JPS58225386A - Lmfbr type reactor - Google Patents

Lmfbr type reactor

Info

Publication number
JPS58225386A
JPS58225386A JP57108306A JP10830682A JPS58225386A JP S58225386 A JPS58225386 A JP S58225386A JP 57108306 A JP57108306 A JP 57108306A JP 10830682 A JP10830682 A JP 10830682A JP S58225386 A JPS58225386 A JP S58225386A
Authority
JP
Japan
Prior art keywords
hardening
reactor
liquid metal
ring
core structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57108306A
Other languages
Japanese (ja)
Inventor
永岡 悦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57108306A priority Critical patent/JPS58225386A/en
Publication of JPS58225386A publication Critical patent/JPS58225386A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、液体金属(ナトリウム)を冷却材として使用
する高速増殖炉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fast breeder reactor that uses liquid metal (sodium) as a coolant.

従来の液体金属冷却型増殖炉は、第1図に示すように、
炉全体を覆う遮蔽コンクリート構造物(図示省略)側の
台座(はデスチル)(2)上に上部7ランジ部分を載置
して支持せしめた炉容器(1)を、炉内の温度変化に伴
い膨、縮可能に垂架し、炉容器(1)の内周面側に設け
た内向7ランジ(3)上に炉心構造物(4)を載置し【
支持し、収容するとともに、入口配管(5)より炉容器
(1)内の下部に導入された冷却用の液体金属(ナトリ
ウム)は、比較的に低温の液体金属層(イ)とその上側
において炉心構造物(4)を冷却し400〜450Cに
達する高温の液体金属層(ロ)に形成され、出口配管(
6)から随時に取出され、高温液体金属層(ロ)の上側
のカバーガス層(→は、台座(2)上に載置され炉容器
(1)の上部開口に嵌装状に配設され【いる遮蔽ブラダ
(力によって遮蔽された構造になっている。
A conventional liquid metal cooled breeder reactor, as shown in Figure 1,
The furnace vessel (1), whose upper seven flange parts are placed and supported on the pedestal (2) on the side of the shielding concrete structure (not shown) that covers the entire furnace, is [
The liquid metal (sodium) for cooling, which is supported and accommodated and introduced into the lower part of the furnace vessel (1) from the inlet pipe (5), is connected to the relatively low-temperature liquid metal layer (a) and above it. A high temperature liquid metal layer (b) that cools the core structure (4) and reaches a temperature of 400 to 450C is formed, and the exit piping (
The cover gas layer (→ is placed on the pedestal (2) and fitted into the upper opening of the furnace vessel (1). [Shielding bladder (structure that is shielded by force).

しかして、前記の液体金属冷却型高速増殖炉においては
、炉運転、停止(トリップ)時等により炉内温度が大き
く変化し、それに伴い炉容器が膨、縮して振れを生じ、
防振対策が重要課題となる炉内構造物の振れを少くする
ために内向7ランジ上に炉心構造物な摺動可能に載置し
て支持させているが、液体金属(ナトリウム)によって
炉心構造物が内向7ランジ上に融着して摺動性が損われ
その健全性、信頼性が得られなくなるため、内向フラン
ジ上面にステライトによる硬化肉盛溶接等の硬化処理を
施して前記の自己融着を防止し摺動性を高めている。し
かしながら、前記のように内向7ランジ上面に直接に硬
化処理を施す場合は、大規模部材上に施すことになって
要硬化処理面積が広範囲になるとともに、その処理に要
する熱処理設備や冷却速度制限等による制約を受け、広
範囲な内向7ランジ上面の全面にわたって均一に前記硬
化処理を施すことは実際上困難であって、施工後に割れ
が生ずるなどの難点がある。
However, in the above-mentioned liquid metal cooled fast breeder reactor, the temperature inside the reactor changes greatly during reactor operation, shutdown (trip), etc., and the reactor vessel expands and contracts accordingly, causing vibration.
Vibration prevention measures are an important issue.In order to reduce the vibration of the reactor internal structure, the reactor core structure is slidably mounted and supported on the inward 7 flange, but the core structure is Since objects are fused onto the inward 7 flange and its sliding properties are impaired, making it impossible to obtain its integrity and reliability, a hardening treatment such as hardfacing welding with Stellite is applied to the upper surface of the inward flange to prevent the aforementioned self-fusion. Prevents wear and improves sliding properties. However, when performing hardening treatment directly on the upper surface of the inward 7 flange as described above, the hardening treatment is performed on a large-scale member, requiring a wide range of area, and the heat treatment equipment required for the treatment and the cooling rate are limited. Due to restrictions such as these, it is actually difficult to apply the hardening treatment uniformly over the entire upper surface of the wide inward 7-lunge, and there are drawbacks such as cracks occurring after construction.

本発明は、従来の液体金属冷却型高速増殖炉における前
記したような難点を解消するために開発されたものであ
って、台座によって炉心構造物を収容した炉容器を垂架
し、前記炉容器の上部開口側に配設した遮蔽プラグによ
って前記炉容器内の液体金属液面上のカバーガス層を遮
蔽した液体金属冷却型高速増殖炉において、少くとも表
面が硬化処理されたa数の弧状部材の傾斜端面な重ね合
せてリング形とした硬化リングを前記炉容器の内局面側
に設けた内向72ンジ上に配設して、前記硬化リングを
介して前記炉心構造物を支持した点に特徴を有し、その
目的とする処は、内向フランジに対する炉内構造物の摺
動支持性能が保たれて該炉内構造物の健全性、信頼性が
確保される液体金属冷却型高速増殖炉を供する点にある
The present invention was developed to solve the above-mentioned difficulties in conventional liquid metal cooled fast breeder reactors. In a liquid metal cooled fast breeder reactor in which a cover gas layer on the liquid metal surface in the reactor vessel is shielded by a shielding plug disposed on the upper opening side of the reactor vessel, an arc-shaped member having at least a number of a number of surfaces hardened. A hardening ring formed into a ring shape by overlapping the inclined end faces of the furnace vessel is disposed on an inwardly directed 72-inch ring provided on the inner surface side of the reactor vessel, and the reactor core structure is supported through the hardening ring. The objective is to develop a liquid metal cooled fast breeder reactor in which the sliding support performance of the reactor internals relative to the inward flanges is maintained to ensure the integrity and reliability of the reactor internals. It is in the point of providing.

本発明は、前記した構成になっており、少くとも表面が
硬化処理された複数の弧状部材の傾斜端面を重ね合せて
リング形とした硬化リングを炉容器の内周面側に設けた
内向フランジ上に配設して、該硬化リングを介し前記炉
心構造物を支持しているので、小面積に形成された弧状
部材に硬化処理を施すことによりその処理が容易となっ
て硬化リング全体の硬化処理を均質化できるとともに、
弧状部材の傾斜端面の重ね合せにより、硬化リングが炉
内温度変化に対応して内向フランジとともに     
i容易に熱膨張、収縮可能にして、液体金属の漏洩を微
少にとどめることができ、該硬化リングにおける表面の
硬化処理は均質にして損傷されず炉心構造物との融着か
なくなり、炉内構造物の摺動支持性能を著しく向上でき
かρシール性能を確保できて、炉内構造物の健全性、機
能、信頼性を大′幅に高めることができる。
The present invention has the above-mentioned configuration, and provides an inward flange in which a hardened ring formed into a ring shape by overlapping the inclined end faces of a plurality of arc-shaped members whose surfaces have been hardened at least is provided on the inner circumferential side of a furnace vessel. Since the core structure is supported through the hardening ring, it is easy to harden the arc-shaped member formed in a small area, and the entire hardening ring is hardened. In addition to being able to homogenize the processing,
By overlapping the inclined end faces of the arc-shaped members, the hardening ring responds to changes in the furnace temperature with the inward flange.
i The hardening ring can be easily thermally expanded and contracted to minimize the leakage of liquid metal, and the hardening treatment on the surface of the hardening ring is made homogeneous so that it will not be damaged and will not fuse with the reactor core structure. The sliding support performance of the structure can be significantly improved, the sealing performance can be ensured, and the integrity, functionality, and reliability of the reactor internal structure can be greatly improved.

以下、本発明の実施例を図示について説明する。Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第2図(5)(ハ)ないし第4図囚の)に本発明の一実
施例を示し、図中(3)は、第1図に示すように垂架さ
れた炉容器(1)の内周面側に固設された環状の内向7
ランジ、(4)は内向7ランジ(3)の上面側に摺動可
能に載置され支持される炉心構造物であって、この実施
例においては、第2図(8)に示すように内向7ランジ
(3)の上面側にリング状の硬化リング(11)(12
)が配設され、同硬化リング(11)(12)の上面側
に炉心構造物(4)の下面周縁(41)が載置され摺動
可能に支持された摺動支持構造になっている。
An embodiment of the present invention is shown in FIG. 2 (5) (c) to FIG. Annular inward direction 7 fixed on the inner peripheral surface side
The inward 7-lunge (4) is a core structure that is slidably mounted and supported on the upper surface side of the inward 7-lunge (3). 7 Ring-shaped hardening rings (11) (12
) is arranged, and the lower surface periphery (41) of the core structure (4) is placed on the upper surface side of the hardening rings (11) and (12) and is slidably supported, forming a sliding support structure. .

また、前記の硬化リング(11)(12)は、第2図C
B)に示すように複数の弧状部材(11す、(12’)
の組合せによってリング状に形成され、各弧状部材(1
1す、(1酌には、第3図に示すようにその全外周面に
ステライト等による硬化肉盛溶接処理等の手段により硬
化処理層(11□)(12□)が施されているとともに
、第2図(B)に示すように両端部には平面視逆向きの
傾斜端面(11□)(12□)が設けられ、隣接した傾
斜端面(11□λ(11□)、同傾斜端面(12□)、
(12□)相互が重ね合されてリング状の硬化リング(
11)、 (12)を形成しており、各硬化リング(1
1)、(12)は平面視で内側、外側に重合した配置に
なっているとともに、硬化リング(11)と(12)の
各傾斜端面(112)(122)の傾斜方向を逆向きと
し、かつその重ね合せ部分(11□、11□)、 (1
2□、12□)は図示のようにお互いに異なる位置にし
ている。
In addition, the hardening rings (11) and (12) are shown in FIG.
As shown in B), a plurality of arc-shaped members (11s, (12')
It is formed into a ring shape by the combination of the arc members (1
1. (As shown in Fig. 3, 1 cup has a hardened layer (11□) (12□) applied to its entire outer circumferential surface by means such as hardfacing welding using Stellite, etc. , as shown in FIG. 2(B), both ends are provided with inclined end surfaces (11□) (12□) that are opposite in plan view, and adjacent inclined end surfaces (11□λ (11□), the same inclined end surfaces (12□),
(12□) Ring-shaped hardening rings (
11), (12), and each hardening ring (1
1) and (12) are arranged so as to overlap inward and outward in a plan view, and the inclination directions of the inclined end surfaces (112) and (122) of the hardening rings (11) and (12) are opposite, and their overlapping parts (11□, 11□), (1
2□, 12□) are at different positions as shown in the figure.

さらに、前記の各硬化リング(11)(12)における
各傾斜端面(11□)、(12□)には、第4図(6)
但)に示すように適宜間隔を存して複数の拡大溝(15
)(15りが平面視垂直に併設されており、かつ内拡大
溝(15)(15りは第4図(ハ)に示すように傾斜端
面(11□)(12□)相互を重ね合せた際に適宜間隔
を存するようになっている。
Furthermore, each of the inclined end faces (11□) and (12□) of each of the hardening rings (11) and (12) is provided with the
However, as shown in ), a plurality of enlarged grooves (15
) (15 ridges are arranged vertically in plan view, and the inner enlarged grooves (15) (15 ridges have inclined end faces (11 □) (12 □) overlapped with each other as shown in Fig. 4 (c)). There are appropriate intervals between the two.

なお、図中(16)は硬状リング(11)(12)を形
成する弧状部材(11す(12’)を内向フラン:)(
3)の上面側に止着する止着ボルトであって、適宜数節
されている。
In addition, (16) in the figure indicates an arc-shaped member (11) (12') forming the hard rings (11) (12).
3) A fastening bolt that fastens to the upper surface side, and has several sections as appropriate.

図示した実施例は、前記したような構造になっており、
硬化リング(11)、(12)は、複数の弧状部材(1
1す(12つの組み合せにより構成され、各弧状部材(
11つ(12’)の表面に硬化処理を施すことができる
ので、比較的に小面積のその表面への肉盛溶接および冷
却処理等が均一となり均質な硬化処理層(111X12
、)が得られ、硬化リング(11X12)全面において
均質な硬化処理層が形成されるとともに、炉運転時、停
止(トリップ)時等における炉内の温度変化に応じて、
炉心構造物(4)、硬化リングaυ、(12)、内向フ
ラン:)(3)ともにそれぞれ異なる熱膨張、収縮をす
るが、その際に、硬化リング(11)、(12)は、各
弧状部材(11す(1わにおける両端の傾斜端面(11
2)(11□入(12□)(12□)の重ね合せ構成に
より熱膨張、収縮が容易になっているとともに半径方向
の拡、縮も可能にたつ【おり、内向7ランジ(3)の膨
、縮に伴って容易に追随でき前記硬化処理層(111)
(121)が損傷し難くなっている。
The illustrated embodiment has the structure described above,
The hardening rings (11), (12) have a plurality of arc-shaped members (1
1 (consisting of 12 combinations, each arc-shaped member (
Since hardening can be applied to 11 (12') surfaces, overlay welding and cooling treatment, etc. on the relatively small surface area can be uniform, resulting in a homogeneous hardened layer (111 x 12').
, ) is obtained, and a homogeneous hardening layer is formed on the entire surface of the hardening ring (11 x 12).
The core structure (4), the hardening rings aυ, (12), and the inward flan (3) all undergo different thermal expansions and contractions, but at that time, the hardening rings (11) and (12) The inclined end faces (11) at both ends of the member (11
2) (11 □ in (12 □) (12 □) superimposed structure facilitates thermal expansion and contraction, and also allows for radial expansion and contraction. The hardened layer (111) can easily follow expansion and contraction.
(121) is less likely to be damaged.

また、炉内温度変化に際し、内向フラン:)(3)の上
、下即ち高温液体金属層(ロ)と低温液体金属層(イ)
(第1図参照)間に圧力差を生じ、硬化リング0υ(1
2)の部分において液体金属(ナトリウム)カー漏洩し
ようとするが、低温液体金属層(イ)側ある〜・鉦!高
温液体金属層(ロ)側の圧力にて各弧状部材(11す(
12つが押圧され、各硬化リング(11X12)の傾斜
端面の重ね合せ部分(11□、11□)、(12□、1
2□)間の間隔を1狭められる傾向となり、該重ね合せ
部分における液体金属の洩れは最小限の微量にとどめら
れる。
In addition, when the temperature inside the furnace changes, the inward flan:
(See Figure 1) A pressure difference is created between the hardening rings 0υ (1
Liquid metal (sodium) is about to leak in part 2), but there is a low-temperature liquid metal layer (a) on the side! Each arc-shaped member (11) is
12 are pressed, and the overlapping portions of the inclined end surfaces of each hardening ring (11x12) (11□, 11□), (12□, 1
2□) tends to be narrowed by 1, and the leakage of liquid metal at the overlapping portion is kept to a minimum trace amount.

さらに、その洩れは内外側の硬化リング(11)と(1
3におゆる重ね合せ部(11□、11□)と(12□、
12゜)との位置を第2図の)のように異ならしめてい
ることによりさらに少くすることができるとともに、第
4図に示している拡大溝(15)(15うによって洩れ
を急拡大、急縮小させることによってさらに微量にとど
めることかできて、硬化リング(11)(12)部分に
お       (けるシール性能を確保でき、低温液
体金属層(イ)内の液体金属を有効に炉心構造物(4)
側に導入させることができ冷却効果を低下させることが
な〜・。
Furthermore, the leakage is caused by the inner and outer hardening rings (11) and (1).
3, loose overlapping parts (11□, 11□) and (12□,
By differentiating the positions of the grooves (12°) and (12°) as shown in Figure 2, it is possible to further reduce the amount of leakage. By reducing the size, the amount can be kept even smaller, ensuring sealing performance in the hardening rings (11) and (12), and effectively transferring the liquid metal in the low-temperature liquid metal layer (a) to the core structure ( 4)
It can be introduced to the side without reducing the cooling effect.

従つ【、前記実施例によれば、該硬化リング(II)(
12)における表面の硬化処理は均質にして損傷され難
くかつ炉心構造物(4)との融着が殆んどなく、炉内構
造物(4)の摺動支持性能を著しく向上できかつシール
性能を確保できて、炉内構造物の健全性、機能、信頼性
を大幅に高めることができる。
Accordingly, according to the embodiment, the hardening ring (II) (
The hardening treatment of the surface in step 12) makes it homogeneous so that it is hard to be damaged and there is almost no fusion with the reactor core structure (4), which significantly improves the sliding support performance of the reactor internal structure (4) and improves the sealing performance. can be ensured, and the health, functionality, and reliability of the reactor internals can be greatly improved.

なお、前記実施例では、内側、外側2個の硬化リングを
施したものについて説明したが、硬化リングの数は適宜
に増減可能であり、また、硬化処理は表面のみに限るも
のでなくその手段についても種々実施可能である。
In the above embodiment, two hardening rings, one on the inside and one on the outside, were applied. However, the number of hardening rings can be increased or decreased as appropriate, and the hardening treatment is not limited to the surface. Various implementations are also possible.

以上本発明を実施例について説明したが、勿論本発明は
このような実施例にだけ局限されるものではなく、本発
明の精神を逸脱しない範囲内で種々の設計の改変を施し
うるものである。
Although the present invention has been described above with reference to embodiments, it goes without saying that the present invention is not limited to such embodiments, and that various design modifications can be made without departing from the spirit of the present invention. .

【図面の簡単な説明】[Brief explanation of drawings]

第1明は従来の液体金属冷却型高速増殖炉の全体構造を
示す縦断面図、第2図(A)は本発明の一実施例を示す
硬化リングの構造、配置を示す縦断面図、第2図の)は
第2図(ト)の硬化リングの平面図、第6図は第2図(
5)の硬化リングの横断拡大図、第4図(5)は第2図
(5)の■部分拡大図、第4図(B)は傾斜端面の重ね
合せ部分の拡大図である。 1:炉容器 2:台座 3:内向72ンジ4:炉心構造
物 7:遮蔽プラグ 11.12:硬化リング 11’
、12’:弧状部材 11□iz1:硬化処理層 11
2.12□=傾斜端面 15,15’:拡大溝16:止
着ボルト イ:低温液体金属層ロ:高温液体金属層 ノ
・:カバーガス層復代理人 弁理士 岡 本 重 文 外2名
1 is a vertical cross-sectional view showing the overall structure of a conventional liquid metal cooled fast breeder reactor; FIG. 2A is a vertical cross-sectional view showing the structure and arrangement of a hardening ring according to an embodiment of the present invention; Figure 2) is a plan view of the hardening ring in Figure 2 (G), and Figure 6 is a plan view of the hardening ring in Figure 2 (
5) is an enlarged cross-sectional view of the hardening ring, FIG. 4(5) is an enlarged view of the ■ part of FIG. 2(5), and FIG. 4(B) is an enlarged view of the overlapping portion of the inclined end surfaces. 1: Furnace vessel 2: Pedestal 3: Inward 72 inch 4: Core structure 7: Shielding plug 11.12: Hardening ring 11'
, 12': Arc-shaped member 11□iz1: Hardened layer 11
2.12□ = Inclined end face 15, 15': Enlarged groove 16: Fixing bolt A: Low temperature liquid metal layer B: High temperature liquid metal layer N: Cover gas layer Sub-agent Patent attorney Shige Okamoto Two other people

Claims (1)

【特許請求の範囲】 台座によって炉心構造物を収容した炉容器を垂架し、前
記炉容器の上部開口側に配設した遮蔽プラグによって前
記炉容器内の液体金属液面上のカバーガス層を遮蔽した
液体金属冷却型高速増殖炉におい【、少くとも表面が硬
化処理された複数の弧状部材の傾斜端面を重ね合せ【リ
ング形とした硬化リングを前記炉容器の内周面側に設け
た内向フランジ上に配設して、前記硬化リングを介して
前記炉心構造物を支持したことに特徴を有する液体金属
冷却型高速増殖炉。
[Scope of Claims] A reactor vessel containing a reactor core structure is suspended vertically by a pedestal, and a cover gas layer on the liquid metal level in the reactor vessel is covered by a shielding plug disposed on the upper opening side of the reactor vessel. In a shielded liquid metal cooled fast breeder reactor, the inclined end faces of a plurality of arc-shaped members whose surfaces have been hardened at least are superimposed [a ring-shaped hardening ring is provided on the inner peripheral surface side of the reactor vessel]. A liquid metal cooled fast breeder reactor characterized in that the core structure is supported via the hardening ring by being disposed on a flange.
JP57108306A 1982-06-25 1982-06-25 Lmfbr type reactor Pending JPS58225386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57108306A JPS58225386A (en) 1982-06-25 1982-06-25 Lmfbr type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57108306A JPS58225386A (en) 1982-06-25 1982-06-25 Lmfbr type reactor

Publications (1)

Publication Number Publication Date
JPS58225386A true JPS58225386A (en) 1983-12-27

Family

ID=14481352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57108306A Pending JPS58225386A (en) 1982-06-25 1982-06-25 Lmfbr type reactor

Country Status (1)

Country Link
JP (1) JPS58225386A (en)

Similar Documents

Publication Publication Date Title
RU2736545C1 (en) Nuclear reactor core melt localization and cooling system
RU2736544C1 (en) Nuclear reactor core melt localization and cooling system
US4001079A (en) Thermal baffle for fast-breeder reacton
JPS58225386A (en) Lmfbr type reactor
JPS5814639B2 (en) Genshiro Yodanetsu Sochi
JPH0226078Y2 (en)
JPH0145880B2 (en)
JPH0215758B2 (en)
US4091591A (en) Heat-insulating panel
KR101860607B1 (en) Shim plate device having vent-notches for air circulating under the steam generator of pressurized water reactor
US4116765A (en) Liquid metal cooled nuclear reactor
JPS61112888A (en) High-temperature double piping
JP2803330B2 (en) gasket
JPS63303293A (en) Piping universal joint
JPH059441Y2 (en)
JPS6345000B2 (en)
Wolff Nuclear reactors
EA044052B1 (en) SYSTEM FOR LOCALIZATION AND COOLING OF A NUCLEAR REACTOR CORE MELT
JPH0579159B2 (en)
EA045164B1 (en) SYSTEM FOR LOCALIZATION AND COOLING OF A NUCLEAR REACTOR CORE MELT
JPS5845595A (en) Reactor
JPH0152714B2 (en)
JPH01212395A (en) Thermal shielding device of fast breeder reactor
JPH0146391B2 (en)
JPS58225389A (en) Lmfbr type breeder