JPS5823539B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPS5823539B2
JPS5823539B2 JP9386078A JP9386078A JPS5823539B2 JP S5823539 B2 JPS5823539 B2 JP S5823539B2 JP 9386078 A JP9386078 A JP 9386078A JP 9386078 A JP9386078 A JP 9386078A JP S5823539 B2 JPS5823539 B2 JP S5823539B2
Authority
JP
Japan
Prior art keywords
cylinder
side heat
refrigerant
compressor
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9386078A
Other languages
Japanese (ja)
Other versions
JPS5520370A (en
Inventor
井手正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP9386078A priority Critical patent/JPS5823539B2/en
Publication of JPS5520370A publication Critical patent/JPS5520370A/en
Publication of JPS5823539B2 publication Critical patent/JPS5823539B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 本発明はヒートポンプ式冷暖房装置に適した冷凍装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration system suitable for a heat pump air-conditioning system.

一般に例えばヒートポンプ式冷暖房装置においては、暖
房運転時と冷房運転時とで能力に差をもたせる必要があ
り、圧縮機の能力制御が行われる。
In general, for example, in a heat pump air-conditioning system, it is necessary to provide a difference in capacity between heating operation and cooling operation, and the capacity of the compressor is controlled.

・本発明は斯る能力制御をロータリ一式の複数シリンダ
圧縮機を用い簡単且つ多段階になし得る冷凍装置を提供
せんとするものである。
- The present invention aims to provide a refrigeration system that can perform such capacity control simply and in multiple stages using a rotary set of multiple cylinder compressors.

本発明の一実施例を図面に基づき説明する。An embodiment of the present invention will be described based on the drawings.

第1〜第3図において、1は互いに独立した複数組のロ
ータリ一式圧縮要素2,3を有する複数シリンダ圧縮機
で、各圧縮要素2,3には電動要素4にて駆動される単
一のシャフト5に上下に連結されたロータ6.7とロー
タ6.7を収容し吸込口8,9及び吐出口10.11を
備えるシリンダ12.13と固定羽根14.15等を有
している。
In Figs. 1 to 3, reference numeral 1 denotes a multi-cylinder compressor having a plurality of mutually independent sets of rotary complete compression elements 2, 3, and each compression element 2, 3 has a single rotary compressor driven by an electric element 4. It has a rotor 6.7 vertically connected to the shaft 5, a cylinder 12.13 housing the rotor 6.7 and having suction ports 8, 9 and a discharge port 10.11, fixed blades 14.15, and the like.

吐出口10,11は管16,17にて圧縮機1内と連通
され電動要素4を冷却する冷媒通路が形成される。
The discharge ports 10 and 11 communicate with the inside of the compressor 1 through pipes 16 and 17 to form a refrigerant passage for cooling the electric element 4.

前記第1のシリンダ12と第2のシリンダ13とは隔壁
18によって区画され、前記第1のロータ6の外径を第
2のロータ7のそれよりも小さく設定することにより第
1の圧縮要素2の排除容積を第2の圧縮容素3のそれよ
りも大きくし、吸込、吐出能力を大きく設定している。
The first cylinder 12 and the second cylinder 13 are separated by a partition wall 18, and by setting the outer diameter of the first rotor 6 smaller than that of the second rotor 7, the first compression element 2 The displacement volume of the second compression volume 3 is made larger than that of the second compression volume 3, and the suction and discharge capacities are set to be large.

又19は四方切換弁、20は送風機21を備えた室内空
気対冷媒熱交換型利用側熱交換器、22゜23はそれぞ
れ毛細管からなる冷房用減圧装置、暖房用減圧装置、2
425はそれぞれの減圧装置22.23と並列に接続さ
れる逆止弁、26は送風機27を備えた室外空気対冷媒
熱交換型熱源側熱交換器39は気液分離器で、これ等の
要素は図示の如く環状に接続され冷媒回路が構成されて
いる。
19 is a four-way switching valve; 20 is an indoor air-to-refrigerant heat exchange type user-side heat exchanger equipped with a blower 21; 22 and 23 are a cooling pressure reducing device and a heating pressure reducing device each consisting of a capillary tube;
425 is a check valve connected in parallel with each pressure reducing device 22, 23, 26 is an outdoor air to refrigerant heat exchange type heat source side heat exchanger 39 equipped with a blower 27 is a gas-liquid separator, and these elements are connected in a ring as shown in the figure to form a refrigerant circuit.

そして、圧縮要素2,3の各シリンダ12,13にはそ
れぞれ電磁弁2.8.29を有する吸込管30.31が
接続されると共に、冷媒回路の高圧液管部32に連通さ
れそれぞれ電磁弁33.34及び毛細管35.36を有
するインジェクション管37.38も又接続されている
Suction pipes 30, 31 each having a solenoid valve 2,8,29 are connected to each cylinder 12, 13 of the compression elements 2, 3, and the suction pipe 30, 31 is connected to a high-pressure liquid pipe section 32 of the refrigerant circuit. An injection tube 37.38 with a capillary tube 33.34 and a capillary tube 35.36 is also connected.

上記の各電磁弁28,29,33.34は一例□として
マイクロコンピュータ等を用いて制御され冷房時には電
磁弁28.33が開き電磁弁29゜34が閉じ、暖房時
には各電磁弁は室内負荷に応じて後述の如く自動的に制
御される。
The above-mentioned solenoid valves 28, 29, 33, and 34 are controlled using a microcomputer, etc., as an example. During cooling, the solenoid valves 28, 33 open and solenoid valves 29 and 34 close, and during heating, each solenoid valve is controlled by the indoor load. Accordingly, it is automatically controlled as described below.

上述の如〈実施例は構成されており、冷房時は電磁弁2
8.33が開き電磁弁29.34が閉じるので、圧縮機
1より吐出される冷媒は第1図破線矢視の如く、9→2
6→25→22→20→9→39→30→1と流れ、シ
リンダ12内へのリキッドインジェクションはインジェ
クション管37を通して行われる。
The embodiment is configured as described above, and the solenoid valve 2 is closed during cooling.
8.33 opens and solenoid valve 29.34 closes, so the refrigerant discharged from the compressor 1 moves from 9 to 2 as shown by the broken line arrow in FIG.
The liquid flows in the order of 6→25→22→20→9→39→30→1, and liquid injection into the cylinder 12 is performed through the injection pipe 37.

そして利用側熱交換器20にて蒸発作用がなされること
により室内冷房が行われる。
The room is cooled by evaporation in the user-side heat exchanger 20.

又、暖房時には第4図に示す如く各電磁弁は開閉制御さ
れ8段階の暖房能力制御がなされる。
Further, during heating, each electromagnetic valve is controlled to open and close as shown in FIG. 4, and heating capacity is controlled in eight stages.

先ず第1段階の最強状態では全ての電磁弁28゜29.
33,34が開かれ、圧縮機1より吐出される冷媒は9
→20→24→23→26→9→ 。
First, in the first stage, the strongest state, all solenoid valves are 28°29.
33 and 34 are opened, and the refrigerant discharged from the compressor 1 is 9
→20→24→23→26→9→.

39と流れ吸込管30.31を通して圧縮機1の各黒線
要素2,3に吸込まれ利用側熱交換器20が凝縮器とし
て作用することにより室内暖房がなされる。
39 and flow suction pipes 30, 31 into each black line element 2, 3 of the compressor 1, and the utilization side heat exchanger 20 acts as a condenser, thereby heating the room.

この時インジェクション管37.38を通して各圧縮要
素2,3に冷媒が吸込まれる。
At this time, refrigerant is sucked into each compression element 2, 3 through the injection pipes 37, 38.

従って、利用側熱交換器20を循環する冷媒量が吸込管
30.31とインジェクション管37.38とを流れる
冷媒量の総和となり、最大の循環量となる為に暖房能力
も最大となる。
Therefore, the amount of refrigerant circulating through the user-side heat exchanger 20 is the sum of the amounts of refrigerant flowing through the suction pipes 30.31 and injection pipes 37.38, and since the amount of refrigerant circulated is the maximum, the heating capacity is also maximized.

そして第2段階の制御ではインジェクション管33.3
4からの冷媒吸込が停止され、第3段階の制御では吸込
管29及びインジェクション管34からの冷媒吸込が停
止されるというように段階が大きくなるにつれて段々と
圧縮機1の吸込冷媒量が減少する。
And in the second stage control, the injection pipe 33.3
As the stage increases, the amount of refrigerant sucked into the compressor 1 gradually decreases. .

その結果利用側熱交換器20の冷媒循環量が減少して暖
房能力が段階的に減少するものである。
As a result, the amount of refrigerant circulated in the user-side heat exchanger 20 decreases, and the heating capacity decreases in stages.

伺、上記実施例では冷房時圧縮機の能力制御を行ってい
ないが、冷房負荷が大きい特等必要に応じて能力制御を
行うようにできる。
Although the above embodiment does not control the capacity of the compressor during cooling, it is possible to control the capacity as required, such as when the cooling load is large.

又、圧縮要素2.3の数は3以上にすることができるし
、圧縮要素2,3の能力は等しくしても良い。
Further, the number of compression elements 2.3 can be increased to 3 or more, and the capacities of compression elements 2 and 3 may be equal.

上述の如く本発明は構成されており、各吸込管30.3
1及び各インジェクション管37.38の電磁弁の開閉
制御を行うことにより簡単かつ多段階に能力制御ができ
る等多大なる効果を発揮するものである。
The present invention is constructed as described above, and each suction pipe 30.3
By controlling the opening and closing of the solenoid valves of 1 and each injection pipe 37, 38, the capacity can be easily controlled in multiple stages, and other great effects are achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例の冷媒回路図、第2図は同実施
例の要部断面概略図、第3図イ2口は第2図の異なる部
分の拡大詳細横断面図、第4図は同実施例の電磁弁の制
御態様と能力段階とを表示した説明図である。 1・・・圧縮機、2,3・・・圧縮要素、6,7・・・
ロータ、12.13・・・シリンダ、20・・・利用側
熱交換器、26・・・熱源側熱交換器、28.29,3
3゜34・・・電磁弁、30,31・・・吸込管、37
,38・・・インジェクション管。
Fig. 1 is a refrigerant circuit diagram of an embodiment of the present invention, Fig. 2 is a schematic cross-sectional view of main parts of the same embodiment, Fig. 3 A 2 is an enlarged detailed cross-sectional view of different parts of Fig. 2, Fig. 4 The figure is an explanatory diagram showing the control mode and capacity stages of the electromagnetic valve of the same embodiment. 1... Compressor, 2, 3... Compression element, 6, 7...
Rotor, 12.13...Cylinder, 20...Using side heat exchanger, 26...Heat source side heat exchanger, 28.29,3
3゜34... Solenoid valve, 30, 31... Suction pipe, 37
, 38...injection tube.

Claims (1)

【特許請求の範囲】 1 それぞれロータ及びシリンダを有する圧縮要素を複
数組布する複数シリンダ圧縮機JU用側熱交換器、減圧
装置、熱源側熱交換器を環状に接続して冷媒回路を構成
し、前記各シリンダにはそれぞれ。 電磁弁を有する吸込管を接続すると共に、前記冷媒回路
の高圧液管部に連通されそれぞれ電磁弁及び毛細管を有
するインジェクション管を接続したことを特徴とする冷
凍装置。
[Scope of Claims] 1. A refrigerant circuit is constructed by connecting a plurality of cylinder compressor JU side heat exchangers, pressure reducing devices, and heat source side heat exchangers in a ring shape, in which a plurality of compression elements each having a rotor and a cylinder are assembled. , respectively for each cylinder. A refrigeration system characterized in that a suction pipe having a solenoid valve is connected thereto, and an injection pipe communicating with a high pressure liquid pipe portion of the refrigerant circuit and having a solenoid valve and a capillary tube, respectively, is connected thereto.
JP9386078A 1978-07-28 1978-07-28 Refrigeration equipment Expired JPS5823539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9386078A JPS5823539B2 (en) 1978-07-28 1978-07-28 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9386078A JPS5823539B2 (en) 1978-07-28 1978-07-28 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS5520370A JPS5520370A (en) 1980-02-13
JPS5823539B2 true JPS5823539B2 (en) 1983-05-16

Family

ID=14094182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9386078A Expired JPS5823539B2 (en) 1978-07-28 1978-07-28 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS5823539B2 (en)

Also Published As

Publication number Publication date
JPS5520370A (en) 1980-02-13

Similar Documents

Publication Publication Date Title
US10006671B2 (en) Air conditioning system and method for controlling same
JP4051066B2 (en) Multistage air conditioner
WO2019203963A1 (en) Dual compressor heat pump
KR20050112151A (en) Air conditioner with equalization pipe between out door units
CN217685941U (en) Double-working-condition water chilling unit
CN110748962A (en) Air conditioning system and control method thereof
CN206222580U (en) Air-conditioner
CN115143658A (en) Double-working-condition water chilling unit and control method thereof
JPS5823539B2 (en) Refrigeration equipment
CN107990438A (en) Monoblock type dehumidification drying machine
US11300337B2 (en) Outdoor system for air conditioner
CN106766367A (en) Air-conditioner
KR101122080B1 (en) Control method for air conditioner
CN106765749A (en) Air-conditioner
CN209687671U (en) Compressor pump, compressor and multi-online air-conditioning system
CN206222581U (en) Air-conditioner
CN206222530U (en) Air-conditioner
CN112484280A (en) Air duct system, air conditioner and control method of air duct system
CN106766292A (en) Air-conditioner
CN217428564U (en) Refrigeration/heat pipe composite cabinet air conditioner
KR101147735B1 (en) Control method for air conditioner
CN106801953A (en) Air-conditioner
CN218915143U (en) Air conditioner
JP3268967B2 (en) Air conditioner
JP2755620B2 (en) Heat pump type air conditioner