat, which not only increases the flux consumption rate but also makes the slag peelability extremely poor.

ところで上記のフラックスは、その粒度構成によっても
フラックス消費率に相違を生じることが分かったので説
明を加える。即ち本発明フラックスにおいてフラックス
粒子の粗いものを多くするとフラックス消費率が少なく
、逆に細か一粒子を多く含有させるとフラックス消費率
が増加する傾向があった。又粗い粒子を多く含有すると
、ビードの巾が狭くな9易く凹凸中ポックマークの発生
も多くなる。これに対し細かい粒子を多く含有させると
、溶接作業性を良好にするという効果もある。従ってフ
ラックス消費率とビード外観、形状および作業性の面か
ら本発明フラックスの最適粒度構成を求めたところ、2
0メツV二以上の粗い粒子を多く含有させた方がフラッ
クス消費率の面で有利であるが6M−を越えて含有する
とビード外観、形状が劣化し、又48メツVユ以下の粒
子が86−を越えると7ツツクス消費率が多くなり好ま
しくない、よって20メツVユ以上の粗大粒子t−6I
S1&以下、48メツVユ以下の微細粒子を861&以
下とするのが好適であるとの結論に到達した。
By the way, it has been found that the flux consumption rate of the above-mentioned flux varies depending on its particle size structure, so an explanation will be added. That is, in the flux of the present invention, when the number of coarse flux particles is increased, the flux consumption rate decreases, whereas when the number of fine particles is increased, the flux consumption rate tends to increase. Furthermore, if a large amount of coarse particles is contained, the width of the bead tends to be narrow, and pock marks are likely to occur in the unevenness. On the other hand, when a large amount of fine particles is contained, welding workability is improved. Therefore, the optimum particle size composition of the flux of the present invention was determined from the viewpoints of flux consumption rate, bead appearance, shape, and workability.
It is advantageous in terms of flux consumption rate to contain more coarse particles with a diameter of 0 METSU V2 or more, but if the content exceeds 6M, the appearance and shape of the bead will deteriorate, and if particles with a diameter of 48 METSU VU or less If it exceeds -, the consumption rate of 7 tx will increase, which is undesirable.
It was concluded that it is preferable to set the fine particles of S1& or less and 48 METSU VU or less to 861& or less.

上記構成の焼結型フラックスはフラックス消費率が少な
く且つ剥離性の良好なスラグを与えるという点で所期の
目的を十分に達成するものであるが、該フラックスを用
−ることO効果を潜弧溶接の実施面から説明すると下記
O通pである。
Although the sintered flux with the above structure satisfactorily achieves the intended purpose in that it provides a slag with a low flux consumption rate and good releasability, the use of this flux has the potential to reduce the O effect. An explanation from the practical aspect of arc welding is as follows.

開先内における1層1パス溶接の状況は第2図及び七の
ll−1線断面図(第8図)に示される通りである。S
中8は散布フラックス、4は凝固スラグ、6は溶接金属
、6は溶融スラグ、7線光行スフグを示し、溶融スラグ
の状態では開先の両側。
The state of single-layer, single-pass welding within the groove is as shown in FIG. 2 and the sectional view taken along line 11-1 in FIG. 7 (FIG. 8). S
Number 8 in the middle shows scattered flux, 4 shows solidified slag, 6 shows weld metal, 6 shows molten slag, and 7 shows rays of pufferfish.In the state of molten slag, it shows both sides of the groove.

壁によって横方向への流れが防止される為溶融デーA/
の方向へ流れ、場合によってはアークより先行して、ア
ークの安定性を乱すこともある。そのためアークが開先
の側I!を溶かし、この部分にスラグが流れ込む状0(
いわゆる開先をなめる現象)が生じ晶(、スラグの剥離
性を悪くする傾向にある。又余剰スラグによってスラグ
の厚さが増大するが、これによって開先側壁との接触面
積が増し、加えて溶接熱収量によって開先中が狭まる傾
向にあるので、これらの影響を受けてスラグ抱込み現象
が起と9、スラグの剥離は更に劣化し易くなってくる。
Since the wall prevents lateral flow, the melting date A/
, and in some cases may precede the arc and disturb the stability of the arc. Therefore, the arc is on the groove side I! is melted and slag flows into this part.
The so-called groove licking phenomenon occurs and tends to impair the peelability of the slag.Also, the excess slag increases the thickness of the slag, which increases the contact area with the groove sidewalls. Since the groove tends to become narrower depending on the welding heat yield, the slag entrapment phenomenon occurs due to these influences,9 and the slag peeling becomes more susceptible to deterioration.

この様なところから開先内の溶接における1m)1パス
溶接部でのスラグ生成量は必要最小限にとどめることが
望まれるが、上述のフラックスを用いるとフラックス消
費率が約0.4〜0.9程度になる為スラグ生成量も勢
い少なくなり、スラグ剥離性にとりて好まし一潜接状況
が得られる。
From this point of view, it is desirable to keep the amount of slag generated in one pass (1 m) of welding within the groove to the necessary minimum, but if the above-mentioned flux is used, the flux consumption rate will be approximately 0.4 to 0. Since it becomes about .9, the amount of slag produced also decreases, and a favorable one-latency condition for slag removability can be obtained.

尚生成スラグ量は溶接条件等によっても変化することが
知られているので標準フラックス消費率の測定は次の方
法に従うこととした。即ち2m巾のソリッドザイヤを用
いて溶接条件600A−84V−4011/分、ツイヤ
突出し長′g:!6mにて軟鋼平板上にVング〃ビード
tS接して測定し、このときの(スラグ生成量/Wフイ
ヤ消費量)を求めた。尚電源特性は直流定電圧逆極性と
した。即ち開先内1層1パス溶接において、フラックス
消費率がo、et越えるとスラグ生成量が多くなり、溶
接時に溶融スラグがアークより先行したり、デーV内に
流れ込む等の現象によってアークを乱し、開先角度を8
0〜70”と比較的広くとってもアークが開先の側壁を
溶かす状況が生まれ、開先角多層溶接の1層1パス溶接
部におけるスラグ剥離性を悪くする。尚アークの乱れに
よる上記現象を抑える手段としてアーク電圧を低く抑え
ることも考えられるがビードが凸型となpI!に剥離性
が劣化するので採用できない、この点従来のフラックス
消費率は一般にl〜1.6のものが多いが、スラグ生成
量が多い為、スラグの剥離性が悪かった。
Since it is known that the amount of slag produced varies depending on welding conditions, etc., the following method was used to measure the standard flux consumption rate. That is, welding conditions were 600A-84V-4011/min using a 2m wide solid sire, and the sire protrusion length 'g:! Measurements were made by contacting the V-ring bead tS on a mild steel flat plate at a height of 6 m, and the (slag production amount/W fire consumption amount) at this time was determined. The power supply characteristics were DC constant voltage and reverse polarity. In other words, in one-layer, one-pass welding within a groove, if the flux consumption rate exceeds o, et, the amount of slag produced increases, and the arc is disturbed by phenomena such as molten slag leading the arc or flowing into the welding area. and set the bevel angle to 8
Even if the arc is relatively wide (0 to 70"), it creates a situation where the arc melts the sidewalls of the groove, worsening the slag removal property in the single-layer, single-pass weld of groove angle multilayer welding. Furthermore, the above-mentioned phenomenon caused by arc disturbance is suppressed. One possible means is to keep the arc voltage low, but this cannot be used because the bead becomes convex and the peelability deteriorates to pI!.In this regard, conventional flux consumption rates are generally 1 to 1.6, but Due to the large amount of slag produced, the slag peelability was poor.

他方フツツタスー費率が0.4t−下回わるとスラグ量
が少なく、ビード表面にボッタマーク中アパタが生じ易
く、又ビードに凹凸が出る。この点本発明のフラックス
を用いると、スラグO生成量は一応纏保されるので上述
の欠点は生じな−。
On the other hand, when the weight loss rate is less than 0.4 t-, the amount of slag is small, and apertures during bottom marks are likely to occur on the bead surface, and irregularities appear on the bead. In this regard, when the flux of the present invention is used, the amount of slag O produced can be maintained to a certain extent, so the above-mentioned drawbacks do not occur.

゛開先角多層溶接の1層1パス溶接部のスラグ剥離性は
開先角度が更に狭くなると前記フラックス消費率が0.
4〜0.9であっても劣化してくること$ToL特に開
先内厚が20”以下になるとスラグ剥離性の劣化が著じ
るしい、そこで開先角度や開先の巾に応じた最適のスラ
グ量を検討した結果。
゛The slag removability of a single-layer, one-pass weld in groove angle multi-layer welding is such that as the groove angle becomes narrower, the above-mentioned flux consumption rate decreases to 0.
Even if it is between 4 and 0.9, it will deteriorate. In particular, when the groove inner thickness becomes less than 20", the deterioration of slag removability is remarkable, so it is necessary to adjust the groove angle and groove width accordingly. The results of examining the optimal amount of slag.

フラックス消費率t0.4〜O0丁にしたフラックスで
あれば、20以下の開先角度でもスラグ剥離性を良好に
保持することが可能になることが分かった。又LIIN
先の様な非対称の開先にかiては一方の開先角度が狭く
なるが、この場合第°4図の如く、1層1パス溶接ビー
ドの再止端部でその接する部分の開先側I!のなす角度
(#11#!りの和が!O@以内である開先、或いは#
l接部では実質的に20@以下の対称開先と変らなりh
%のと考えればよい0以上011に開先内多層#ll接
における1層1/(ス溶接部のスラグ剥離性を良くする
ためには、フラックス消費率の少ないフラックスを使用
したスラグ生成量を少なくすることが有効であゐが開先
角度がgo−yo@o比較的広い開先角度の場合はフラ
ックス消費率0.4−0.9のものを用い、20以下、
或いは1パス溶接ビードの再止端部でそれぞれの接する
開先側壁の角度の和が20@以下の場合はフラックス消
費率0.4〜0.7のフラックスを使用すればスラグの
剥離性は大巾に数倍される。
It has been found that if the flux has a flux consumption rate of t0.4 to 00, it is possible to maintain good slag releasability even at a groove angle of 20 or less. Also LIIN
In the case of an asymmetrical bead like the one mentioned above, one of the bevel angles becomes narrower, but in this case, as shown in Figure 4, the bevel at the part where it touches the toe of the single-layer, single-pass weld bead. Side I! Bevel where the angle formed by (#11#!) is within !O@, or #
At the l-joint part, it is essentially no different from a symmetrical groove of 20@ or less.
In order to improve the slag removability of the welded part, the amount of slag generated using a flux with a low flux consumption rate should be It is effective to reduce the flux consumption rate, but if the groove angle is relatively wide, use one with a flux consumption rate of 0.4-0.9, 20 or less,
Alternatively, if the sum of the angles of the groove side walls in contact with each other at the re-toe of a one-pass weld bead is less than 20, using a flux with a flux consumption rate of 0.4 to 0.7 will improve the slag releasability. It is multiplied by the width.

しかし、第4図に示される開先角度がO以下となる場合
はスラグ剥離性は改普されないのでOf上の開先角度が
必要である。
However, if the groove angle shown in FIG. 4 is below O, the slag releasability will not be improved, so a groove angle above Of is required.

本発明は以上の如く構成されて−るので、フラックス消
費率の低下によってS接コスFが低減されると共に、ス
ラグの剥離性やアークの安定性が合わせて改普されるこ
とになった。
Since the present invention is constructed as described above, the S welding cost F is reduced by reducing the flux consumption rate, and the slag releasability and arc stability are also improved.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

第1表に示す組成の焼結型フフツクスを用いて瀞弧溶接
を行ない、フフツクヌ消費率、スラグ剥離性及びビード
外観を観察して同表に併記した。
Bracing arc welding was performed using sintered fuses having the compositions shown in Table 1, and the fufutsuknu consumption rate, slag removability, and bead appearance were observed and recorded in the same table.

尚同様においてO印は良好、x印は不良を意味し、ブラ
ックス成分中のその他は、Na 20 、に20*L輸
o、y・o # B :a o 3 e M 110等
を意味する。
In the same manner, the O mark means good, the x mark means bad, and the others in the blacks component mean Na 20, 20*L import, y・o #B: ao 3 e M 110, etc. .

尚合金成分、脱酸成分、鉄粉はブラックス成分100に
対する配合比で表わした。
The alloy components, deoxidizing components, and iron powder are expressed as a blending ratio to 100% of the blacks component.

フラックスht−sは本発明の全要件を満足するもので
、フラックス消費率、スラグ剥離性、ビード外観の全項
目において艮好な成績をおさめた。
The flux ht-s satisfied all the requirements of the present invention and achieved excellent results in all categories including flux consumption rate, slag removability, and bead appearance.

フラックスNa@はSIO□が多い為にビード外観が低
下すると共に、TiO□が少ない為にスラグが焼付暑、
スラグ剥離性が悪かった。フラックス翫7はzro  
が多いと共にzro、/Tl0fAの比が高い為にビー
ド外観が悪くなっている。フラックス翫8はTIO!!
が少ないのに対してz ro。
Flux Na@ has a lot of SIO□, so the bead appearance deteriorates, and the lack of TiO□ causes the slag to heat up and heat up.
Slag removability was poor. Flux rod 7 is zro
The appearance of the bead is poor because the ratio of zro, /Tl0fA is high. Flux rod 8 is TIO! !
There are few z ro.

が多く、且つMgOが多いのでビード外観がかなり悪か
った。フラックス凪9はhe2o、がIk<ビード外観
が悪くなる他、TiO□が少ないのでスラグ剥離性が悪
かった。フラックス−10はsio、が多くてビード外
観が劣化し、TlO2が少ない為にスラグの剥離性が悪
かった。フラックス11&&11はSin、が少ないの
に対してT10゜が多く、フラックス消費率が増大して
いる。フラックス翫l!はS i02が少ない為にフラ
ックス消費率が高く、A#、0.が多い為にビード外観
が悪くなっている。フラックスNa1BはTiO□フッ
クス414はz「0.が多いのでビード外観が特に悪く
なっている。フラックスNa15,16はTl0Qを含
まないか又は少なく、且つzro。
and MgO, the bead appearance was quite bad. Flux Nagi 9 had he2o, Ik<<, which resulted in poor bead appearance, and poor slag removability due to low TiO□. Flux-10 had a large amount of sio, which deteriorated the bead appearance, and the lack of TlO2 resulted in poor slag releasability. Flux 11&&11 has a small amount of Sin, but a large amount of T10°, and the flux consumption rate increases. Flux rod! has a high flux consumption rate because S i02 is small, and A#, 0. The appearance of the bead is poor due to the large amount of Flux Na1B has a lot of z'0. in TiO□ Fuchs 414, so the bead appearance is particularly bad. Fluxes Na15 and 16 do not contain or contain a small amount of T10Q, and are zro.

を含まないのでフラックス消費率が高くなっている。The flux consumption rate is high because it does not contain

【図面の簡単な説明】[Brief explanation of drawings]

第1因は従来の溶接部を示す断面図、第2.8図は潜弧
溶接部の断面図、第4図は左右不均醇開先の例示図であ
る。 S拳−フラックス 4−11固スラグ 6・−・溶接金属
The first factor is a cross-sectional view showing a conventional weld, FIG. 2.8 is a cross-sectional view of a submerged arc weld, and FIG. S fist - Flux 4-11 Hard slag 6 -- Weld metal

Claims (1)

【特許請求の範囲】 (υB10.:する〜871(l量哄:以下同じ)。 T直0思:1!5〜44−1An、o、:s #18嘔
、zro、:gi−以下、Ct F z * i 0−
以下、MgO:12m1以下t−含有L、210II/
τ10怠の比が0.6哄以下であ2ことを特徴とすゐ潜
弧溶接用焼結型フラックス。 傭)特許請求の範囲第1項において、フラックス中に1
0惧以下のBaOが含まれている潜弧溶接用焼結型フラ
ックス。 (3)特許請求の範囲第1又は2項において、フラック
スの粒子が、20メツシュ以上の粗大粒子:66s以下
、48メツVユ以下の微細粒子:86−以下である潜弧
溶接用焼結型フラックスa(4) 810怠:15〜8
7−(重量−:以下同じ)、’rto、15〜44−1
A#QO,:5〜28惧、zro、:SS*以下、C”
 F 11 : lO−以下、MgO:4ji−以下を
含有し、zro、7’TIO,の比がO0器悌以下で番
ゐ他、鉄粉:40−以下及び/又は鉄粉を除く金属粉:
8s以下を含有することを特徴とする潜弧S*用焼結型
フラックス。 (6)特許請求の範囲第4項において、フラックス中K
IO−以下12)BaOを含有する潜弧溶接用焼結型フ
ラックス。 (6)特許請求の範囲第4又杜6項において、フラック
スの粒子が、110メツシュ以上の粗大粒子:SS*以
下、48メツV:L以下の微細粒子:86哄以下でめる
潜弧溶接用焼#I!!フフックス。
[Claims] (υB10.:do~871 (l amount: same below). T 0 thought: 1!5~44-1 An, o, :s #18 小, zro, :gi-, Ct F z * i 0-
Below, MgO: 12ml or less t-containing L, 210II/
A sintered flux for submerged arc welding, characterized in that the ratio of τ10 to failure is 0.6 or less. 1) In claim 1, it is stated that 1 in the flux.
A sintered flux for submerged arc welding that contains less than 0% BaO. (3) In claim 1 or 2, the sintered type for submerged arc welding is characterized in that the flux particles are coarse particles of 20 mesh or more: 66s or less, fine particles of 48 mesh or less: 86- or less. Flux a (4) 810 laziness: 15-8
7-(weight-: same below), 'rto, 15-44-1
A#QO, :5~28, zro, :SS* below, C"
F11: Contains 1O- or less, MgO: 4ji- or less, and the ratio of zro, 7'TIO, is 00- or less, iron powder: 40- or less, and/or metal powder excluding iron powder:
A sintered flux for submerged arc S* characterized by containing 8s or less. (6) In claim 4, K in flux
IO-12) Sintered flux for submerged arc welding containing BaO. (6) In Claim 4 and Paragraph 6, the flux particles are coarse particles of 110 mesh or more: SS* or less, fine particles of 48 mesh V: L or less: latent arc welding performed at 86 g or less. Yaki #I! ! Fuchs.
JP12085481A 1981-07-31 1981-07-31 Sintered flux for submerged arc welding Granted JPS5823593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12085481A JPS5823593A (en) 1981-07-31 1981-07-31 Sintered flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12085481A JPS5823593A (en) 1981-07-31 1981-07-31 Sintered flux for submerged arc welding

Publications (2)

Publication Number Publication Date
JPS5823593A true JPS5823593A (en) 1983-02-12
JPS6218277B2 JPS6218277B2 (en) 1987-04-22

Family

ID=14796583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12085481A Granted JPS5823593A (en) 1981-07-31 1981-07-31 Sintered flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JPS5823593A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296174C (en) * 2003-12-10 2007-01-24 基斯韦尔株式会社 Metal fusing agent fiiled filler rod for high tension steel having exellent welding performence
CN109317867A (en) * 2018-10-11 2019-02-12 苏州优霹耐磨复合材料有限公司 Flux-cored wire alloy powder homogenising treatment method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464931B (en) * 2013-08-14 2015-11-18 中国船舶重工集团公司第七二五研究所 A kind of high-toughness submerged arc welding sintered flux and preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296174C (en) * 2003-12-10 2007-01-24 基斯韦尔株式会社 Metal fusing agent fiiled filler rod for high tension steel having exellent welding performence
CN109317867A (en) * 2018-10-11 2019-02-12 苏州优霹耐磨复合材料有限公司 Flux-cored wire alloy powder homogenising treatment method

Also Published As

Publication number Publication date
JPS6218277B2 (en) 1987-04-22

Similar Documents

Publication Publication Date Title
JP5652574B1 (en) Solid wire for gas shielded arc welding, gas shielded arc welding metal, welded joint, welded member, welding method, and method of manufacturing welded joint
JP5874068B2 (en) Flux for single-sided submerged arc welding
JPS6356037B2 (en)
KR100706026B1 (en) High speed submerged arc welding flux
JP2004261839A (en) Multiple electrode gas shielded arc welding method
JPH09239587A (en) Flux cored wire for gas shielded arc welding
JP4425756B2 (en) Flux-cored wire for horizontal fillet welding
JPS5913955B2 (en) Composite wire for stainless steel welding
JPS5823593A (en) Sintered flux for submerged arc welding
JP2672243B2 (en) Flux for single-sided submerged arc welding and welding method using the same
JP2015139784A (en) Two-electrode horizontal fillet gas shielded arc welding method
JP3148055B2 (en) Single-sided submerged arc welding method
JP2670848B2 (en) Composite wire for gas shielded arc welding
JP6071797B2 (en) Flux for single-sided submerged arc welding
JP6071798B2 (en) Flux for single-sided submerged arc welding
JP2014065066A (en) Flux cored wire for horizontal gas shielded arc welding
JPH0647191B2 (en) Flux-cored wire for gas shield arc welding
JPH0852572A (en) Gas shielded metal-arc welding method
JP6837420B2 (en) Flux for submerged arc welding
JP6152316B2 (en) Flux for single-sided submerged arc welding
JPH0122080B2 (en)
JP4040765B2 (en) Flux-cored wire for gas shielded arc welding
JPH04356397A (en) Self-shielded arc welding composite wire
JP3828088B2 (en) Flux-cored wire for fillet welding
JP3093416B2 (en) Flux-cored wire for high hydrogen fillet welding