JPS5822571B2 - Carbon fiber manufacturing method using vapor phase method - Google Patents

Carbon fiber manufacturing method using vapor phase method

Info

Publication number
JPS5822571B2
JPS5822571B2 JP51018794A JP1879476A JPS5822571B2 JP S5822571 B2 JPS5822571 B2 JP S5822571B2 JP 51018794 A JP51018794 A JP 51018794A JP 1879476 A JP1879476 A JP 1879476A JP S5822571 B2 JPS5822571 B2 JP S5822571B2
Authority
JP
Japan
Prior art keywords
carbon fiber
fibers
vapor phase
substrate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51018794A
Other languages
Japanese (ja)
Other versions
JPS52103528A (en
Inventor
恒夫 小山
守信 遠藤
靖門 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP51018794A priority Critical patent/JPS5822571B2/en
Publication of JPS52103528A publication Critical patent/JPS52103528A/en
Publication of JPS5822571B2 publication Critical patent/JPS5822571B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は気相法による炭素繊維の製造法の改良に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for producing carbon fiber by a vapor phase method.

高温炉の断熱材や各種複合材料に使用されている炭素繊
維は一般に有機合成繊維から作られているが、これとは
別にガス状にした炭化水素を高温帯域に導いて、気相か
ら炭素繊維を析出させる方法も特公昭41−12091
等によって知られている。
Carbon fibers used in high-temperature furnace insulation and various composite materials are generally made from organic synthetic fibers, but in addition to this, gaseous hydrocarbons are introduced into a high-temperature zone to extract carbon fibers from the gas phase. The method for precipitating
It is known from etc.

ただし、気相法による場合は、析出条件を微妙に開票し
ないと全く炭素繊維の生成が見られないことがしばしば
起り、工業的に生産されるまでに至っていない。
However, when using the gas phase method, it often happens that no carbon fibers are produced at all unless the precipitation conditions are carefully adjusted, and this has not led to industrial production.

そこで、生成を助長する方法として本出願人は先に特開
昭50−58321に示すような工夫された方法を提案
したが、更に研究した結果炭素繊維を著しく助長する方
法を見出し本発明に至った。
Therefore, as a method for promoting the formation of carbon fibers, the present applicant previously proposed a devised method as shown in JP-A-50-58321, but as a result of further research, he discovered a method that significantly promotes the formation of carbon fibers, leading to the present invention. Ta.

その特徴は炭素繊維が析出生成する加熱帯域に周期律表
の■族およびva族の中から選ばれた元素又はその化合
物、即ち、Fe、Co、Ni、V、Nb、Ta、又はこ
れらの化合物を存在させることにある。
Its feature is that the heating zone where carbon fibers are precipitated contains elements selected from Groups I and VA of the periodic table, or their compounds, such as Fe, Co, Ni, V, Nb, Ta, or their compounds. The purpose is to bring into existence.

気相法で炭素繊維を生成させるには、既に知られている
ように、所定温度に加熱された炉芯管に炭化水素ガスを
キャリアガスで希釈して導き、炉芯管内に置かれた耐熱
性基村上に炭素繊維を析出させている。
As is already known, in order to produce carbon fiber by the vapor phase method, hydrocarbon gas is diluted with a carrier gas and introduced into a furnace core tube heated to a predetermined temperature, and a heat-resistant Carbon fibers are deposited on Seiki Murakami.

ここで、通常、炉芯管はコランダム質、石英等、加熱温
度は1030〜1300°C1炭化水素としてはベンゼ
ン、トルエン、メタン、エタン、エチレン、フロパン、
メタン、エチレン、プロピレン、シクロヘキサンなど飽
和、或いは不飽和の脂肪族、芳香族など殆んどすべての
炭化水素が使用可能であり、またこれらの混合物、揮発
油、灯油等も使用可能である。
Here, the furnace core tube is usually made of corundum, quartz, etc., and the heating temperature is 1030 to 1300°C1 Hydrocarbons include benzene, toluene, methane, ethane, ethylene, fluoropane, etc.
Almost all hydrocarbons such as saturated or unsaturated aliphatic and aromatic hydrocarbons such as methane, ethylene, propylene, and cyclohexane can be used, and mixtures thereof, volatile oil, kerosene, etc. can also be used.

キャリアガスとしては水素又はアルゴンが用いられ、ま
た炉芯管内に置かれる耐熱性基材には黒鉛、石英、コラ
ンダム質のものが知られて℃・る。
Hydrogen or argon is used as the carrier gas, and graphite, quartz, and corundum are known as heat-resistant base materials placed in the furnace core tube.

本発明は加熱帯域に前記元素又はその化合物を存在させ
るものであるが、それによって炭素繊維の生成量が増大
する理由としては、これらの元素が繊維生成の核となり
、これから繊維が成長してゆくものと思われる。
In the present invention, the above elements or their compounds are present in the heating zone, and the reason why the amount of carbon fiber produced is increased by this is that these elements become the core of fiber production, and the fibers grow from there. It seems to be.

事実、成長した繊維を調べてみると、繊維の頭部にこれ
らの元素が存在しているのが認められる。
In fact, when we examine grown fibers, we find that these elements are present in the fiber heads.

従って作用するのは金属元素であるので、化合物を使用
する場合その形は特に問題にならず、炭化物、酸化物な
ど広範囲に使用可能である。
Therefore, since it is the metal element that acts, when a compound is used, its form does not matter, and a wide range of compounds such as carbides and oxides can be used.

なお、酸化物ではキャリアガスとして水素を使用する場
合、還元されるものもあるが、金属元素が残るので支障
はない。
Note that when hydrogen is used as a carrier gas, some oxides are reduced, but there is no problem because the metal elements remain.

これら元素又は化合物を加熱帯域に存在させる方法とし
ては炉芯管自体をこれら元素又は化合物で構成すること
も考えられるが、成長した繊維の取出し上における便宜
、また成長とともに繊維を炉芯管内を移動させて長繊維
とする場合を考えると、炉芯管内にこれらの元素又はそ
の化合物からなる基板を置くか、又はその他の耐熱性基
板上にこれらの元素又はその化合物を存在させることが
望ましい。
As a method of making these elements or compounds exist in the heating zone, it is possible to configure the furnace core tube itself with these elements or compounds, but it is convenient to take out the grown fibers, and it is also possible to move the fibers inside the furnace core tube as they grow. When considering the case where the long fibers are made by using these elements, it is desirable to place a substrate made of these elements or their compounds in the furnace core tube, or to make these elements or their compounds exist on another heat-resistant substrate.

そして繊維の成長と共に基板を移動させれば相当長い繊
維を得ることも出来る。
If the substrate is moved as the fibers grow, fairly long fibers can be obtained.

本発明において、基板自体を前記元素又はその化合物で
、例えば微粉末の焼結、鋳造、圧延などによって構成し
ても、従来公知の基板に比べ効果があるが、最も望まし
くは、本発明の作用機構からも理解されるように、耐熱
性基板上に前記元素又はその化合物の微粉末を散布して
おく方法である。
In the present invention, even if the substrate itself is made of the above elements or their compounds, for example by sintering, casting, rolling, etc. of fine powder, it is more effective than conventionally known substrates, but most preferably, the effect of the present invention is As can be understood from the mechanism, this is a method in which fine powder of the element or its compound is dispersed on a heat-resistant substrate.

微粉末としては50ミクロン下位が望ましく散布は分散
媒に懸濁させてスプレーするか、或いは粉末のまま単に
振りかけてもよい。
The fine powder preferably has a particle diameter of less than 50 microns, and can be sprayed after being suspended in a dispersion medium, or simply sprinkled as a powder.

また基板がポーラスであればこれに含浸させることもで
きる3核の生成は主として表面で起るので、粉末散布の
場合、厚さは数ミクロン程度あれば充分である。
Furthermore, if the substrate is porous, the generation of three nuclei that can be impregnated into the substrate mainly occurs on the surface, so in the case of powder dispersion, a thickness of several microns is sufficient.

炭化水素およびキャリアガスは前記した従来公知のもの
がそのまま用いられ、その混合割合は、混合ガス中の炭
化水素の濃度で1〜60モル%である。
As the hydrocarbon and carrier gas, the conventionally known ones mentioned above are used as they are, and the mixing ratio thereof is 1 to 60 mol % in terms of the concentration of hydrocarbon in the mixed gas.

この混合割合をもう少し詳しく説明すると、加熱帯域で
問題になるのは炭素濃度であるから、ベンゼンのように
C/H比が高いものは、キャリアガスを多く必要とし、
ベンゼン濃度は前記範囲内の低目の1〜30モル%が適
当であり、またメタンのようにC/Hが低いものは逆に
濃度を高くすることが出来、3〜60モル%が適当であ
る。
To explain this mixing ratio in more detail, the problem in the heating zone is the carbon concentration, so materials with a high C/H ratio like benzene require a large amount of carrier gas.
The appropriate benzene concentration is within the above range of 1 to 30 mol%, and for substances with low C/H such as methane, the concentration can be increased, and 3 to 60 mol% is appropriate. be.

炭化水素とキャリアガスの混合は炭化水素が常温でガス
状ならばそのまま混合すればよく、また液体ならばその
温度を選んで気化する量を制御すると共に、その中を例
えばキャリアガスをバブリングするなどの方法で混合す
ればよい。
When mixing hydrocarbons and carrier gas, if the hydrocarbons are gaseous at room temperature, they can be mixed as is, or if they are liquid, the amount of vaporization can be controlled by selecting the temperature, and the carrier gas can be bubbled through the mixture. You can mix it using the following method.

混合ガスの送入流量は炉芯管の加熱帯域の断面積をS
(Cm)とすれば常温換算で(5〜150)SCJ/分
程度が適当である。
The feeding flow rate of the mixed gas is determined by the cross-sectional area of the heating zone of the furnace core tube.
(Cm), approximately (5 to 150) SCJ/min in terms of room temperature is appropriate.

加熱帯域の好ましい温度は1030〜1300℃で、こ
れより低(てもまた高過ぎても繊維の生成量が減る。
The preferred temperature of the heating zone is 1030 to 1300°C, and lower (or higher) temperatures will reduce the amount of fiber produced.

さらに、これを詳述すれば最も好ましくはメタン等分子
量の低いものは1200〜1300°Cと前記範囲で高
めがよ(、分子量が大きくなるにつれて低目に移行する
Further, to explain this in detail, it is most preferable for a substance with a low molecular weight such as methane to be in the range of 1,200 to 1,300°C (although as the molecular weight becomes larger, it becomes lower).

また芳香族系では1030〜1100℃が最適である。Further, for aromatic systems, the optimum temperature is 1030 to 1100°C.

繊維の成長速度は混合ガスの流速、温度、その他の条件
によって変るが、30分〜1時間の加熱で5〜15cr
fL程度に成長する。
The growth rate of fibers varies depending on the flow rate of the mixed gas, temperature, and other conditions, but it can grow from 5 to 15 cr after heating for 30 minutes to 1 hour.
It grows to about fL.

さらに長い繊維を得たい場合は加熱帯域を長くするか又
は繊維の成長と共に基板を混合ガスの送入側に移動して
やればよい。
If it is desired to obtain even longer fibers, the heating zone may be lengthened or the substrate may be moved to the mixed gas inlet side as the fibers grow.

そして所望の繊維になったところで基板を取出し、新た
に前記元素又はその化合物を存在させた基板を送入し、
繊維生成を開始すれば効率よく炭素繊維を製造すること
ができる。
Then, when the desired fiber is obtained, the substrate is removed, and a new substrate containing the element or its compound is introduced,
Once fiber production is started, carbon fibers can be efficiently produced.

本発明によれば従来のように繊維の生成開始時にガス流
速を早くして核をつくり、成長時にはこれより遅(する
などの操作上の煩わしさを必要とせず、安定して繊維を
製造することが出来る。
According to the present invention, fibers can be stably produced without the need for operational hassles such as increasing the gas flow rate at the start of fiber production to create a nucleus and slowing down the gas flow rate during growth, as in the past. I can do it.

そしてこの気相法による炭素繊維は結晶性がよいので、
有機合成繊維から作られた炭素繊維に比べて、特性、例
えば引張り強度を比較してもかなり優れている。
And since the carbon fiber produced by this vapor phase method has good crystallinity,
Compared to carbon fiber made from organic synthetic fibers, it has considerably superior properties, such as tensile strength.

実施例 SiC発熱体を備えた電気環状炉内にアルミナ質炉芯管
(内径5Qmm、長さ100100Oを水平に置き、炉
芯管内には人造黒鉛製基板(巾40mm、長さ200朋
、厚さ5mm)を置き、その温度を約1080℃とした
Example: An alumina furnace core tube (inner diameter 5Q mm, length 100100 mm) was placed horizontally in an electric ring furnace equipped with a SiC heating element, and an artificial graphite substrate (width 40 mm, length 200 mm, thickness 5 mm), and the temperature was about 1080°C.

炉芯管の一端はガス導入管、他端には排出管を接続した
One end of the furnace core tube was connected to a gas introduction tube, and the other end was connected to a discharge tube.

ここにベンゼン10容量%を含む水素ガスを毎分700
cc(常温)流した。
Here, hydrogen gas containing 10% by volume of benzene was added at a rate of 700 per minute.
cc (room temperature) was flowed.

45分後に送入ガスをアルゴンに切換え放冷した後、基
板を取出し、生成した炭素繊維を引き剥がして秤量した
After 45 minutes, the gas to be supplied was changed to argon, and the substrate was allowed to cool, and then the substrate was taken out, and the produced carbon fibers were peeled off and weighed.

黒鉛基板上に各種粉末を30〜一様に散布して上記基板
として使用した結果を上記例と併せて次の表に示す。
The following table shows the results of using the graphite substrate by uniformly scattering various powders on the graphite substrate, together with the above examples.

上記結果が示すように基板として従来の黒鉛、SiO,
Al2O3を使ったものに比べ、本発明のものは炭素繊
維生成量において格段の相違があり、特に基板上に前記
元素又はその粉末を散布した場合にその効果は著しい。
As the above results show, conventional graphite, SiO,
Compared to the one using Al2O3, the one of the present invention has a marked difference in the amount of carbon fiber produced, and the effect is particularly remarkable when the above element or its powder is sprinkled on the substrate.

そしてこの繊維は市販されている有機合成繊維からの炭
素繊維に比べて大きな強度を示す。
This fiber exhibits greater strength than commercially available carbon fibers made from organic synthetic fibers.

Claims (1)

【特許請求の範囲】[Claims] 1 炭化水素とキャリアガスとの混合ガスより気相法に
よって、炭素繊維を製造する方法において、炭素繊維が
生成する加熱帯域を1030〜1300℃とし、この帯
域に周期律表の■族およびVa族の中から選ばれた元素
又はその化合物の微粉末を存在させ、前記混合ガスの気
流下で炭素繊維を生成および成長させることを特徴とす
る方法。
1. In a method of producing carbon fiber by a vapor phase method from a mixed gas of hydrocarbon and carrier gas, the heating zone in which carbon fiber is produced is set at 1030 to 1300°C, and in this zone, groups 1 and Va of the periodic table are added. A method characterized by producing and growing carbon fibers in the presence of a fine powder of an element or a compound thereof selected from the above, and under the flow of the mixed gas.
JP51018794A 1976-02-25 1976-02-25 Carbon fiber manufacturing method using vapor phase method Expired JPS5822571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51018794A JPS5822571B2 (en) 1976-02-25 1976-02-25 Carbon fiber manufacturing method using vapor phase method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51018794A JPS5822571B2 (en) 1976-02-25 1976-02-25 Carbon fiber manufacturing method using vapor phase method

Publications (2)

Publication Number Publication Date
JPS52103528A JPS52103528A (en) 1977-08-30
JPS5822571B2 true JPS5822571B2 (en) 1983-05-10

Family

ID=11981492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51018794A Expired JPS5822571B2 (en) 1976-02-25 1976-02-25 Carbon fiber manufacturing method using vapor phase method

Country Status (1)

Country Link
JP (1) JPS5822571B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524479B2 (en) 2001-06-28 2009-04-28 Showa Denko K.K. Method for producing vapor grown carbon fiber

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819903Y2 (en) * 1979-05-24 1983-04-23 パイオニア株式会社 Composite speaker system
JPS58197314A (en) * 1982-05-11 1983-11-17 Morinobu Endo Fibrous carbon
JPS5959921A (en) * 1982-09-29 1984-04-05 Kureha Chem Ind Co Ltd Manufacture of carbon fiber in vapor phase
JPS59182212A (en) * 1983-03-28 1984-10-17 Showa Denko Kk Bonded carbon fiber material
JPS60224816A (en) * 1984-04-20 1985-11-09 Nikkiso Co Ltd Gas-phase production of carbon fiber
WO1986004937A1 (en) * 1985-02-22 1986-08-28 Showa Denko Kabushiki Kaisha Gas phase method of manufacturing carbon fibers
JP3502490B2 (en) * 1995-11-01 2004-03-02 昭和電工株式会社 Carbon fiber material and method for producing the same
US6528211B1 (en) 1998-03-31 2003-03-04 Showa Denko K.K. Carbon fiber material and electrode materials for batteries
US6464950B1 (en) 1998-05-22 2002-10-15 Showa Denko K.K. Method for separating and treating exhaust gas of carbon fiber
JP4660705B2 (en) * 2007-05-25 2011-03-30 国立大学法人信州大学 Method for producing multi-walled carbon nanotube
CN105624861A (en) * 2014-10-28 2016-06-01 江阴芗菲服饰有限公司 Cool sense-offered anti-bacteria type yarn and spinning technology thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3664813A (en) * 1969-07-17 1972-05-23 Glass John P Method for making graphite whiskers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3664813A (en) * 1969-07-17 1972-05-23 Glass John P Method for making graphite whiskers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524479B2 (en) 2001-06-28 2009-04-28 Showa Denko K.K. Method for producing vapor grown carbon fiber

Also Published As

Publication number Publication date
JPS52103528A (en) 1977-08-30

Similar Documents

Publication Publication Date Title
US5500200A (en) Fibrils
JPS5822571B2 (en) Carbon fiber manufacturing method using vapor phase method
Addamiano Preparation and properties of 2H SiC crystals
US5413773A (en) Method for forming carbon filters
US20010036549A1 (en) Fibrils
JPS62242B2 (en)
WO1990007023A1 (en) Carbon fibrils and a catalytic vapor growth method for producing carbon fibrils
JPH0424320B2 (en)
JPS5939527B2 (en) Method for producing carbon fiber with branches
EP0817874A1 (en) Carbide nanofibrils and method of making same
JP5364904B2 (en) Method for producing carbon nanofiber aggregate
JPS5924119B2 (en) Manufacturing method of graphite whiskers
EP0214302A1 (en) Gas phase method of manufacturing carbon fibers
JPH0314623A (en) Production of carbon fiber
JPH0621377B2 (en) Production method of vapor grown carbon fiber
JPS58156512A (en) Fibrous carbon material having thickly grown fine carbon cilium
JPS60252720A (en) Production of carbon fiber by vapor phase method
JP3071536B2 (en) Carbon fiber
JPH03146716A (en) Carbon fiber and its production
JPS62104920A (en) Method for forming graphite fiber
JPS5947424A (en) Manufacture of carbon-silicon carbide composite fiber
JPH0383900A (en) Single-crystal silicon-carbide fiber and its manufacture
JPH089808B2 (en) Method for producing fine carbon fiber by vapor phase method
KR100844115B1 (en) Cladophora-form carbon, process for producing the same and production apparatus therefor
Motojima et al. Preparation and properties of cosmo-mimetic carbon micro-coils and ceramic micro-solenoids/micro-tubes by CVD process