JPS5823010A - Lighting method - Google Patents

Lighting method

Info

Publication number
JPS5823010A
JPS5823010A JP12227481A JP12227481A JPS5823010A JP S5823010 A JPS5823010 A JP S5823010A JP 12227481 A JP12227481 A JP 12227481A JP 12227481 A JP12227481 A JP 12227481A JP S5823010 A JPS5823010 A JP S5823010A
Authority
JP
Japan
Prior art keywords
light
photosensitive medium
medium
photosensitive
emitting body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12227481A
Other languages
Japanese (ja)
Inventor
Katsumi Morimoto
森本 克美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP12227481A priority Critical patent/JPS5823010A/en
Publication of JPS5823010A publication Critical patent/JPS5823010A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power

Abstract

PURPOSE:To minimize the loss of the quantity of light, and to obtain lighting with a uniform illuminance distribution through simple structure, by arranging a treated photosensitive medium, obtaind in a prescribed way, between a light emitting body and a photodetection surface. CONSTITUTION:A shutter 6 is opened for a prescribed time to irradiate a photosensitive medium 4 with light from a light emitting body 1 through a condenser lens 2. The medium 4 is detached and development and fixation are performed to obtain a pattern blackened in proportion to the quantity of exposure on the medium 4. The photosensitive medium 4 is fitted to a photosensitive medium fixture 5 again in the same state. Luminous flux with a spatially uneven distribution from the light emitting body 1 is passed through the medium 4 to obtain lighting with nearly uniform illuminance on a photodetection surface 3. The loss of the quantity of light due to the deviation of the photosensitive characteristics of the medium 4 from linearity is relatively small as compared with that when an ideal photosensitive medium is used.

Description

【発明の詳細な説明】 本発明は、有限の大きさを有する受光面上の任意の場所
へ一定omritを供給するII明方法および照明装置
に関する0 ランプ等の発光体からの光をレンズで集光しその11受
光面を照射すると、発光体が有限の大暑さを示し、さら
Vcih光体O各Sにお妙る輝度が不均一であることか
ら受光面上を均一な照度で照射することが不可能であ)
、従来そO対策として発光体と受光面の間に光を拡散さ
せる効果を持つ拡散板を挿入する方法、あるいは入口と
出口の各ファイバの位置O対応を故意に不規則にした光
学ファイバ束を発光体と受光面の間に挿入し、照射光を
、該光学ファイバ束を経内させてスクリーンを照射する
方法が知られている。しかし、前者の拡散板を用いる方
法では光の散乱による照射エネルギーの損失が大きくま
た後者の光学ファイバ束による方法では、製造上の理由
により光学ファイバ束の長さが長くなるためHW!A装
置全体が大llになる欠点がある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a II brightness method and illumination device that supplies constant omrit to any location on a light-receiving surface having a finite size. When the light receiving surface is irradiated, the light emitting body exhibits a finite amount of heat, and since the brightness of each light body is uneven, it is necessary to irradiate the light receiving surface with uniform illuminance. is not possible)
Conventionally, as a countermeasure against O, there is a method of inserting a diffusion plate that has the effect of diffusing light between the emitter and the light receiving surface, or an optical fiber bundle in which the position O of each fiber at the entrance and exit is intentionally made irregular. A method is known in which the optical fiber bundle is inserted between a light emitter and a light receiving surface, and the screen is irradiated with light through the bundle of optical fibers. However, in the former method using a diffuser plate, there is a large loss of irradiation energy due to light scattering, and in the latter method using an optical fiber bundle, the length of the optical fiber bundle becomes long due to manufacturing reasons. A disadvantage is that the entire device becomes large.

本発明0目的は、このような欠点をなくし九照射エネル
ギーの損失を極小に押え、単純な構造で構成することが
可能で、均一なamが得られる照明方法およびH’JJ
4装置を提供することにある。
An object of the present invention is to provide an illumination method that eliminates such drawbacks, minimizes the loss of irradiation energy, can be configured with a simple structure, and provides a uniform am.
4 devices.

本発明によれば、発光体と受光面の間に予め感光媒体t
−置き、発光体からの照射光を露光し、現像、定着の処
理後、該感光媒体を再び露光したと自と同じ位置に取付
けることによシ、発光体から出た光が該感光縁体を通過
後、照度が均一化される方法および装置が得られる。
According to the present invention, the photosensitive medium t is placed between the light emitter and the light receiving surface in advance.
- After exposing the photosensitive medium to the light emitted from the light emitting body, developing and fixing it, the light emitted from the light emitting body can be transferred to the photosensitive medium by mounting it again at the same position as when it was exposed. A method and apparatus are obtained in which the illuminance is uniformed after passing through the .

本発明は、発光体と11明される受光面との位置関係が
固定された場合Off明方法において、発光体と受光面
の間の予め定められた感光媒体固定位置に、晶化濃度変
化率がおよそ1に等しく、かぶり濃度が小さい感光特性
を有する感光媒体を配置し、所定の時間だけ前記発光体
による光で露光を行い、前記感光媒体に処理を施して露
光光量に比例的に黒化したパターンを生ゼしめ、再び前
記感光媒体固定位置に該感光媒体を配置して、前記発光
体による光で、咳感光媒体を通して受光面を照射する1
IWA方法、およびm#4装置において、発光体と、該
照明方法で作成し友感光媒体とから構成され九ll@装
置である。
In the off-bright method, when the positional relationship between the light emitting body and the light receiving surface to be illuminated is fixed, the crystallization density change rate is is approximately equal to 1 and has a photosensitive characteristic with a small fog density, the photosensitive medium is exposed to light from the luminescent material for a predetermined period of time, and the photosensitive medium is processed to blacken in proportion to the amount of exposure light. The photosensitive medium is placed at the photosensitive medium fixing position again, and the light-receiving surface is irradiated with light from the light emitter through the cough photosensitive medium.
In the IWA method and the m#4 device, the device consists of a light emitter and a photosensitive medium produced by the illumination method.

以下本発明の一実施例を第1図、菖2図およびjI3図
によシ説明する〇 第1図線本発明の一実施例を示す構成図である。
An embodiment of the present invention will be explained below with reference to Fig. 1, Fig. 2, and Fig. jI3.〇 Fig. 1 is a configuration diagram showing an embodiment of the present invention.

ととで発光体1.コンデンサレンズλ感光媒体固定具5
が光軸上に配置されている。さらにコンデンサレンズ2
と感光媒体固定具50間の光軸上にシャッター藝を配置
し、鋏シャッター6を閉じた状態で、前記感光媒体固定
具5へ感光媒体4を固定する。この状態でシャッター6
を所定の時間だけ開閉し、感光媒体4を感光媒体固定A
sから龜〕はずし、現像、定着の処理を行うと、感光媒
体4上に露光光量に比例的に黒化したパターンが得られ
る。皺鵡履後の感光媒体4を再び前記感光媒体固定具5
へ同じ姿勢で取付けると、発光体1かもの空間的に不均
一な分4jO光束は、感光媒体4を通過するととによシ
、高lI度の部分の光束は大きく減衰し、低照度の部分
の光束は比較的減衰しない光束に変換されて、受光WJ
3上にほは均一な畷toii明光が得られる。
Light emitter 1. Condenser lens λ photosensitive medium fixture 5
is placed on the optical axis. Furthermore, condenser lens 2
A shutter is placed on the optical axis between the photosensitive medium fixing device 50 and the scissors shutter 6, and the photosensitive medium 4 is fixed to the photosensitive medium fixing device 5 with the scissors shutter 6 closed. In this state, shutter 6
is opened and closed for a predetermined time, and the photosensitive medium 4 is fixed to the photosensitive medium A.
When the photosensitive medium 4 is removed from the photosensitive medium 4 and subjected to development and fixing processes, a blackened pattern is obtained on the photosensitive medium 4 in proportion to the amount of exposure light. The wrinkled photosensitive medium 4 is again attached to the photosensitive medium fixing tool 5.
If the luminous body 1 is installed in the same position, the 4jO luminous flux due to the spatial non-uniformity of the light emitting body 1 will be greatly reduced when it passes through the photosensitive medium 4, and the luminous flux in the high II degree part will be greatly attenuated, and the luminous flux in the low illuminance part will be greatly attenuated. The luminous flux is converted into a relatively unattenuated luminous flux, and the received light WJ
3. Uniform bright light can be obtained on the upper side.

菖2図は本実施例において、受光面上でよりよい均一性
をもつ照度分布を得るために感光媒体に費求される特性
を説明するための特性図である。
Diagram 2 is a characteristic diagram for explaining the characteristics required of the photosensitive medium in order to obtain a more uniform illuminance distribution on the light-receiving surface in this embodiment.

ここで横軸は感光媒体を露光する際の照射エネルギーの
常用対数、縦軸は透過II度である。−紋に、乳剤系の
感光媒体において社、112図に示すように比較的広い
範WAの直線@ a −bを有し、該#i締部a −b
の傾きを晶化濃度変化率と呼び、一般的にはr(′jI
ンマ)と呼ばれている。(以下rで示す。)さらに曲線
部b −eを経て、水平に近い直線部e −d fC至
る。咳直IIA部e −d O高さD・をかふ)濃度と
呼ぶ。ここで仮に直線部a −bを[0し透過Il&が
零となる点を・とすると直11a−eは、 D菖r¥E / E、・・・・・・・・・・・・・・・
・・・・・・・・・ (1)で表わされる。ただし、D
は透過#Ik度、Eは照射エネルギーを示す変数でE・
は点ISK対応する照射エネルギーである。本実施例で
は感光媒体を露光するための照射エネルギーはタヤツタ
ーOVa放時間をt@に制御して、感光媒体上で最も濃
度の低い場所の照射エネルギーを鳥とすることがてきる
Here, the horizontal axis is the common logarithm of the irradiation energy when exposing the photosensitive medium, and the vertical axis is the transmission degree II. - In the emulsion-based photosensitive medium, the pattern has a straight line @ a - b of a relatively wide range WA as shown in Fig. 112, and the #i tightening part a - b
The slope of is called the crystallization concentration change rate, and is generally expressed as r('jI
It is called umma). (Hereinafter referred to as r.) Further, it passes through curved portions b-e and reaches nearly horizontal straight portions e-d and fC. Cough direct IIA part e −d O height D・ is called concentration. Here, if the straight line part a-b is [0 and the point where the transmission Il& is zero is , then the straight line 11a-e will be:・・・
...... It is expressed as (1). However, D
is the transmission #Ik degree, and E is the variable indicating the irradiation energy.
is the irradiation energy corresponding to point ISK. In this embodiment, the irradiation energy for exposing the photosensitive medium can be adjusted to the lowest concentration on the photosensitive medium by controlling the emission time OVa to t@.

シャッターの開放時間を−とじて感光媒体を露光した場
合、感光媒体上で最もamの低い場所O浸度は(1)式
から零となる。すなわち、現像、定着O処ml後の感光
媒体において、前記の最も濃度の低い場所へ入射した照
度−の光束は等しい照度ムをもって感光媒体から出射し
て受光面を照射する。
When the photosensitive medium is exposed with the shutter open time set to -, the immersion degree O at the lowest am on the photosensitive medium becomes zero from equation (1). That is, in the photosensitive medium after development and fixing Oml, the light flux of - illuminance incident on the location with the lowest density exits from the photosensitive medium with equal illuminance and illuminates the light receiving surface.

一方、感光媒体を露光するIIK、感光媒体上の任意の
場所の照度は!・に等しいか■・よ〉高(、kl・(k
≧1)で表わされる。従って任意の場所における透過濃
[Dは、 D −r# kIs to/ &= r bit k 
(゛、”1iizI命ts)・(2)となる。一方、透
過浸度りと透過率Tとの関係はT! 10−”・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・−・・・・・・・・・・ ロ)で表わされるため、
現像、定着の処理後における任意の場所の透過率Tは T W 1G″″rkkamIk−′・・・・・・・・
・・−・・−・・・・・−・・・・・・・・・・ (4
)となシ、透過光束の照度■は I藁に!・・T■k ・I・・・・・・・・・・・・・
・・・ (51で表わされるため、r、−1であれば任
意の場所でI−I・となC13Ji像、定着の処理後O
I&党媒体を透過してくる発光体からの光束は空間的に
均一な照度で受光面を照射する。ただし、実際の感光媒
体においては蕗2図に実線で示すように、直線部1−の
からはずれて−線部b−e、および直線部c −dを有
するために以上O法則から若干はずれた結果を得ること
になる。従って上記−線部す−Cが直線部凰−・からは
ずれる@*が小さく、上紀直I11部e −4の透過嬢
度、すなわちかぶシ湊度が低いことが望ましく、実際上
れ露光する感光媒体の最も照度の低い場所へ与える照射
エネルギーは、各感光媒体の感光特性に応じて決められ
ねばならない。いま、上記の最も照度O低i場所へ与え
る照射エネルギーとして、第2図の点/に対応する値を
選ぶとすれば、現儂、定着処理後O感光媒体を透過する
光量は、!l理想的直線性をもつ感光特性を有する感光
媒体の場合に比べて、感光媒体の全面に亘シおよそ10
0X(1−10) −〇損失となる。
On the other hand, IIK exposes the photosensitive medium, and the illuminance at any location on the photosensitive medium is! Is it equal to ・■・yo〉high(,kl・(k
≧1). Therefore, the transmission density at any location [D is D −r# kIs to/ &= r bit k
(゛,"1iizI life ts)・(2).On the other hand, the relationship between the permeation degree and the transmittance T is T! 10-"...
・・・・・・・・・・・・・・・・・・・・・・・・
・・・-・・・・・・・・・・・・ Since it is expressed as (b),
The transmittance T at any location after development and fixing is T W 1G''''rkkamIk-'...
・・-・・−・・・・・・・−・・・・・・・・・・ (4
), the illuminance of the transmitted light flux is I!・・T■k ・I・・・・・・・・・・・・・
... (Since it is expressed as 51, if r is -1, it becomes I-I at any location. C13Ji image, O after fixing process.
The light beam from the light emitter that passes through the I&P medium illuminates the light receiving surface with spatially uniform illuminance. However, in an actual photosensitive medium, as shown by the solid line in Fig. 2, there is a straight line part b-e, and a straight part c-d, which deviates from the straight line part 1-, so there is a slight deviation from the O law. You will get results. Therefore, it is desirable that the deviation of the above-mentioned line part S-C from the straight part 凰- is small, and that the degree of transmission of the upper Ki straight I11 part e-4, that is, the degree of covertness is low, so that the actual upward exposure The irradiation energy applied to the lowest illuminance area of the photosensitive medium must be determined depending on the photosensitive characteristics of each photosensitive medium. Now, if we choose the value corresponding to the point / in Figure 2 as the irradiation energy applied to the location with the lowest illuminance O mentioned above, the amount of light that passes through the O photosensitive medium after the fixing process is currently ! 10% across the entire surface of the photosensitive medium compared to the case of a photosensitive medium with ideal linear photosensitive characteristics.
0X (1-10) −〇 loss.

第3図社、本実施例によって得られる受光面上のM度分
布の効果を説明するためのH度分布図である。
FIG. 3 is an H degree distribution diagram for explaining the effect of the M degree distribution on the light receiving surface obtained by the present example.

とζで横軸は受光面上の位置を表わす座標軸、縦軸は受
光面上の照度である。曲線ムは本実施例を適用しない場
合の例であり、発光体の輝度の不均一に基づく照度の不
均一が受光面上に表われることを示す。−線Bは、本実
施例において使用する感光媒体の感光特性が全範囲に亘
って直!iI性を有すると仮定し九場合の、受光面上の
照度分布であシ、照明を必要とする領域の内で曲線ムO
最も照度の低い値に均一化して揃えることができる〇―
線c#i夾際O感光媒体を本実施例に適用した場合の照
度分布で、amBom*g対する比Is/L、としてお
よそ101・が得られる。たとえばD1m8.2の場合
にはIs/Ii は79%とな〕感光特性が理想的に直
線性を有する感光媒体を使用し良場合と比較しても21
−の光量の損失で均一な照度分布が得られる。
and ζ, the horizontal axis is a coordinate axis representing the position on the light receiving surface, and the vertical axis is the illuminance on the light receiving surface. Curve 1 is an example where this embodiment is not applied, and shows that non-uniform illuminance due to non-uniform brightness of the light emitter appears on the light receiving surface. - line B indicates that the photosensitive characteristics of the photosensitive medium used in this example are correct over the entire range! Assuming that the illuminance distribution on the light receiving surface is
It is possible to uniformize and align the illuminance to the lowest value.
In the illuminance distribution when the line c#i bordering on O photosensitive medium is applied to this embodiment, the ratio Is/L to amBom*g is approximately 101·. For example, in the case of D1m8.2, Is/Ii is 79%] even when compared with a good case using a photosensitive medium with ideally linear photosensitivity characteristics.
A uniform illuminance distribution can be obtained with - loss of light quantity.

以上説明したように、本発明によれば光量O損失を最小
限にして縁線な構造で均一な照度分布の照明を得ること
ができる。
As described above, according to the present invention, it is possible to minimize the loss of light quantity O and obtain illumination with a uniform illuminance distribution in a borderline structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は本発
明の必要条件をiI!明するため041性図、籐3図は
本発明t)911果を説明するための照度分布図である
。 1・・・・・・発光体、2・・・・・・コンダンすレン
ズ、3・・・・・・受光面、4・・・・−・感光媒体、
5・・・・・・感光媒体同定臭、6・・・・・・シャッ
ター。 1N1 亭1図 第Z図 亭3図
Fig. 1 is a block diagram showing an embodiment of the present invention, and Fig. 2 shows the necessary conditions of the present invention. For clarity, Figure 041 and Figure 3 are illuminance distribution diagrams for explaining the t)911 effect of the present invention. 1... Light emitter, 2... Condensing lens, 3... Light receiving surface, 4... Photosensitive medium,
5...Photosensitive medium identification odor, 6...Shutter. 1N1 Pavilion Figure 1 Figure Z Pavilion Figure 3

Claims (1)

【特許請求の範囲】[Claims] 発光体と、前記発光体によ)照明される受光面との位置
関係が固定である照明方法において、発光体と受光面の
間の光軸上であってあらかじめ爺められた媒体固定位置
にて悪化#度変化率がおよそ1に等しく、かぶj1員度
が小さい感光特性を有する感光媒体を配置し所定の時間
だけ前記発光体による光で露光を行い、前記感光媒体に
処理を施して露光光量に比例的に黒化しえパターンを生
せしめ、再び前記媒体固定位置に#処理済感光媒体を配
置して、前記発光体による光で、該処理済感光媒体を通
して受光面を照射し、受光面上を均一に照射することを
特徴とするa明方法。
In an illumination method in which the positional relationship between a light emitter and a light-receiving surface illuminated by the light-emitting body is fixed, the medium is placed at a predetermined fixed position on the optical axis between the light-emitting body and the light-receiving surface. A photosensitive medium having photosensitive characteristics in which the rate of change in degree is approximately equal to 1 and the degree of change in degree is small is placed, exposed to light from the light emitting body for a predetermined time, and the photosensitive medium is processed and exposed. A blackened pattern is produced in proportion to the amount of light, and the #treated photosensitive medium is placed again at the medium fixing position, and the light-receiving surface is irradiated with light from the light emitting body through the processed photosensitive medium. A light method characterized by uniformly irradiating the upper surface.
JP12227481A 1981-08-04 1981-08-04 Lighting method Pending JPS5823010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12227481A JPS5823010A (en) 1981-08-04 1981-08-04 Lighting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12227481A JPS5823010A (en) 1981-08-04 1981-08-04 Lighting method

Publications (1)

Publication Number Publication Date
JPS5823010A true JPS5823010A (en) 1983-02-10

Family

ID=14831899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12227481A Pending JPS5823010A (en) 1981-08-04 1981-08-04 Lighting method

Country Status (1)

Country Link
JP (1) JPS5823010A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360143U (en) * 1986-10-09 1988-04-21
EP1046933A1 (en) * 1999-04-21 2000-10-25 Asulab S.A. Optical device with absorption gradient and selective spectral filtering, and objective and camera comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489751A (en) * 1977-12-27 1979-07-17 Ricoh Co Ltd Production of nd filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489751A (en) * 1977-12-27 1979-07-17 Ricoh Co Ltd Production of nd filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360143U (en) * 1986-10-09 1988-04-21
EP1046933A1 (en) * 1999-04-21 2000-10-25 Asulab S.A. Optical device with absorption gradient and selective spectral filtering, and objective and camera comprising the same
US6545828B2 (en) 1999-04-21 2003-04-08 Asulab S.A. Optical device with absorption gradient and selective spectral filtering and lens assembly and camera fitted with such a device

Similar Documents

Publication Publication Date Title
US5302999A (en) Illumination method, illumination apparatus and projection exposure apparatus
DE69531805D1 (en) Inspection of a contact lens with dual focus lighting
KR920020229A (en) Projection Exposure Method and Its Use System
KR900008299A (en) Illumination method and apparatus and projection exposure method and apparatus
KR960015092A (en) Exposure equipment
JPS59216118A (en) Apparatus for emitting bow-like light
JPS5823010A (en) Lighting method
KR940020476A (en) Exposure apparatus and exposure apparatus
US6850367B2 (en) Light exposure apparatus and light emitting device therefor
JP2004349648A (en) Self-cleaning method and transparent board for self-cleaning of semiconductor exposure meter
KR100707412B1 (en) Optical source for inspection
JPS57181537A (en) Light pattern projector
WO2005015310A3 (en) Illumination system for a microlithographic projection exposure apparatus
JP3095856B2 (en) Light inspection device for visual inspection
JP4406140B2 (en) Illumination device and dimming method thereof
KR0143814B1 (en) Semiconductor exposure equipment
JP2009182191A (en) Exposure lighting device
KR100376867B1 (en) Scanner and illumination upgrade meathead
JPS6252929A (en) Device for illumination optics
KR100295672B1 (en) Optical exposure system for seraiconductor
JPS639186A (en) Illuminating optical device
KR0172078B1 (en) A control method of deviated light for projection exposure apparatus
JPH0298119A (en) Exposure device
KR930011243B1 (en) Apparatus and method for luminescing panel of cathode-ray tube
KR0123388Y1 (en) Apparatus of adjusting light pipe of exposing system for improving uniformity