JPS58227A - Dry type exhaust gas desulfurizing method - Google Patents
Dry type exhaust gas desulfurizing methodInfo
- Publication number
- JPS58227A JPS58227A JP56098274A JP9827481A JPS58227A JP S58227 A JPS58227 A JP S58227A JP 56098274 A JP56098274 A JP 56098274A JP 9827481 A JP9827481 A JP 9827481A JP S58227 A JPS58227 A JP S58227A
- Authority
- JP
- Japan
- Prior art keywords
- specific gravity
- carbonized
- coal
- adsorbent
- coals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treating Waste Gases (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は石炭から吸着剤及び還元剤を製造することによ
って燃料排ガス中の硫黄酸化物を除去すると共に、硫黄
酸化物を元素状硫黄として回収す・る乾式排煙脱硫法に
関する。Detailed Description of the Invention The present invention is a dry flue gas desulfurization method that removes sulfur oxides from fuel exhaust gas by producing adsorbents and reducing agents from coal, and recovers sulfur oxides as elemental sulfur. Regarding the law.
従来より燃焼排ガス中の硫黄酸化物を除去する方法につ
いて種々提案され改良されてきた。その中でも代表的な
脱硫法は1石灰石−石膏法」にみられるごとく、石灰石
のようなアルカリ溶液に硫黄酸化物を吸収させた後、酸
化処理等により石膏として回収する方法である。Conventionally, various methods for removing sulfur oxides from combustion exhaust gas have been proposed and improved. Among these desulfurization methods, a typical desulfurization method is a method in which sulfur oxides are absorbed into an alkaline solution such as limestone and then recovered as gypsum through oxidation treatment, etc., as shown in 1. Limestone-gypsum method.
しかしながら「石灰石−石膏法」においては、火力発電
所等の大型装置から排出される石膏量は膨大なものとな
り、この石膏の貯蔵・運搬が問題となり、さらに排水、
用水上の問題がある。そこで石膏に比して軽量な単体硫
黄を副生品として回収できる乾式排煙脱硫法が脚光を浴
びてきた。However, in the "limestone-gypsum method", the amount of gypsum discharged from large equipment such as thermal power plants is enormous, and storage and transportation of this gypsum becomes a problem, as well as drainage and
There is a water problem. Therefore, a dry flue gas desulfurization method that can recover elemental sulfur as a by-product, which is lighter than gypsum, has been attracting attention.
乾式排煙脱硫法において、吸着剤に燃焼排ガス中の硫黄
酸化物を吸着させ、硫黄酸化物を吸着した吸着剤は加熱
脱着により再生され、循環使用される。また加熱脱着に
よって発生した脱着ガスは高濃度の二酸化硫黄(SO,
)を含んでいるので、脱着ガスとカーボンを反応させ一
部硫黄として回収し、さらにSO,、副生H2Sガスは
触媒下で元素状硫黄に還元される。したがってこのよう
な乾式排煙脱硫法では吸着剤は吸着塔および脱着塔で循
環再生して使用するので、循環過程において機械的損耗
が生じ、さらに硫黄酸化物は吸着剤に希硫酸として吸着
されており、吸着剤を加熱脱着再生とになる。すなわち
、吸着剤は機械的損耗と化学的損耗によって消費される
ので、常時その消費量に相当す、る吸着剤量を補給する
必要がある。このため、脱硫プロセス中において損耗の
度合が少ない吸着剤を簡便な方法で補給することが望ま
れていた。In the dry flue gas desulfurization method, sulfur oxides in the combustion exhaust gas are adsorbed onto an adsorbent, and the adsorbent that has adsorbed the sulfur oxides is regenerated by thermal desorption and recycled. In addition, the desorption gas generated by thermal desorption has a high concentration of sulfur dioxide (SO,
), the desorption gas reacts with carbon and is partially recovered as sulfur, and the by-product H2S gas is further reduced to elemental sulfur under a catalyst. Therefore, in such a dry flue gas desulfurization method, the adsorbent is recycled and regenerated in an adsorption tower and a desorption tower, so mechanical wear occurs during the circulation process, and sulfur oxides are adsorbed by the adsorbent as dilute sulfuric acid. As a result, the adsorbent is thermally desorbed and regenerated. That is, since the adsorbent is consumed by mechanical wear and chemical wear, it is necessary to constantly replenish an amount of adsorbent corresponding to the consumed amount. Therefore, it has been desired to replenish adsorbents that are less likely to be worn out during the desulfurization process using a simple method.
本発明者らは排煙脱硫プロセスに使用される吸着剤を石
炭火力発電所の燃料とする燃料石炭から製造することを
既に提案した。しかし燃料石炭から吸着剤を製造する場
合、燃料石炭種によって吸着性能が左右されること、さ
らに燃料石炭を乾留すると微粘結炭が混入しているため
、石炭が膨張し、これを乾留した場合には製造される吸
着剤は機械的強度が弱く、充填密度が低下してしまう問
題があった。The inventors have already proposed that the adsorbent used in the flue gas desulfurization process be produced from thermal coal used as fuel for coal-fired power plants. However, when producing an adsorbent from thermal coal, the adsorption performance is affected by the type of fuel coal, and furthermore, when the thermal coal is carbonized, slightly coking coal is mixed in, so the coal expands and when carbonized. There was a problem that the adsorbent produced had weak mechanical strength and reduced packing density.
本発明の目的は、燃料石炭から機械的強度及び充填密度
が高い吸着剤を製造し、かつ同時にSO2ガスの還元工
程に使用される還元剤をも製造することによって排煙脱
硫プロセス中で使用される吸着剤の損傷を防止し、かつ
吸着剤及び還元剤の補給を簡便に行うことにある。The object of the present invention is to produce an adsorbent with high mechanical strength and packing density from thermal coal, and at the same time to produce a reducing agent used in the reduction process of SO2 gas, which can be used in the flue gas desulfurization process. The objective is to prevent damage to the adsorbent and to easily replenish the adsorbent and reducing agent.
すなわち、燃料石炭は種々の炭種が混合しておムこれを
適宜粒径に破砕して乾留を行う。乾留は700〜850
0程度で行う。この時、微粘結炭は一部膨張して容積が
増大しつつ脱揮発され、非粘結炭はほとんど容積変化が
生じないまま脱揮発され乾留が完了する。ここで乾留炭
を比重差分級することによって、容積変化のあった粒子
(膨張した粒子)と、容積変化のない粒子(主として非
粘結炭)とを分離する。次いで容積変化のない粒子は機
械的強度が大きく、充填密度が高いのでこれを賦活して
排煙脱硫プロセスの吸着剤として使用し、容積変化のあ
った粒子は高濃度so、を元素状硫黄に還元するだめの
還元剤として用いるのである。That is, fuel coal is a mixture of various types of coal, which is crushed into appropriate particle sizes and carbonized. Carbonization is 700-850
Do it at about 0. At this time, the slightly caking coal partially expands and devolatilizes while increasing its volume, while the non-caking coal devolatilizes with almost no change in volume and completes carbonization. Here, by classifying the carbonized coal by specific gravity difference, particles with a change in volume (expanded particles) are separated from particles with no change in volume (mainly non-caking coal). Next, particles with no volume change have high mechanical strength and high packing density, so they are activated and used as an adsorbent in the flue gas desulfurization process, and particles with a volume change are used to convert high concentration SO into elemental sulfur. It is used as a reducing agent.
以下、添付図面に示す実施例に基づいて本発明の詳細な
説明する。Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
石炭1は流れ2,3,4.5から供給される粉炭と合流
して石炭焚きボイラ100で燃焼される。Coal 1 is combined with powdered coal supplied from streams 2, 3, and 4.5 and burned in coal-fired boiler 100.
燃焼ガス6は流れ7のプロセス排ガスと合流シ吸着塔1
01に供給される。吸着塔101において、燃焼ガス中
の硫黄酸化物を吸着剤(乾留炭)に吸着させ、クリーン
な排ガス8は脱じんなどの処理を経て天気中に開放され
る。硫黄酸化物を吸着した吸着剤は流れ9から脱着塔1
02に供給され、加熱脱着することによって吸着剤とし
て再生される。再生された吸着剤10は次に分級器10
3に送られ、ここで機械的に損耗した吸着剤は除去され
た後流れ4から石炭ボイラ100に供給される。Combustion gas 6 is combined with process exhaust gas in stream 7 and adsorption tower 1
01. In the adsorption tower 101, sulfur oxides in the combustion gas are adsorbed by an adsorbent (carbonized coal), and the clean exhaust gas 8 is released into the weather after undergoing processes such as dust removal. The adsorbent adsorbing sulfur oxides is transferred from stream 9 to desorption tower 1.
02, and is regenerated as an adsorbent by thermal desorption. The regenerated adsorbent 10 is then passed through the classifier 10
3, where the mechanically depleted adsorbent is removed and then fed from stream 4 to the coal boiler 100.
再生吸着剤11は吸着剤製造工程から送られてくる吸着
剤12と合流し吸着塔101に供給される。The regenerated adsorbent 11 is combined with the adsorbent 12 sent from the adsorbent manufacturing process and is supplied to the adsorption tower 101.
このように吸着剤は流れ9,10.11を循環すること
になる。The adsorbent will thus circulate through streams 9, 10.11.
脱着塔102で脱着された高濃度S02を含むガスは、
流れ13からSO2還元塔104Vc送られ、ここでカ
ーボンと接触反応し、ガス中のSO□は主として一部S
、H,Sに還元される。還元塔104で使用されるカー
ボン(乾留炭)は流れ14から供給され、SO,ガスの
還元処理を経て灰分と一部の残留カーボンとからなる乾
留炭は流れ15から抜き出される。抜き出された乾留炭
は図示していないボイラ等で処理されることが望ましい
。The gas containing high concentration S02 desorbed in the desorption tower 102 is
Stream 13 sends the SO2 reduction column 104Vc, where it reacts with carbon, and the SO□ in the gas is mainly partially S
, H, and S. Carbon (carbonized coal) used in the reduction tower 104 is supplied from stream 14, and carbonized coal consisting of ash and some residual carbon is extracted from stream 15 after reduction treatment of SO and gas. It is desirable that the extracted carbonized coal be treated in a boiler (not shown) or the like.
還元! 104から排出され、硫黄蒸気を含む反応ガス
は流れ16から硫黄凝結器105で冷却され、ここで反
応ガス中の硫黄蒸気が凝縮し、反応ガス中の硫黄の一部
が流れ17から回収される。reduction! The reactant gas discharged from 104 and containing sulfur vapor from stream 16 is cooled in a sulfur condenser 105 where the sulfur vapor in the reactant gas is condensed and a portion of the sulfur in the reactant gas is recovered from stream 17. .
硫黄凝縮器105において、残りの硫黄蒸気を含むガス
は流れ18からクラウス反応器106に導入される。In sulfur condenser 105, the remaining sulfur vapor-containing gas is introduced from stream 18 into Claus reactor 106.
クラウス反応器106において、SO,の還元反応によ
って生じた硫化水素(H2S)と残留s02、および酸
素(02)とはクラウス触媒の存在下で次の反応(1)
、(2)によって80.および元素状硫黄(S)を生成
する。In the Claus reactor 106, hydrogen sulfide (H2S) generated by the reduction reaction of SO, residual s02, and oxygen (02) undergo the following reaction (1) in the presence of a Claus catalyst.
, (2) by 80. and produces elemental sulfur (S).
2H2S+SOz→2H20+38 −−曲・曲(2)
クラウス反応器106から排出され、硫黄蒸気を含有す
る反応ガスは流れ19から硫黄凝縮器1O27に送られ
、ここで反応ガス中の硫黄蒸気が凝縮し、流れ20から
回収される。硫黄凝縮器107から排出されるガス中に
は有毒ガスが含有される場合もあるので、このガスは流
れ21から酸化塔108に導入され、ここで酸化され、
酸化ガスは流れ7から燃焼排ガス6に合流された後、吸
着塔101に導入される。2H2S+SOz→2H20+38 --Song/Song (2)
The reaction gas discharged from Claus reactor 106 and containing sulfur vapor is sent from stream 19 to sulfur condenser 1O27 where the sulfur vapor in the reaction gas is condensed and recovered from stream 20. Since the gas discharged from the sulfur condenser 107 may contain toxic gases, this gas is introduced via stream 21 into the oxidation column 108 where it is oxidized.
The oxidizing gas is combined with the flue gas 6 from the stream 7 and then introduced into the adsorption column 101 .
このような乾式の排煙脱硫プロセスにおいて、吸着剤お
よび還元剤の製造および補給方法を説明する。A method for producing and replenishing an adsorbent and a reducing agent in such a dry flue gas desulfurization process will be described.
石炭火力発電所の燃料石炭1は流れ22から破砕機10
9に送られ、適宜な粒径に破砕される。The fuel coal 1 of a coal-fired power plant is transferred from a stream 22 to a crusher 10
9, where it is crushed into appropriate particle sizes.
直接、系外で原料石炭が分級されておれば以下の破砕、
分級操作は不要である。破砕された石炭22は次に分級
器110で適宜粒径に分級され、流れ23から乾留炉1
11に送られる。分級器110での粉炭は流れ2から燃
料石炭1と合流して石炭焚ボイラ100で燃焼させるこ
とが最も好ましい。If raw coal is classified directly outside the system, the following crushing,
No classification operation is required. The crushed coal 22 is then classified into appropriate particle sizes in a classifier 110, and is transferred from a stream 23 to a carbonization furnace 1.
Sent to 11. Most preferably, the pulverized coal in the classifier 110 is combined with the fuel coal 1 from stream 2 and combusted in the coal-fired boiler 100.
乾留炉111では温度700r〜850C程度に緩慢に
昇温させ、乾留炭は流れ24から比重差分級器112に
送られる。In the carbonization furnace 111, the temperature is slowly raised to about 700r to 850C, and the carbonization coal is sent from the stream 24 to the specific gravity difference classifier 112.
比重差分級器112には、水、海水又は油類が適宜選定
後、注入され、ここに常温状態の乾留炭が投入されると
、容積変化のあった粒子(比重の小さい乾留炭)は浮上
し、容積変化のない粒子(比重の大きい乾留炭)は沈降
する。比重差分級器112における比重差分級によって
得られた比重の小さい乾留炭は乾燥器113で乾燥され
た後、流れ14から還元塔104に送られ還元剤として
使用される。Water, seawater, or oil is appropriately selected and injected into the specific gravity difference classifier 112, and when carbonized coal at room temperature is introduced, particles that have changed in volume (carbonized coal with a small specific gravity) float to the surface. However, particles that do not change in volume (carbonized coal with high specific gravity) settle. The carbonized coal having a low specific gravity obtained by the specific gravity differential classification in the specific gravity differential classifier 112 is dried in the dryer 113, and then sent from the stream 14 to the reducing column 104 and used as a reducing agent.
比重差分級器112における比重差分級によって得られ
た比重の大きい乾留炭は乾燥器114で乾燥された後賦
活炉115に送られ、ここで流れ28のスチームと反応
して活性化され、吸着剤12として吸着塔101に送ら
れる。なお、ここで比重差分級器112において、比重
差分級用の液体として、重油等の油を使用する場合、比
重差分級された乾留炭の表面に洟の皮膜が残留する。The carbonized coal having a high specific gravity obtained by the specific gravity differential classification in the specific gravity differential classifier 112 is dried in the dryer 114 and then sent to the activation furnace 115, where it is activated by reacting with the steam of the stream 28, and becomes an adsorbent. 12 and sent to the adsorption tower 101. In addition, in the specific gravity difference classifier 112, when oil such as heavy oil is used as the liquid for specific gravity difference classification, a film of lint remains on the surface of the carbonized coal that has been subjected to specific gravity difference classification.
そこで、比重差分級し、二吃燥、した乾留炭を図示して
いない熱分解炉に導き、乾留炭の表面に残留する油を分
解することが望ましい。賦活炉115の反応ガスは流れ
29から抜き出され、プロセス内の熱源として乾留ガス
同様に熱回収される。Therefore, it is desirable to introduce the carbonized coal that has been subjected to specific gravity differential classification and second drying to a pyrolysis furnace (not shown) to decompose the oil remaining on the surface of the carbonized coal. The reactant gas in the activation furnace 115 is withdrawn from stream 29 and is recovered as a heat source in the process in the same manner as the carbonization gas.
このようにして吸着剤12は流れ4から抜き出される吸
着剤損耗量と、脱着塔102で消費される化学的損傷量
の合計量として吸着塔に補給される。In this way, the adsorbent 12 is replenished to the adsorption tower as the sum of the adsorbent waste extracted from stream 4 and the chemical damage consumed in the desorption tower 102.
ここで燃料石炭として豪州炭A燃料炭について実験し、
本発明の効果を確認した。Here, we conducted an experiment using Australian coal A as fuel coal.
The effects of the present invention were confirmed.
A燃料炭を粉砕し平均的な粘結性状を調べるとボタン指
数は1.5であった。A燃料炭をロータリーキルン炉で
昇温速度を1.5〜2C/mで700Cまで昇温した後
この温度を1時間保持し、その後常温までN2ガス雰囲
気で冷却し乾留炭を製造した。When A fuel coal was pulverized and its average caking properties were examined, the Button index was 1.5. Fuel coal A was heated to 700C at a heating rate of 1.5 to 2C/m in a rotary kiln furnace, maintained at this temperature for 1 hour, and then cooled to room temperature in a N2 gas atmosphere to produce carbonized coal.
ここで乾留炭を14.2t:’の水に投入したところ、
沈降物と浮上物の割合は沈降物53%に対し、浮上物は
47%であった。ここで得た沈降物、浮上物のマイクロ
ストレングス硬度、充填密度を比較する4と以下のごと
くである。沈降物のマイクロストレングス硬度は82%
に対し、浮上物は58%と低くなシ、充填密度について
も沈降物が680g/lに対して、380g/lと浮上
物は小さくなった。また、比重を変ることによって沈降
物/浮上物の分級割合を調整でき、この沈降物/浮上物
の比率は前述した吸着剤所要量及び還元剤所要量によっ
て調整される。Here, when carbonized coal was put into 14.2 tons of water,
The ratio of sediment to floating matter was 53% for sediment and 47% for floating matter. The micro-strength hardness and packing density of the sediments and floats obtained here are compared with 4 as follows. Microstrength hardness of sediment is 82%
On the other hand, the amount of floating matter was low at 58%, and the packing density was 380 g/l, which was smaller than the packing density of 680 g/l. Further, by changing the specific gravity, the classification ratio of sediments/floating substances can be adjusted, and this ratio of sediments/floating substances is adjusted by the required amount of adsorbent and reducing agent as described above.
沈降した乾留炭を賦活して得られる吸着剤は膨張した粒
子がなく、硬度、充填密度の高い吸着剤となる。The adsorbent obtained by activating settled carbonized carbon has no expanded particles and has high hardness and packing density.
一方膨張した乾留炭は、so、とカーボンとの接触反応
におけるカーボン源として使用される。On the other hand, the expanded carbonized carbon is used as a carbon source in the contact reaction between SO and carbon.
この接触反応ではカーボン粒子の硬度、充填密度に対し
て制約がないので膨張した乾留炭で十分である。In this catalytic reaction, there are no restrictions on the hardness or packing density of the carbon particles, so expanded carbonized carbon is sufficient.
本発明において比重分級により還元剤及び吸着剤を選別
できるので、原料とされる石炭は1炭種に限らず、数炭
種を混合したものでもよい。また上記実施例において、
比重差分級の手段は液体中における乾留戻粉の浮上、沈
降を利用しているが、この液体として水、海水などを用
いる場合比重差分級後の乾留戻粉を乾留するだめの熱量
が必要となる。このような湿式比重差分級の問題を避け
る点からは、乾式比重分級法が望ましい。In the present invention, since the reducing agent and the adsorbent can be selected by gravity classification, the coal used as the raw material is not limited to one type of coal, but may be a mixture of several types of coal. Furthermore, in the above embodiment,
The means of differential gravity classification utilizes the floating and settling of carbonized return powder in a liquid, but when water, seawater, etc. is used as this liquid, a large amount of heat is required to carbonize the carbonized return powder after differential gravity classification. Become. In order to avoid such problems of wet specific gravity differential classification, dry specific gravity classification is desirable.
乾式比重差分級法は、例えば乾留炭を数種類の粒径範囲
群に篩別した後、それぞれの粒径範囲群の乾留炭を別個
に風力分級器に供給する方法を採用することができる。The dry specific gravity differential classification method can employ, for example, a method in which carbonized coal is sieved into several particle size range groups and then the carbonized coal in each particle size range group is separately supplied to an air classifier.
風力分級器としては水平流型、垂直流型のいずれでもよ
い。The wind classifier may be either a horizontal flow type or a vertical flow type.
以上のように本発明によれば、乾留炭を比重差分級し、
比重の重い乾留炭を吸着剤用とし、比重の軽い乾留炭は
還元剤用としたものであるから、吸着剤は硬度及び充填
密度の高いものが得られ、かつ比重の軽い乾留炭は還元
剤として使用できるので、それぞれの特性に応じた吸着
剤及び還元剤を補給することができる。また、吸着塔−
脱着塔間で吸着剤を再生循環して使用する場合に、循環
に伴う機械的損耗を少なくできるので、乾式排煙脱硫に
幹けるランニングコストを低減できる効果がある。また
、充填密度が大きくなるので単位燃焼排ガス処理量の吸
着塔容量を小さくできる効果がある。As described above, according to the present invention, carbonized coal is classified by specific gravity,
The carbonized carbon with a heavy specific gravity is used as an adsorbent, and the carbonized carbon with a light specific gravity is used as a reducing agent, so an adsorbent with high hardness and packing density can be obtained, and the carbonized carbon with a light specific gravity is used as a reducing agent. Since the adsorbent and reducing agent can be used as a replenisher, adsorbents and reducing agents can be supplied according to the characteristics of each adsorbent and reducing agent. In addition, adsorption tower-
When the adsorbent is regenerated and circulated between desorption towers, the mechanical wear and tear associated with the circulation can be reduced, which has the effect of reducing the running costs associated with dry flue gas desulfurization. Moreover, since the packing density becomes large, there is an effect that the capacity of the adsorption tower for unit combustion exhaust gas processing amount can be reduced.
第1図は本発明の一例を示すフローシートである。
100・・・石炭焚きボイラ、101・・・吸着塔、1
02・・・脱着塔、103・・・分級器、104・・・
SO7還元塔、105・・・髄黄凝縮器、106・・・
クラウス反応塔、107・・・硫黄凝縮器、108・・
・酸化塔、109・・・破砕機、110・・・分級器、
111・・・乾留炉、112・・・比重差分級器、11
3,114・・・乾燥器、115第1頁の続き
■出 願 人 バブコック日立株式会社東京都千代田区
大手町2丁目6
番2号FIG. 1 is a flow sheet showing an example of the present invention. 100...Coal-fired boiler, 101...Adsorption tower, 1
02...Desorption tower, 103...Classifier, 104...
SO7 reduction tower, 105... Marrow condenser, 106...
Claus reaction tower, 107...Sulfur condenser, 108...
・Oxidation tower, 109... crusher, 110... classifier,
111... Carbonization furnace, 112... Specific gravity differential classifier, 11
3,114...Dryer, continued from page 1 of 115 ■Applicant Babcock Hitachi Co., Ltd. 2-6-2 Otemachi, Chiyoda-ku, Tokyo
Claims (1)
、脱着ガスを還元剤に接触させ脱着ガス中の硫黄酸化物
を元素状硫黄に変換する工程とを含む乾式排煙脱硫方法
において、吸着工程および還元工程において必要とされ
る吸着剤量および還元剤量に応じて選別すべき比重値を
選定し、この比重値に基づいて乾留された石炭粉を比重
差分級し、比重の大きい乾留炭を賦活したのち前記吸着
剤として使用し、比重の小さい乾留炭を前記還元剤とし
て使用することを特徴とする乾式排煙脱硫法。1. In a dry flue gas desulfurization method that includes a step of adsorbing sulfur oxides in the exhaust gas to an adsorbent, and a step of bringing the desorption gas into contact with a reducing agent to convert the sulfur oxides in the desorption gas into elemental sulfur, The specific gravity value to be sorted is selected according to the amount of adsorbent and reducing agent required in the adsorption process and the reduction process, and the carbonized coal powder is classified based on the specific gravity difference, and the carbonized coal powder with a large specific gravity is classified. A dry flue gas desulfurization method characterized in that charcoal is activated and then used as the adsorbent, and carbonized carbon having a low specific gravity is used as the reducing agent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56098274A JPS58227A (en) | 1981-06-26 | 1981-06-26 | Dry type exhaust gas desulfurizing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56098274A JPS58227A (en) | 1981-06-26 | 1981-06-26 | Dry type exhaust gas desulfurizing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58227A true JPS58227A (en) | 1983-01-05 |
Family
ID=14215355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56098274A Pending JPS58227A (en) | 1981-06-26 | 1981-06-26 | Dry type exhaust gas desulfurizing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58227A (en) |
-
1981
- 1981-06-26 JP JP56098274A patent/JPS58227A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11065578B2 (en) | Control of wet scrubber oxidation inhibitor and byproduct recovery | |
US5607496A (en) | Removal of mercury from a combustion gas stream and apparatus | |
US4833877A (en) | Process for the reduction of pollutant emissions from power stations with combined gas/steam turbine processes with preceding coal gasification | |
US6932956B2 (en) | Production of sulphur and activated carbon | |
CA2650156A1 (en) | Process for the manufacture of carbonaceous mercury sorbent from coal | |
PL128322B1 (en) | Method of gasification of solid carbonaceous matter | |
WO2005030641A1 (en) | Highly activated coke powder and process for producing the same | |
US3524720A (en) | Process for removing sulfur dioxide from gases | |
CA1193073A (en) | Process for removal of sulfur oxides from hot gases | |
KR850001200B1 (en) | Process for dry desuifurization of flue gas | |
JP4723922B2 (en) | Manufacturing method of carbonaceous adsorbent, removal method of environmental pollutant using the same, and removal apparatus | |
US4113840A (en) | Process for the removal of sulfur dioxide from exhaust flue gases | |
JPS58227A (en) | Dry type exhaust gas desulfurizing method | |
US3632314A (en) | Regeneration of sulfuric acid laden activated carbon | |
US3630943A (en) | Preparation of absorbents for sulfur oxide removal | |
US3789110A (en) | Method for removing sulfur dioxide from waste gases and recovering a concentrated stream of sulfurdioxide | |
US4307069A (en) | Desulfurization of flue gases with complete sulfite oxidation | |
GB2141417A (en) | A process for preparing a sulfur dioxide containing gas stream for reaction with coal | |
US4382010A (en) | Desulfurization of flue gases with complete sulfite oxidation | |
CA1146338A (en) | Low sulfur content hot reducing gas production using calcium oxide desulfurization with water recycle | |
CA2179000C (en) | Removal of mercury from a combustion gas stream | |
US3577219A (en) | Recovery of sulfur dioxide from waste gases | |
KR820001196B1 (en) | Process for production of h s from so obtained from flue gas | |
KR102512235B1 (en) | methods of sulfur recovery from biogas | |
EP0649674B1 (en) | Heat generation process and installation with adsorbent regeneration producing a fertilizer |