JPS5822873A - Vacuum freezing drying method of liquid material and its device - Google Patents

Vacuum freezing drying method of liquid material and its device

Info

Publication number
JPS5822873A
JPS5822873A JP12127281A JP12127281A JPS5822873A JP S5822873 A JPS5822873 A JP S5822873A JP 12127281 A JP12127281 A JP 12127281A JP 12127281 A JP12127281 A JP 12127281A JP S5822873 A JPS5822873 A JP S5822873A
Authority
JP
Japan
Prior art keywords
tray
frozen
drying
sublimation
drying chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12127281A
Other languages
Japanese (ja)
Other versions
JPS6040792B2 (en
Inventor
正和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIYOUWA SHINKUU GIJUTSU KK
KYOWA SHINKUU GIJUTSU KK
Original Assignee
KIYOUWA SHINKUU GIJUTSU KK
KYOWA SHINKUU GIJUTSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIYOUWA SHINKUU GIJUTSU KK, KYOWA SHINKUU GIJUTSU KK filed Critical KIYOUWA SHINKUU GIJUTSU KK
Priority to JP12127281A priority Critical patent/JPS6040792B2/en
Publication of JPS5822873A publication Critical patent/JPS5822873A/en
Publication of JPS6040792B2 publication Critical patent/JPS6040792B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、源材料(ペースト状・泥状の材料を含む)を
凍結させてトレイ内に装填しく凍結後に微粉状に粉砕し
た源材料・または微粉状に凍結しり源材料をトレイに装
填する場合を含む)、そのトレイを、真空に保持される
乾燥室内に多段に棚設した加熱槽の棚間隔内に配置し、
加熱槽から昇華熱を供給して乾燥させる源材料の真空凍
結乾燥方法と、該方法の実施に直接用いる装置について
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is characterized in that the source material (including paste-like and mud-like materials) is frozen and loaded into a tray, and the source material is pulverized into a fine powder after freezing, or the raw material is frozen into a fine powder. (including when loading materials into a tray), the tray is placed within the shelf spacing of a heating tank arranged in multiple stages in a drying chamber maintained in a vacuum,
This invention relates to a vacuum freeze-drying method for drying a source material by supplying heat of sublimation from a heating tank, and to improvements in the equipment used directly to carry out the method.

本発明における目的は、乾燥しようとする源材料と、そ
れを凍結せしめて装填するトレイの取扱いを繁雑化する
ことなしに、大巾に乾燥時間を短縮し、凍結乾燥コスト
を低減せしめるようにすることにある。
An object of the present invention is to significantly shorten drying time and reduce freeze-drying costs without complicating the handling of the source material to be dried and the trays in which it is frozen and loaded. There is a particular thing.

次に本発明を、従前手段と対比しながら図面に従って順
次説明する。
Next, the present invention will be sequentially explained with reference to the drawings while comparing with the conventional means.

図の第1図は、源材料をトレイ内に凍結させて、そのト
レイを乾燥室内の加熱槽の棚間隔内に配置し、加熱槽か
ら昇華熱を供給して乾燥する従来手段の模式的説明図で
、Aは乾燥室、aは該乾燥室A内に多段に装架される加
熱槽、Bは加熱槽a・・・の棚間隔内に配置するトレイ
、(1)は前記多段の加熱#l+i a・・の中の棚間
隔内に配置されるトレイBを基準としたときの下方に位
置する上部加熱棚、(2)は前記トレイBの上方に位置
する上部加熱棚、(11)は加熱槽aの棚間隔内に配置
されるトレイBの底面、(イ)はトレイB内に凍結させ
た源材料1!1の自由表面、(刻は凍結液材料Mの昇華
面、(4υは前記昇華面側に上部加熱棚(11から供給
される熱流、(42)は111ノ記昇華面に上部加熱棚
(2)から供給される熱流、(50)は昇荊面(7)か
ら発生する水蒸気流、Lは凍結液材料〜1の液厚、看は
凍結液材料IVIの既乾層厚を示している。
FIG. 1 is a schematic illustration of a conventional method of freezing source material in a tray, placing the tray within the shelf spacing of a heating tank in a drying chamber, and drying by supplying sublimation heat from the heating tank. In the figure, A is a drying chamber, a is a heating tank installed in multiple stages in the drying chamber A, B is a tray arranged within the shelf spacing of the heating tank a, and (1) is a heating tank installed in multiple stages in the drying room A. #l+i An upper heating shelf located below the tray B arranged within the shelf interval in a..., (2) is an upper heating shelf located above the tray B, (11) is the bottom surface of tray B arranged within the shelf spacing of heating tank a, (a) is the free surface of source material 1!1 frozen in tray B, (mark is the sublimation surface of frozen liquid material M, (4υ is the heat flow supplied from the upper heating shelf (11) to the sublimation surface side, (42) is the heat flow supplied to the sublimation surface from the upper heating shelf (2), and (50) is the heat flow supplied from the sublimation surface (7). The generated water vapor flow, L indicates the liquid thickness of the frozen liquid material ~1, and L indicates the dry layer thickness of the frozen liquid material IVI.

また、第2図は、肉などの固形材料Nを凍結させて、乾
燥室A内の加熱槽a・・・の棚間隔内に配置し、加熱槽
aから昇華熱を供給して乾燥させる従来手段の模式的説
明図で、(21)は凍結材料への下表面側である下部の
自由表面、(22)は凍結材料Nの上部の自由表面、(
31)は下部の昇華面、(321は上部の昇華面、6υ
は下部の昇華面(31)からの水蒸気流、じは上部の昇
華面(3りからの水蒸気流、!、は下部既乾層厚、−e
2 は上部既乾層厚を示している。
Fig. 2 also shows a conventional method in which a solid material N such as meat is frozen, placed between the shelves of a heating tank a in a drying chamber A, and dried by supplying sublimation heat from the heating tank a. In the schematic illustration of the means, (21) is the lower free surface which is the lower surface side to the frozen material, (22) is the upper free surface of the frozen material N, (
31) is the lower sublimation surface, (321 is the upper sublimation surface, 6υ
is the water vapor flow from the lower sublimation surface (31), the water vapor flow from the upper sublimation surface (31), !, is the lower dry layer thickness, -e
2 indicates the thickness of the upper dry layer.

また、第8図は、本発明の詳細な説明図で、Cは乾燥室
A内の加熱槽a・・・の棚間隔内に配置された上層トレ
イ(6りと下層トレイ6υよりなる組合せトレイ、0υ
は前記トレイCの底面となる下層トレイ[F]υの底面
、(2I)は下層トレイ6D内に装填した凍結液材料〜
1の自由表面、曽は上層トレイtfJ2i内に装填した
凍結液材斜部の自由表面、c31)は下層トレイ佑1)
に装填した凍結液材料Mの昇華面、国は」;層トレイ0
内に装填した凍結液材料〜Iの昇華面、(41)は上部
加熱棚(])から前記昇昇華面1)に向う熱流、(42
1は」ニ部加熱棚(2)から前記昇華面C32)K向う
熱流、6υは前記昇華面(31)から発生する水蒸気流
、62は前記昇華面(32から発生する水蒸気流を示し
ている。
Further, FIG. 8 is a detailed explanatory diagram of the present invention, and C is a combination tray consisting of an upper tray (6 and a lower tray 6υ) arranged within the shelf interval of the heating tank a in the drying chamber A. ,0υ
is the bottom surface of the lower tray [F]υ, which is the bottom surface of the tray C, and (2I) is the frozen liquid material loaded in the lower tray 6D.
1 free surface, so is the free surface of the inclined part of the frozen liquid material loaded in the upper tray tfJ2i, c31) is the lower tray 1)
The sublimation surface of the frozen liquid material M loaded in the layer tray 0
(41) is the heat flow from the upper heating shelf (]) toward the sublimation surface 1), (42)
1 indicates a heat flow from the second heating shelf (2) toward the sublimation surface C32)K, 6υ indicates a water vapor flow generated from the sublimation surface (31), and 62 indicates a water vapor flow generated from the sublimation surface (32). .

源材料を真空、凍結乾燥する方法として今日迄に最も広
く用いられているのは、凍結粉砕した源材料をトレイB
内に充填し、あるいは源材料をトレイB内で凍結させ、
乾燥室A内の多段の加熱側aと加熱側aとの間に第1図
に示している如く、該トレイBを配置し、静置するか棚
間を横移動させて振動させるかしておいて、加熱側から
昇華熱を供給しで乾燥する方法である。この方法によれ
は、乾燥対象材料に接触するのはトレイBのみであり、
材料充填層の攪拌摩擦により生じる微粉の飛散もないた
め、乾燥品目を頻繁に交代させる場合にも、トレイ洗浄
だけで異物混入の不安なく、衛生保持も容易であり、か
つ、工程は極めて弔純である。
To date, the most widely used method for vacuum-freeze-drying the source material is to dry the freeze-pulverized source material in tray B.
or freezing the source material in tray B;
As shown in FIG. 1, the tray B is arranged between the multi-stage heating side a and the heating side a in the drying chamber A, and is left standing or moved horizontally between the shelves and vibrated. This is a method of drying by supplying sublimation heat from the heating side. With this method, only tray B comes into contact with the material to be dried;
Since there is no scattering of fine powder caused by agitation friction of the packed material bed, even when dry items are changed frequently, there is no fear of foreign matter contamination by just cleaning the tray, hygiene is easy to maintain, and the process is extremely simple. It is.

しかし、上述の方法は乾燥時間が著しく長い、という重
大な欠点がある。液体(ペースト・泥状物を含む)をト
レイB内に注入(伸展)後に凍結すれは液体はトレイB
内面に密着して凍結し、昇華面(ト)と昇華蒸気の脱出
面は、凍結液材料Mの自由表面(20)側のみとなる。
However, the above-mentioned method has a significant drawback in that the drying time is extremely long. If liquid (including paste/sludge) is injected (extended) into tray B and then freezes, the liquid should be placed in tray B.
It freezes in close contact with the inner surface, and the sublimation surface (g) and the escape surface for the sublimation vapor are only on the free surface (20) side of the frozen liquid material M.

また、凍結粉砕した凍結粉体をトレイBに充填した場合
(性状はトレイB内に源材料を凍結した場合と殆んど変
わらない)も、粒径が細かすきる(径が数分の1朋以下
)ときは、粉末充填層が密過ぎてやはり、自由表面(氾
からしか水蒸気が脱出できず、トレイ底面同側には昇華
面が形成されない。このためこれら手段は、第1図の模
式図の通りになり、上部加熱棚(IJがらトレイ底面(
11)を経て昇華面(30)に進む熱流(4Ilは、(
L−4)(但しL:全厚・p:既乾層厚、沼は0からL
へ増大)の凍結層(昇華工程中の平均厚’/  )を通
過し、上部加熱棚(2)から自由表面(2渇を経て昇華
面に進む熱流(42)は、厚さ!の既乾層(流(41)
・(42)Kより昇華面(至)から発生する水蒸気流側
り は、厚さ!の既乾層(平均 /2)を通過して乾燥室自
由空間に脱出することになる。トレイBの面積をΔとす
れは、水蒸気の脱出流路面積もAである。
In addition, when the frozen powder that has been freeze-pulverized is filled in tray B (the properties are almost the same as when the source material is frozen in tray B), the particle size becomes fine (a fraction of the diameter). When the powder packed bed is too dense (see below), the water vapor can only escape from the free surface (flood), and no sublimation surface is formed on the same side of the bottom of the tray.Therefore, these methods are similar to the schematic diagram in Figure 1. As shown in the diagram, the upper heating shelf (IJ) and the bottom of the tray (
The heat flow (4Il) that advances to the sublimation surface (30) via (11) is (
L-4) (L: total thickness, p: dry layer thickness, swamps range from 0 to L)
The heat flow (42) passes through the frozen layer (average thickness during the sublimation process '/ ) of the sublimation layer (increases to ! ) and proceeds from the upper heating shelf (2) to the free surface (2 layer (flow (41)
・(42) The water vapor flow side generated from the sublimation surface (to) K is the thickness! It passes through the dry layer (average /2) and escapes into the free space of the drying room. If the area of tray B is Δ, the area of the water vapor escape channel is also A.

これを第2図に示す平板状固形材料Nの凍結乾燥につい
て見れは、下部および上部加熱棚(1)−(2)から、
下部および上部自由表面(20・四へ進む熱流(41)
・(42)は、材料Nの表裏から水蒸気が脱出できるた
めに、既乾層石、・、、e2を通過して昇華面(31)
・(321に達することになシ、はぼ上下対称となるた
め、通過する既乾層厚看、・!2は0から1/ まで増
大し、昇華工程中の平均厚はそれぞれL/4である。
This is shown in Figure 2 for the freeze-drying of the flat solid material N. From the lower and upper heating shelves (1)-(2),
Heat flow (41) proceeding to the lower and upper free surfaces (20.4)
・(42) is a sublimation surface (31) that passes through dry layer stone... e2 because water vapor can escape from the front and back sides of material N.
・(It does not reach 321, but since it becomes vertically symmetrical, considering the thickness of the dry layer passing through, ・!2 increases from 0 to 1/2, and the average thickness during the sublimation process is L/4, respectively. be.

同様に両昇華面(31)・(3功から脱出する水蒸気流
の通過する既乾層厚の平均は、それぞれL/であり、水
蒸気の脱出流路面積は2Aである。
Similarly, the average dry layer thickness through which the water vapor flow escaping from both sublimation surfaces (31) and (3) is L/, and the water vapor escape channel area is 2A.

既乾層(多孔体)中を通過する水蒸気流によって生じる
圧力差△Pは、流量と層厚に比例し、層面積に反比例す
ることが公知であり、凍結乾燥中に許容される昇華面)
圧力Psは、凍結体の同化が弛緩する限界温度Tlの平
衡蒸気圧Pゝf以下であるから、許容される昇華速度(
蒸気流量)は、圧力差△P≦(P*1−Po)である。
It is known that the pressure difference △P caused by the flow of water vapor passing through a dry layer (porous body) is proportional to the flow rate and layer thickness, and inversely proportional to the layer area.
Since the pressure Ps is below the equilibrium vapor pressure Pf of the limit temperature Tl at which the assimilation of the frozen body is relaxed, the permissible sublimation rate (
The steam flow rate) is the pressure difference ΔP≦(P*1−Po).

したがって、トレイ内凍結材料の場合(第1図)は平板
状固形材料の場合(第2図)に比べて /の昇華速度し
4 か言1されない。
Therefore, in the case of frozen material in a tray (FIG. 1), the sublimation rate is 4/4 compared to the case of flat solid material (FIG. 2).

また既乾層を通過する熱流についても同様の関係である
から、凍結乾燥中に既乾表面の温度tdが許容温度を超
えない限度で1−1f能な既乾層内の熱源用は、トレイ
内凍結材料の場合は、平板固形材料の場合(第2図)−
に比べ、′/4である。第1図の場合は、凍結層内を流
れる熱流f41)Kより既乾層内熱流を補充できるけれ
ども、凍結層内の熱流は、その熱流量と凍結層厚に比例
する温度差だけトレイ底面の温度を昇華面温度よりさら
に上昇させる。したがって、乾燥速度の制約が既乾表面
の過熱である場合は、トレイ内凍結液材料の昇華速度が
、平板固形材料に比へ 4 に低下することを緩和する
が、乾燥速度の制約が凍結固化の弛緩であれば、凍結層
内の熱流は、かえって昇華速度を平板固形材料の層 以
下に引下げることになる。
Furthermore, since the same relationship holds true for the heat flow passing through the dried layer, the tray for the heat source in the dried layer, which can function at 1-1 f, as long as the temperature td of the dried surface does not exceed the allowable temperature during freeze-drying, is In the case of internally frozen materials, in the case of flat solid materials (Figure 2) -
Compared to , it is '/4. In the case of Figure 1, the heat flow in the dry layer can be supplemented by the heat flow f41)K flowing in the frozen layer, but the heat flow in the frozen layer is limited by the temperature difference between the heat flow and the thickness of the frozen layer at the bottom of the tray. Raise the temperature above the sublimation surface temperature. Therefore, if the drying rate constraint is overheating of the dry surface, the sublimation rate of the frozen liquid material in the tray will be reduced to 4 compared to the flat plate solid material, but if the drying rate constraint is If the temperature is relaxed, the heat flow within the frozen layer will actually reduce the sublimation rate below that of the flat solid material layer.

トレイ内で凍結した液材料の凍結乾燥が長時間を要する
主な原因は、以上に概観した通り、昇華水蒸気の脱出面
が片面(自由表面)に限られ、熱流および水蒸気流の通
過厚が倍化し、昇華面積が半減するためであり、凍結粉
砕した凍結粒をトレイに充填する場合、粒径が細かい場
合も同様である。
As outlined above, the main reason why freeze-drying of liquid material frozen in a tray takes a long time is that the escape surface for sublimated water vapor is limited to one side (free surface), and the passage thickness of heat flow and water vapor flow is doubled. This is because the sublimation area is reduced by half, and the same is true when the frozen particles that have been freeze-pulverized are filled into a tray and the particle size is small.

液材料の凍結乾燥法としては、トレイ内凍結後の乾燥の
他に、液材料を乾燥用のトレイ外で凍結させて後これを
1鶴から数龍の顆粒に解砕するか、低温の不凍液中に噴
射して球の線温とするがして、粒状凍結体とし、これを
トレイに充填するが、振動熱板上に直接充填するがして
乾燥する方法が、コーヒー等大量の需用をもつ品目の単
品専用装置に用いられている。顆粒状凍結体充填層の場
合は粒体間の空隙が蒸気脱出路となり昇華表面は粒表面
となり拡大するから、在来のトレイ内凍結後の凍結乾燥
の欠点である蒸気膜困難による乾燥遅延は除去できる。
In addition to drying after freezing in a tray, the freeze-drying method for liquid materials includes freezing the liquid material outside the drying tray and then pulverizing it into granules ranging from one crane to several dragons, or using low-temperature antifreeze. The temperature of the sphere is adjusted to the linear temperature of the sphere, which is then frozen into granular particles, which is then filled into a tray.The method of directly filling and drying on a vibrating heating plate is the most suitable for large quantities such as coffee. It is used for single-item equipment for items with In the case of a packed bed of granular frozen material, the voids between the granules serve as vapor escape routes and the sublimated surface becomes the grain surface and expands, so the drying delay due to the difficulty of a vapor film, which is a disadvantage of conventional freeze-drying after freezing in a tray, is eliminated. Can be removed.

しかし、静止充填層の場合は、充填層内部への昇華熱の
供給は粒子化により増大するし、振動熱板上等の攪拌充
填層の場合は、粒子相互の摺動や割突による既乾部の崩
壊と微粉化、微粉の熱面付着や微粉の飛散などの障害を
伴なうなど、別の不利を加えることになる。特に液材料
の凍結粒子化とその後のトレイ又は熱面への充填は、零
下数十度の環境中の操作であり、自動ライン化しないと
繁雑に過ぎ、乾燥前工程の自動ライン化は単品種専用の
連続運転以外には経済的合理性をもだい。このため、コ
ーヒーに代表返れる大量生産品以外には普及していない
However, in the case of a stationary packed bed, the supply of sublimation heat to the inside of the packed bed increases due to particle formation, and in the case of an agitated packed bed on a vibrating hot plate, the supply of sublimation heat to the inside of the packed bed increases due to the sliding and splitting of particles. This adds other disadvantages, such as the collapse and pulverization of parts, the adhesion of fine powder to hot surfaces, and the scattering of fine powder. In particular, the freezing of liquid materials and the subsequent filling into trays or heating surfaces is an operation in an environment of several tens of degrees below zero, and would be too complicated if not automated. It has economic rationality other than dedicated continuous operation. For this reason, it has not become widespread except for mass-produced products, such as coffee.

凍結粒子化以外の方法で在来法の欠点を除く試みとして
、例えば、凍結用のトレイ内への凍結後、凍結用のトレ
イから平板状凍結体を剥離させ、別の多孔底面トレイに
移して表裏2面から昇華させる方法もあるが、剥離工程
の繁雑さ、多孔底面からの乾品のこぼれ等の欠点ゆえ実
用化できない。他の試みとして鉛直多管を内蔵する鉛直
円筒の多管外に湿度調節できる不凍液を循環させ、先づ
多管内に液材料を満し、管外を冷却し液材料が管壁から
円管状に半ば凍結した時、未練の多管内芯部の液を下部
から排出し、ついで、多管内を真空とし、不凍液を昇華
して多管内に凍結付着した材料を乾燥し、これを掻き落
す方法もあるが、準備した原料液の相当部分が常に取残
され次回廻しとなるため、長期連続生産専用装置以外に
は不向きであり、これも実用されていない。
In an attempt to eliminate the shortcomings of conventional methods using a method other than frozen granulation, for example, after freezing in a freezing tray, the flat frozen body is peeled from the freezing tray and transferred to another perforated bottom tray. Although there is a method of sublimating from both the front and back sides, it cannot be put to practical use due to drawbacks such as the complexity of the peeling process and the spillage of dry products from the bottom of the porous surface. Another attempt was to circulate antifreeze liquid that can control humidity outside the multi-tube of a vertical cylinder with a built-in vertical multi-tube, first filling the multi-tube with liquid material, cooling the outside of the tube, and causing the liquid material to flow from the tube wall into a circular tube shape. Another method is to drain the unmixed liquid in the inner core of the multi-tube from the bottom when it is half-frozen, then create a vacuum inside the multi-tube, sublimate the antifreeze, dry the frozen material inside the multi-tube, and scrape it off. However, since a considerable portion of the prepared raw material liquid is always left behind for the next use, it is unsuitable for anything other than equipment dedicated to long-term continuous production, and this method has not been put to practical use either.

その他、本発明の発明者小林による以前の発明(特公昭
42−1143号)として、2枚のトレイに液材料をト
レイ内凍結し、自由表面を向い合わせて組トレイとして
加熱棚と加熱機の間に配する方法がある。単一トレイに
比べて、厚さが半減し昇1〜面が倍化する。また1、ヒ
部加熱棚と上層トレイとの関係と、下部加熱棚と下層ト
レイとの関係は、」二下棚の中心線に線対称となり、合
理的な加熱制御となるなどの利点をもつ。しかし、凍結
後、上層用トレイを反転させる操作が繁雑であり、未乾
燥品が上層トレイから剥離するおそれのある材料に適さ
ない。
In addition, as an earlier invention by the inventor of the present invention, Kobayashi (Japanese Patent Publication No. 1143/1973), liquid material was frozen in two trays, the free surfaces of which were placed facing each other, and a heating shelf and a heating machine were assembled into an assembled tray. There is a way to put it in between. Compared to a single tray, the thickness is halved and the surface area is doubled. In addition, 1. The relationship between the upper heating shelf and the upper tray, and the relationship between the lower heating shelf and the lower tray are symmetrical to the center line of the lower shelf, which has the advantage of rational heating control. . However, the operation of inverting the upper layer tray after freezing is complicated, and this method is not suitable for materials in which the undried product may peel off from the upper layer tray.

さらに、トレイから凍結体を剥離する方法は、熱流が総
て既乾層を通過するので、凍結層内熱流が凍結部温度を
昇華面より以上に上昇させることがなく、凍結固化の弛
緩が昇華速度の制約である材料には適するが、既乾表面
の過熱が制約となる場合に不向きであり、鉛直多管の管
壁に凍結させ、管外から熱を供−給する方法、およびト
レイの開口部側を向い合せ、トレイ底面側から熱を供給
する方法は、熱流が総て凍結層を通過するので、既乾表
面の過熱が制約となる場合には適するが、凍結固化の弛
緩が制約である材料に適さない、という制約があって汎
用性にも難点がある。
Furthermore, in the method of peeling the frozen body from the tray, all of the heat flow passes through the dry layer, so the heat flow within the frozen layer does not raise the temperature of the frozen part above the sublimation surface, and the relaxation of the frozen solidification is reduced to sublimation. Although it is suitable for materials where speed is a constraint, it is unsuitable when overheating of a dry surface is a constraint. The method of supplying heat from the bottom side of the tray with the openings facing each other is suitable when overheating the dry surface is a constraint because the entire heat flow passes through the frozen layer, but the relaxation of freezing and solidification is a constraint. There are also limitations in that it is not suitable for certain materials, and there are also drawbacks to its versatility.

本発明は、上述の従来手段の欠点及び難点を除いて、効
果を一層高めることを目的とするものであって、凍結後
に粉砕した材料をトレイに充填するか、液状(ペースト
・泥状を含む)材料をトレイ内に充填兼凍結させるかし
て、乾燥室内に設けた多段の加熱棚と加熱棚との間に置
いて乾燥させる真空凍結乾燥法において第8図の通り、
棚間隔内に配置するトレイを、上層トレイ鞄と下層トレ
イ(61)とを2層に重ねて組合せた組合せトレイCと
して、液材料Mを組合せトレイCの上層トレイI2と下
層トレイ佑υとに分割して装填し、下部加熱棚(2)か
らの熱流(4つを自由表面(2渇に受ける上層トレイ(
6カ内の凍結材料と、下部加熱棚(1)からの熱流(4
1)をトレイ底面01)に受ける下層トレイ6υ内の凍
結材料1とが、はぼ同時に昇華を終了するように、上下
トレイ61)・(67J内の凍結液材料の厚さL2・L
、を配分し、あるいは上下トレイ旬・鞄内に充填する液
材料の各厚さおよび濃度を、はぼ同時に昇華を終了する
ように選択しておいて、乾燥を行なうようにしたことを
特長とするものである。
The present invention aims to eliminate the disadvantages and difficulties of the above-mentioned conventional means and to further enhance the effect. ) In the vacuum freeze-drying method, the material is filled and frozen in a tray and then dried by placing it between multi-stage heating shelves installed in a drying chamber, as shown in Figure 8.
The trays arranged within the shelf spacing are a combination tray C in which an upper tray bag and a lower tray (61) are stacked in two layers, and the liquid material M is distributed to the upper tray I2 and the lower tray υ of the combination tray C. The heat flow from the lower heating shelf (2) is divided into 4 parts and the upper tray (2) receives the heat flow from the free surface (2).
Frozen material in 6 units and heat flow from lower heating shelf (1) (4
The thickness of the frozen liquid material in the upper and lower trays 61) and (67J) is adjusted so that the frozen material 1 in the lower tray 6υ that receives 1) on the tray bottom surface 01) completes sublimation at almost the same time.
, or the thickness and concentration of the liquid materials filled in the upper and lower trays and the bag can be selected so that sublimation is completed at almost the same time, and drying is performed. It is something to do.

このようにした本発明法は、発明者自身の過去の発明(
特公昭42−1148号・特公昭45−9715号)の
欠点を除き、その効果を更に高めるためのものであり、
通常の単トレイ内凍結法の欠点である長時間乾燥を大巾
に短縮し、かつ、既に提出された各種の改良法のもつ弱
点・繁雑な工程や適合品目の制限を除き、品種の変更が
頻繁な多品種処理や、高度な衛生水準・無菌無塵処理に
も適する利点をもつものである。
In this way, the method of the present invention is based on the inventor's own past inventions (
This is to eliminate the shortcomings of (Special Publication No. 42-1148 and Special Publication No. 45-9715) and further enhance their effects.
It greatly shortens the long drying time, which is a shortcoming of the normal single-tray freezing method, and eliminates the weaknesses, complicated processes, and restrictions on compatible products of various improved methods that have already been submitted, and makes it possible to change varieties. It has the advantage of being suitable for frequent multi-product processing, high hygiene standards, and sterile and dust-free processing.

第4図は本発明法の実施に用いる真空凍結乾燥装置の組
合せトレイの一例である。
FIG. 4 is an example of a combination tray of a vacuum freeze-drying apparatus used to carry out the method of the present invention.

この例では、下層トレイ6υの内法寸法は、rIJW。In this example, the inner dimensions of the lower tray 6υ are rIJW.

・奥行D1の矩形で側縁部の高さHlであり、上層トレ
イ(621の内法寸法は巾W2 (W2は(W、 −2
δ)より僅かに小〕、奥行D2〔D2はり、に比べ2d
だけ小〕の矩形であり、側縁部高さH2(H2はHlの
半分程度〕であり、長さD2の相対する二辺の側縁部に
は、水平部数n以上の1]の鍔(7渇をもつ。上層トレ
イを下層トレイ上に重ねると、第4図の通り下層トレイ
の二辺り、の上に上層トレイの鍔(72)が乗り、上層
トレイの辺W1と上層トレイの辺W2とはそれぞれ隙間
約dをへだでて平行し両トレイ底面は、()−1,−8
2)はどの間隔をへだてて平行し、両底面間の空間は、
長さり、・D2の両側縁部間の間隙dを経て乾燥室内自
由空間に連続する。
・It is a rectangle with a depth D1 and a side edge height Hl, and the inner dimension of the upper tray (621 is width W2 (W2 is (W, -2
δ)], depth D2 [2d compared to D2 beam]
It is a rectangular shape with a side edge height H2 (H2 is about half of Hl), and a side edge of two opposing sides with a length D2 has a tsuba (1) with a horizontal number n or more. 7. When the upper tray is stacked on the lower tray, the tsuba (72) of the upper tray rests on two sides of the lower tray as shown in Fig. 4, and the side W1 of the upper tray and the side W2 of the upper tray are parallel to each other with a gap of about d, and the bottom surfaces of both trays are ()-1, -8
2) are parallel at what distance, and the space between the two bases is
Continuing to the free space in the drying chamber through the gap d between both side edges of the length, D2.

下層トレイ内に厚さ約り、に液を充填したとき、源材料
の注入は上下トレイ6υ・f32(を組合わせ一体−の
トレイCとした後に、上層、下層側々の定に容器からそ
れぞれの注入コックを経て注入しても、下層トレイ(6
1)に注入後、上層トレイ(621を重ねて後に上層ト
レイ(621に注入してもよい。人手によるにせよ′、
自動コンベア方式によるにせよ、容易に操作でき、注入
後も単トレイと同様の容易さで搬送その他の取扱いがで
きる。
When the lower tray is approximately thick and filled with liquid, the source material is injected from the container at the same time on each side of the upper and lower layers after combining the upper and lower trays 6υ・f32 (combining them to form an integrated tray C). Even when injecting through the injection cock, the lower tray (6
After pouring into the upper tray (621), the upper tray (621) may be stacked and then poured into the upper tray (621).Although manually,
Although it uses an automatic conveyor system, it is easy to operate, and even after injection, it can be transported and handled with the same ease as a single tray.

トレイ内材料は乾燥室内の棚段の間に装入した後に、棚
段を零下数十度に冷却して行っても、乾燥室とは別の凍
結庫内で凍結後、トレイを乾燥室内の棚の間に移しても
よい。いずれにせよ、従前のトレイ反転後に剥離した凍
結体を別の多孔底面トレイなどに移すとか上層の凍結ト
レイを反転して屯ねるなどの繁雑な工程に比べ、極めて
簡易な取扱いである。
Even if the trays are cooled to several tens of degrees below zero after being charged between the trays in the drying chamber, the trays are frozen in a freezer separate from the drying chamber. You can move it between shelves. In any case, it is extremely simple to handle compared to the conventional complicated process of transferring the peeled frozen bodies to another porous bottom tray after inverting the tray, or inverting the upper freezing tray and putting it back down.

次に本発明の効果を前記第3図の模式的説明図に従い説
明する。
Next, the effects of the present invention will be explained with reference to the schematic explanatory diagram of FIG. 3.

下部加熱側(1)からの熱流(41)は、下層トレイ(
61)の底面側を経て凍結層(Lt−g+)(沼は下層
トレイ輯)内材料の既乾層厚で、0からLlに増大)を
通過して昇華面01ンに至る。凍結層の平均厚はLL/
にと、L なり、第1図の単トレイの場合に比へ 4(約半厚)で
あるから約2倍の熱流を供給しても、トレイ底面旧)と
昇華面c31)の温度差は第1図の場合と同等である。
The heat flow (41) from the lower heating side (1) flows through the lower tray (
61), passes through the frozen layer (Lt-g+) (the dry layer thickness of the inner material increases from 0 to Ll) and reaches the sublimation surface 01n. The average thickness of the frozen layer is LL/
In the case of the single tray in Figure 1, the ratio is 4 (approximately half the thickness), so even if approximately twice as much heat flow is supplied, the temperature difference between the bottom of the tray (old) and the sublimation surface (c31) is This is equivalent to the case shown in FIG.

」―部加熱棚(2)からの熱流(4りは上層トレイf6
2)内凍結材料の自由表面のを経て既乾燥層p2(0か
ら上層トレイ(6′IJ内材料全厚L2まで増大)を通
過して昇華面(321に至る。既乾層厚は平均Lyでで
あり、第1図の従来手段の単トレイの場合に比しても既
乾表面と昇華面の温度差は第1図の従来手段と同等であ
る。
” - Heat flow from heating shelf (2) (4th is upper tray f6
2) The free surface of the inner frozen material passes through the dried layer p2 (from 0 to the upper tray (increases to the total thickness L2 of the inner material in 6'IJ) and reaches the sublimation surface (321). The dried layer thickness is the average Ly The temperature difference between the dried surface and the sublimated surface is the same as that of the conventional means shown in FIG. 1, even when compared with the single tray case of the conventional means shown in FIG.

転層を通過して上下トレイ間の空間に出、トレイ両側の
各間隙dを通過して乾燥室自由空間に脱出スル。間隙d
 Lt、例えばW1=0.7m @ D、 =05 m
の寸法の場合でも1a@程度で充分であり既乾層内の抵
抗に比べ、その抵抗は無視できる。
It passes through the layer transfer and exits into the space between the upper and lower trays, passes through the gaps d on both sides of the tray, and escapes into the free space of the drying chamber. gap d
Lt, for example W1=0.7m @D, =05m
Even in the case of dimensions of 1a@ is sufficient and the resistance can be ignored compared to the resistance within the dry layer.

既転層を通過して自由空間に脱出する。43 + zp
2 ’−であるから、第1図に比べ、4倍の水蒸気流が
通過しても、昇華面上と自由空間の圧力を同等1(おさ
えることができる。
Pass through the inverted layer and escape to free space. 43 + zp
2'-, so even if four times as much water vapor flow passes through as compared to FIG. 1, the pressure on the sublimation surface and in the free space can be kept at the same level as 1.

最適プログラム加熱によった場合、通常法に比べてどの
程度時間短縮できるかは、材料の性質(凍結層および既
転層の熱伝導率、既転層の物質伝導率ならびに凍結同化
限界温度と既乾部許容温度全厚などの組合せ)によって
異るが上述の概観によ9所要時間は1/ないししに短縮
されること4 になる。
How much time can be shortened by optimal program heating compared to the conventional method depends on the properties of the material (the thermal conductivity of the frozen layer and the transformed layer, the material conductivity of the transformed layer, the frozen assimilation limit temperature, and the frozen layer). The above overview shows that the required time can be reduced by 1/2 to 1/4, depending on the combination of allowable dry section temperature, total thickness, etc.

本発明の第2の利点は、材料の性質(前掲の各項の組合
せ)に応じて、棚温プログラムだけでなく、上下トレイ
への充填厚さく液厚)の配分、上下トレイに充填する液
材料の夫々の固形分濃度を夫々最適値に選定することに
よって、多様な性質の材料に対してより短い乾燥時間を
実現できる適応性がある。
The second advantage of the present invention is that it is possible to control not only the shelf temperature program but also the distribution of the filling thickness and liquid thickness to the upper and lower trays according to the properties of the material (combination of the above-mentioned items). By selecting the solid content concentration of each material to an optimum value, there is flexibility to realize a shorter drying time for materials with various properties.

もし、既乾表面の昇温限界が、乾燥速度を制約している
なら、トレイから剥離し両面を既乾面とする第2図の従
来手段は、既乾部を通過しない入熱系路を失うため不利
であり、トレイ内に凍結した材料の自由表面を内側に向
い合わせる方法は、逆に凍結弛緩が乾燥速度を制約する
場合に不利である。
If the drying rate is restricted by the temperature rise limit of the dry surface, the conventional means shown in Figure 2, which involves peeling off the tray and making both surfaces dry, would require a heat input path that does not pass through the dry surface. The method of turning the free surfaces of the material frozen in the tray inward is disadvantageous when freeze-relaxation limits the drying rate.

本発明では、既乾表面の昇温か制約要因であれは、その
程度に応じて上層トレイ(62内に分配して装入する液
材料の液厚L2を、全体の液厚り即ち(し L1+L2)の2分の1より小さく例えは 4 にする
ことにより、平均入熱量を、第1図の従来法の3倍に増
すことができ、全入熱量の残り 2/3を既転層を昇温
させない凍結層経由により供給でき、逆に凍結弛緩が制
約要因なら昇華面温度以上に凍結部を界湿させることの
ない、上部からの入熱を増し、上層トレイ0内に配分し
て装入する液厚L2を大きく配分すればよい。供給可能
な入熱丑に比例して上層トレイ(62)内の液材料の液
厚L2とド層トレイ(61)内の液材料の液厚り、とを
配分すれば同時に昇華は終了し、制約因子を緩和できる
In the present invention, if there is a limiting factor in the temperature rise of the dry surface, the liquid thickness L2 of the liquid material to be distributed and charged in the upper tray (62) is adjusted depending on the degree of the temperature increase, that is, the total liquid thickness (L1 + L2 ) is smaller than 1/2 (for example, 4), the average heat input can be increased to three times that of the conventional method shown in Figure 1, and the remaining 2/3 of the total heat input is used to raise the It can be supplied via a frozen layer that is not heated, and on the other hand, if freezing relaxation is a limiting factor, increasing the heat input from the top and distributing it to the upper tray 0 without making the frozen part humid above the sublimation surface temperature. The liquid thickness L2 of the liquid material in the upper layer tray (62) and the liquid thickness of the liquid material in the lower layer tray (61) should be largely distributed in proportion to the heat input that can be supplied. By allocating these, the sublimation will be completed at the same time, and the constraining factors can be relaxed.

また、液体においては一般に濃度が大きいほど、既乾燥
層の通気抵抗および凍結層の熱抵抗は増大するが、既転
層の熱抵抗は減小する。そこで、既乾燥層の熱抵抗が乾
燥を妨げる上層トレイ川の初期濃度と凍結層の熱抵抗が
乾燥を妨げる下層ドレイ用の初期濃度の最適値を比べれ
ば異なった値であり、」二層トレイ用の最適濃度がやや
大である。
Furthermore, in general, as the concentration of a liquid increases, the ventilation resistance of the dried layer and the thermal resistance of the frozen layer increase, but the thermal resistance of the frozen layer decreases. Therefore, if we compare the initial concentration of the upper tray, where the thermal resistance of the dried layer prevents drying, and the optimal initial concentration of the lower layer, where the thermal resistance of the frozen layer prevents drying, they are different values. The optimum concentration for this is rather high.

第3の対策は、下層トレイ底面と下部加熱棚面の間隙を
調節し、上下加熱棚からの入熱の合計を昇華工程中最大
に保つことである。通常の多段の加熱棚においては、最
下段と下から2段目の間に置かれたトレイにとって、下
から2段目の加熱棚は、上部加熱棚であるが、2段目と
8段目の間K1ffかれたトVにとっては、下から2段
目の棚は、下部加熱棚である。そこで上下加熱棚の温度
は等しいことになる。そこで、上下非対称の加熱法の場
合は、一般に、加熱棚の温度は、上層トレイ内材料の既
乾燥表面温度が許容温度に達するか、下層トレイ内材料
のトレイ底面温度が凍結保持限界に達するか、いずれか
一方によって規制される。この規制因子は、昇華工程中
ド一方から他方へ移行する場合もあるが、もし工程中に
下層トレイ底面温度が限界に達するための規制がより長
期であれば、下層トレイ底面と下部加熱棚面との間隙を
拡げ、逆ニ」二層トレイ内材料の既乾表面が許容限界に
達するための規制がより長期であれば、下層トレイ底面
と下部加熱棚面との間隙を狭めることにより上下板から
の入熱の合計を拡大できる。
The third measure is to adjust the gap between the bottom of the lower tray and the lower heating shelf to keep the total heat input from the upper and lower heating shelves at a maximum during the sublimation process. In a normal multi-tiered heating shelf, for the tray placed between the bottom tier and the second tier from the bottom, the second tier from the bottom is the upper heating shelf, but the second and 8th tier are the upper heating shelves. For ToV, which was heated during K1ff, the second shelf from the bottom is the lower heating shelf. Therefore, the temperatures of the upper and lower heating shelves are equal. Therefore, in the case of a vertically asymmetrical heating method, the temperature of the heating shelf is generally determined depending on whether the dried surface temperature of the material in the upper tray reaches the allowable temperature or the tray bottom temperature of the material in the lower tray reaches the freeze retention limit. , regulated by either one. This regulating factor may shift from one side to the other during the sublimation process, but if the regulation for the lower tray bottom surface temperature to reach its limit during the process is longer, then the lower tray bottom surface and the lower heating shelf surface If the regulation for the dried surface of the material in the two-layer tray to reach the permissible limit is longer, narrow the gap between the bottom of the lower tray and the lower heating shelf surface. The total heat input from can be expanded.

第4の対策は、本発明の発明者による特公昭45−97
15号の方法を併用することである。
The fourth measure is the Japanese Patent Publication No. 45-97 by the inventor of the present invention.
It is to use method No. 15 in combination.

すなわち、等温に制御される通常の棚段を全段のトレイ
にとって総て下部加熱板として下層トレイの許容限界の
みを基準に最適プログラムにより制御し、これとは別に
、上層トレイと、上部の通常棚下面との間に上部加熱板
として作用する別の加熱板を設け・この温度を上層トレ
イの許容限界のみを基準に別の最適プログラムにより制
御する方法である。
In other words, the ordinary shelves that are isothermally controlled are used as lower heating plates for all trays, and are controlled by an optimal program based only on the allowable limit of the lower tray, and apart from this, the upper tray and the upper In this method, another heating plate is provided between the lower surface of the shelf and acts as an upper heating plate, and the temperature is controlled by another optimum program based only on the allowable limit of the upper tray.

以上、総ての対策を併用することが経済的見地を含めて
必ず有利であるとは限らず、その一部を用いることがよ
り有利なこともありうる。しかし、単層のトレイを用い
る一通常法では、上下加熱板からの入熱は結局単一昇華
面に合流し昇華面温度を上昇させ凍結部の融解の危険を
招き勝ちであったのに対し、本発明の方法では、上部加
熱板からの熱流は総て上層トレイ凍結部に吸収されて、
下層トレイに及ばず、下部加熱板からの熱流は下層トレ
イ凍結部に吸収されて、上層トレイに及ばない。そこで
、上下非対称の加熱形式の不利を、上層と下層の材料厚
・濃度・外部熱伝達係数・加熱温度などの因子を独立に
選択することによって解消ないし緩和することが容易と
なる。
As mentioned above, it is not necessarily advantageous to use all of the measures in combination, including from an economic standpoint, and it may be more advantageous to use some of them. However, in one conventional method using a single-layer tray, the heat input from the upper and lower heating plates eventually merges into a single sublimation surface, increasing the temperature of the sublimation surface and causing the risk of melting of the frozen part. , in the method of the present invention, all the heat flow from the upper heating plate is absorbed into the upper tray freezing section,
The heat flow from the lower heating plate is absorbed by the lower tray freezing part and does not reach the upper tray. Therefore, the disadvantages of the vertically asymmetrical heating format can be easily eliminated or alleviated by independently selecting factors such as the material thickness, concentration, external heat transfer coefficient, and heating temperature of the upper and lower layers.

第4図に示した2重トレイの組合せは、−例であり、上
層トレイ側縁部に付属する水平鍔により、下層トレイ側
縁部に支持させる代りに、両トレイの側縁部を鉛直にせ
ず、傾斜面とするごとにより、水平鍔なしに支持させて
もよく、あるいは、」二層トレイ底面が下層トレイ側縁
部に支持される形式でもよい。必要なことは、下層トレ
イ内の源材料の自由面からの昇華水蒸気が過大な流動抵
抗なしに乾燥室自由空間に脱出できる通路が保持される
ことである。
The combination of double trays shown in Fig. 4 is an example, in which the side edges of both trays are made vertical instead of being supported by the side edges of the lower tray by the horizontal flanges attached to the side edges of the upper tray. First, the tray may be supported without a horizontal flange by forming an inclined surface, or the bottom surface of the two-layer tray may be supported by the side edge of the lower tray. What is required is that a path be maintained through which sublimated water vapor from the free surface of the source material in the lower tray can escape into the drying chamber free space without undue flow resistance.

あるいは、上層トレイと下層トレイを予め組合せず、乾
燥室の加熱板の棚間隔内に、支持台ないし支持レールを
2段に設け、上層トレイと下層トレイを別個に装入して
いくことで組合せトレイとなるようにしてもよい。
Alternatively, instead of combining the upper and lower trays in advance, two levels of support stands or support rails are provided between the shelves of the heating plate in the drying chamber, and the upper and lower trays are loaded separately. It may also be used as a tray.

次に本発明による乾燥時間短縮効果の一例を示す。Next, an example of the effect of shortening drying time according to the present invention will be shown.

固形分濃度20%の濃縮トマト液(ペースト)全厚25
 filを、平行加熱板の間に静置し、温度条件の組合
せとして、 (a)  凍結部温度−(資)℃以下、既乾部温度+5
0 ”C以下 (b)  凍結線温度−16℃以下、既乾部温度+30
 T)以下 の2つの場合について、凍結乾燥時間を比較すると、下
の表の通り、通常の方法(単トレイ内凍結)の場合に、
いずれも長時間を必要とし、昇華面積を2倍にした他の
方法の場合には、時間は短縮される。しかし、既乾燥部
を通過して熱を伝える、平板状凍結体両面昇華は、凍結
部の低温保持に。
Concentrated tomato liquid (paste) with a solid content concentration of 20%, total thickness 25
fil was placed between parallel heating plates, and the combination of temperature conditions was as follows: (a) Temperature of frozen part - (material) ℃ or less, temperature of dry part +5
0 ”C or less (b) Freezing line temperature -16℃ or less, dry area temperature +30
T) Comparing the freeze-drying times in the following two cases, as shown in the table below, in the case of the normal method (freezing in a single tray),
Both methods require a long time, and in the case of other methods in which the sublimation area is doubled, the time is shortened. However, double-sided sublimation of a flat plate-shaped frozen body, which transmits heat through the dried part, is effective in maintaining the low temperature of the frozen part.

厳しく、既乾部の昇温に甘い(a)の場合に有利だが、
逆の場合(b)では短縮効果は僅かであり、反対にトレ
イ内凍結材料の自由表面を内向きにした2重トレイ(特
公昭42−1143号)の場合は、凍結部を通して熱を
伝えるため、凍結部の昇温に甘く、既乾部の低温保持に
厳しい(b)の場合に有利で、大+−1jな短縮効果が
あり、逆の場合(a)では、トレイから剥離した平板状
凍結体を乾燥する場合より劣ることになる。これに対し
、本発明の方法では、凍結部の低湿保持に厳しく、既乾
部の昇温に甘い(a)の場合には、既乾部側から熱を伝
える上層トレイ内液厚をやや厚<(13+n)下層トレ
イ内液厚を12−に調節することにより、平板状凍結体
両面昇華の場合に近いが時間に短縮でき、逆に既乾部の
昇温に厳しいわ)の場合は、上層トレイ内液厚を少く(
10〜11 ms ) K 、下層トレイ内液厚を(1
5〜14雪鳳)に調節することにより、特公昭42−1
143号の方通常の単トレイ内凍結   65hr  
 26hr平板状凍結体両面昇華   25hr  ’
22hr22hr方法  26hr  13hr以上は
実施例の一つであり、材料の特性や許容温度条件だけで
なく、用いる装置の性能の水準によっても、時間短縮効
果の量的度合は変る。しかし、上例の傾向には変りない
。上例は棚1d当り1Ki/  の昇華速度で0.15
0Torr の真空を保持でき1r る装置に依った場合であるが、例えば、同じ昇華速度で
(14Torr 真空保持(相対的に低能力)の装置を
用いると、凍結部温度の低温保持について同程度の厳し
さであっても、凍結部を通じる伝熱の不利の度合が、既
乾部を通じる伝熱に比べて相対的に大きくなる。しかし
、本発明の方法では装置性能の水準に応じて上下層トレ
イへの厚さ配分を調節することにより、各種の条件に適
応できる。
It is advantageous in case (a), which is strict and lenient on temperature rise in dry areas.
In the opposite case (b), the shortening effect is slight; on the other hand, in the case of a double tray (Japanese Patent Publication No. 42-1143) in which the free surface of the frozen material in the tray faces inward, the shortening effect is small because heat is transferred through the frozen part. , is advantageous in case (b), which is sensitive to temperature rise in the frozen part and difficult to maintain low temperature in the dried part, and has a large +-1j shortening effect; This is inferior to when drying a frozen body. On the other hand, in the case of method (a), which is strict in maintaining low humidity in the frozen area and weak in raising the temperature in the dry area, the method of the present invention is to increase the thickness of the liquid in the upper tray, which conducts heat from the dry area, to be slightly thicker. <(13+n) By adjusting the liquid thickness in the lower tray to 12-, it is similar to the case of double-sided sublimation of a flat plate-shaped frozen body, but the time can be shortened, and on the contrary, it is difficult to raise the temperature of the dry area). Reduce the thickness of the liquid in the upper tray (
10 to 11 ms) K, and the liquid thickness in the lower tray to (1
5 to 14 Setsuho), the
For No. 143, freezing in a normal single tray 65 hours
26hr double-sided sublimation of frozen plate 25hr'
22 hr 22 hr method 26 hr 13 hr or more are examples, and the quantitative degree of the time reduction effect varies depending not only on the characteristics of the material and allowable temperature conditions, but also on the performance level of the equipment used. However, the above trend remains unchanged. The above example is 0.15 at a sublimation rate of 1Ki/1d of shelf.
For example, if you use a device that can maintain a vacuum of 14 Torr (relatively low capacity) at the same sublimation rate, you will be able to maintain the same level of low temperature in the freezing zone. Even with severe conditions, the degree of disadvantage of heat transfer through a frozen section is relatively large compared to heat transfer through a dry section. By adjusting the thickness distribution to the lower tray, it can be adapted to various conditions.

以」:、要約すれば、本発明は、大量生産以外に今11
用いられている単トレイ内凍結材料の凍結乾燥に比べて
、設備費の大rIJ増加なしに、また材料やトレイの取
扱いの繁雑化なしに、乾燥時間を17〜1/2に短縮で
き、時間短縮の従来の方法が、材料やトレイ扱いの繁雑
さのため実用されないか、適合条件が狭いため僅かしか
実行されていないのに比べ、広い実用性をもっている。
In summary, the present invention is suitable for use in addition to mass production.
Compared to the currently used freeze-drying of materials frozen in a single tray, the drying time can be reduced by 17 to 1/2 without increasing equipment costs or complicating the handling of materials and trays. It has wide practicality compared to conventional methods of shortening, which are either impractical due to the complexity of materials and tray handling, or are only rarely implemented due to narrow suitability conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は液材料をトレイ内に凍結して乾燥室内の加熱槽
の棚間隔内に装置し乾燥する従前の真空凍結乾燥方法の
模式的説明図、第2図は固形材料を凍結して乾燥室内の
加熱槽の棚間隔内に配置して乾燥する従前の真空凍結乾
燥方法の模式的説明図、第8図は本発明の詳細な説明図
、第4園は゛本発明の実施に用いる組合せトレイの斜視
図、第5図は同上トレイの縦断側面図、第6図は同」ニ
ドレイの縦断正面図、第7図は本発明の実施に用いる真
空凍結乾燥装置の一部破断した正面図である。 図面符号の説明 A・・・乾燥室      a・・・加熱槽B・・・ト
レイ      C・・・組合せトレイ■・・・下部加
熱棚 L・・・トレイ内の液材料の厚み11・・・トレ
イ底面 !・・・トレイ内の液材料の既乾燥層の厚み2
・・・上部加熱棚  Ll・・・下層トレイ内の液材料
の厚み加・・・凍結液材料の自由表面 21  ・・凍結固形材料の上部の自由表面22・・・
凍結固形材料の下部の自由表面L2・・ 上層トレイ内
の液材料の厚み石、・・・下面側の既乾燥層 、82・
・・上面側の既乾燥層30・・・昇華面   31・・
・昇華面  32・・・昇華面41・・・下部加熱槽か
らの熱流 /I2・・・」二部加熱棚からの熱流 50・・・水蒸気流  51・・・水蒸気流 52・・
・水蒸気流6J・・下層トレイ 62・・・」一層トレ
イ 72・・・鍔M・・・凍結液材料     N・・
・平板状固形材料手続補正書(自発) 特許庁長官 島 1)春 樹  殿 1、 事件の表示 昭和霜年特許願  第121272号 2、発明の名称  液材料の真空凍結乾燥方法と装置3
、補正をする者 事件との関係 出願人 5 補正命令の日付 6、 補正によゆ増加する発明の数 7、補正の対象  「明細書」 8、補正の内容  明細書を別紙の通シ補正する。 (1)  明細書中、第7頁10行、「振動させるがし
て」とあるのを削除する。 (2)明細書中、第13頁7行、「昇華熱の供給」とあ
るのを、「昇華熱の伝熱抵抗」と補正する。 以   上
Figure 1 is a schematic explanatory diagram of the conventional vacuum freeze-drying method in which liquid materials are frozen in trays and dried by being placed between the shelves of a heating tank in a drying chamber, and Figure 2 is a diagram of solid materials that are frozen and dried. A schematic explanatory diagram of a conventional vacuum freeze-drying method in which drying is performed by placing the trays between the shelves of an indoor heating tank, FIG. FIG. 5 is a longitudinal sectional side view of the tray, FIG. 6 is a longitudinal sectional front view of the same tray, and FIG. 7 is a partially cutaway front view of the vacuum freeze-drying apparatus used in carrying out the present invention. . Explanation of drawing symbols A... Drying room a... Heating tank B... Tray C... Combination tray ■... Lower heating shelf L... Thickness of liquid material in tray 11... Tray Bottom! ... Thickness of the dry layer of liquid material in the tray 2
... Upper heating shelf Ll ... Thickness of liquid material in lower tray ... Free surface 21 of frozen liquid material ... Upper free surface 22 of frozen solid material ...
Free surface L2 at the bottom of the frozen solid material...Thickness stone of the liquid material in the upper tray... Dry layer on the lower surface side, 82.
・Dried layer 30 on the upper surface side ・Sublimated surface 31 ・・
・Sublimation surface 32...Sublimation surface 41...Heat flow from the lower heating tank/I2...''Heat flow from the two-part heating shelf 50...Water vapor flow 51...Water vapor flow 52...
・Steam flow 6J・Lower tray 62・Single layer tray 72・Tsuba M・Freezing liquid material N・・
・Procedural amendment for flat solid materials (voluntary) Director General of the Japan Patent Office Shima 1) Haruki Tono1, Indication of the case Showa Frost Year Patent Application No. 1212722, Title of the invention Vacuum freeze-drying method and apparatus for liquid materials3
, Relationship with the case of the person making the amendment Applicant 5 Date of the amendment order 6 Number of inventions increased due to the amendment 7 Subject of the amendment ``Description'' 8, Contents of the amendment Amending the description in an attached document . (1) In the specification, on page 7, line 10, the phrase "by vibrating" should be deleted. (2) In the specification, page 13, line 7, "supply of sublimation heat" is corrected to "heat transfer resistance of sublimation heat."that's all

Claims (1)

【特許請求の範囲】 1)、源材料をトレイ内に凍結させて、そのトレイを、
真空に保持される乾燥室内に多段に装設せる加熱槽と加
熱槽との間に配置し、加熱槽より昇華熱を供給して乾燥
させる真空凍結乾燥方法において、前記凍結液材料を内
部に装填したトレイは、加熱槽の棚間隔内に、上層のト
レイの底面と下層のトレイの開口部とが対向する状態で
、その上下の各トレイの内部空間がそれぞれ上面側の開
口部を経て乾燥室内の自由空間に対し連通ずる状態に、
2層に積層せしめて配置し、かつ、それらトレイ内に装
填する前記源材料は、上位の加熱槽から凍結自由表面に
昇華熱を受ける上層のトレイ内の凍結液材料の液厚と、
下位の加熱槽からトレイ底面を介し凍結底面に昇華熱を
受ける下層のトレイ内の凍結液材料の液厚とを、それら
凍結液材料の昇華終了時が略同時になる割合に配分して
、上下のトレイ内に注入し凍結せしめて−おいて、乾燥
させることを特長とする源材料の真空凍結乾燥方法。 2)、内部の雰囲気が通常の真空度に保持される乾燥室
と、その乾燥室内に多段に装架せる加熱槽と、源材料を
内部に凍結せしめて、前記加熱槽の棚間隔内に装入配置
されるトレイとからなり、そのトレイが ■上層トレイの底部外面が下層トレイの内腔底面に対し
所定の間隔を保持し、 (2)下層トレイ内腔底面と上層トレイ底部外面との間
に形成される空間が、所定の面積の開[」部を経て前記
乾燥室内の自由空間に連通ずる 条件を満して、上下に積層状態に嵌合する組合せトレイ
に構成されていることを特長とする源材料の真空凍結乾
燥装置。
[Claims] 1) The source material is frozen in a tray, and the tray is
In a vacuum freeze-drying method in which the drying chamber is placed between heating tanks installed in multiple stages in a drying chamber kept in vacuum, and the heating tank supplies sublimation heat for drying, the frozen liquid material is loaded inside. The trays are placed within the shelf spacing of the heating tank, with the bottom of the upper tray and the opening of the lower tray facing each other, and the internal spaces of the upper and lower trays are connected to the drying chamber through the openings on the top side. In a state where it communicates with the free space of
The source material arranged in two layers and loaded into the trays has a liquid thickness of the frozen liquid material in the upper tray which receives sublimation heat from the upper heating tank to the free freezing surface;
The liquid thickness of the frozen liquid material in the lower tray, which receives sublimation heat from the lower heating tank to the freezing bottom surface via the tray bottom surface, is distributed in such a proportion that the sublimation ends of the frozen liquid materials are approximately the same. A method for vacuum freeze-drying a source material, which is characterized by pouring it into a tray, freezing it, and then drying it. 2) A drying chamber in which the internal atmosphere is maintained at a normal degree of vacuum, a heating tank installed in multiple stages within the drying chamber, and a source material frozen inside and installed within the shelf spacing of the heating tank. (2) The bottom outer surface of the upper tray maintains a predetermined distance from the bottom surface of the inner cavity of the lower tray, and (2) the space between the bottom surface of the lower tray inner cavity and the outer bottom surface of the upper tray The space formed in the drying chamber is configured into a combination tray that fits in a stacked state above and below, satisfying the condition that the space formed in the drying chamber communicates with the free space of the drying chamber through an opening having a predetermined area. Vacuum freeze-drying equipment for source materials.
JP12127281A 1981-07-31 1981-07-31 Vacuum freeze-drying method and equipment for liquid materials Expired JPS6040792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12127281A JPS6040792B2 (en) 1981-07-31 1981-07-31 Vacuum freeze-drying method and equipment for liquid materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12127281A JPS6040792B2 (en) 1981-07-31 1981-07-31 Vacuum freeze-drying method and equipment for liquid materials

Publications (2)

Publication Number Publication Date
JPS5822873A true JPS5822873A (en) 1983-02-10
JPS6040792B2 JPS6040792B2 (en) 1985-09-12

Family

ID=14807139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12127281A Expired JPS6040792B2 (en) 1981-07-31 1981-07-31 Vacuum freeze-drying method and equipment for liquid materials

Country Status (1)

Country Link
JP (1) JPS6040792B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012275U (en) * 1983-07-05 1985-01-28 和泉電気株式会社 Terminal block for printed circuit board
JPS60163678U (en) * 1984-04-09 1985-10-30 ライン精機株式会社 Terminal block for electrical equipment housing
JPH02301978A (en) * 1989-05-16 1990-12-14 Yokogawa Electric Corp Connector terminal block and measuring instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012275U (en) * 1983-07-05 1985-01-28 和泉電気株式会社 Terminal block for printed circuit board
JPS60163678U (en) * 1984-04-09 1985-10-30 ライン精機株式会社 Terminal block for electrical equipment housing
JPH02301978A (en) * 1989-05-16 1990-12-14 Yokogawa Electric Corp Connector terminal block and measuring instrument

Also Published As

Publication number Publication date
JPS6040792B2 (en) 1985-09-12

Similar Documents

Publication Publication Date Title
US2289060A (en) Method of and apparatus for utilizing dry ice
AU2005263465B2 (en) Sterile freezing, drying, storing, assaying and filling process (SFD-SAF process) (pellet freeze-drying process for parenteral biopharmaceuticals)
US2509681A (en) Process of desiccating fruit juices
US3309779A (en) Dehydration of solids-bearing liquids
US4802286A (en) Method and apparatus for freeze drying
JPS5822873A (en) Vacuum freezing drying method of liquid material and its device
US4119139A (en) Heat-exchanger comprising a system of granulate containing vertical tubes, and a method for operating the same
US2594127A (en) Ice cube tray
US3365806A (en) Bulk freeze-drying method and apparatus
US3087253A (en) Heat exchange method and apparatus
US3820250A (en) Freeze drying process
US4175334A (en) Method of and apparatus for freeze-drying previously frozen products
US3254506A (en) Carbon dioxide freezing apparatus and method
US3544091A (en) Apparatus for continuous thermal treatment of pourable granules
Boeh-Ocansey Some factors influencing the freeze drying of carrot discs in vacuo and at atmospheric pressure
US3513559A (en) Freeze-drying apparatus
US2471677A (en) Process of desiccating orange juice involving freeze drying
US5314012A (en) Apparatus for effecting heat exchange between a liquid and a particulate material
JPS615767A (en) Method and apparatus for continuous vacuum drying
JP3616038B2 (en) Vacuum freeze drying method for molded processed food and vacuum freeze drying apparatus for molded processed food
US706511A (en) Apparatus for manufacturing plate-ice.
Marella et al. Food freezing technology
JPS6258963A (en) Production apparatus of lunch
JP2003307384A (en) Temperature control device of shelf boards in freeze dryer
US3063158A (en) Process for preventing caking of sugar