JPS58225354A - Analysis method of immune and reagent and reaction container used therein - Google Patents

Analysis method of immune and reagent and reaction container used therein

Info

Publication number
JPS58225354A
JPS58225354A JP10761582A JP10761582A JPS58225354A JP S58225354 A JPS58225354 A JP S58225354A JP 10761582 A JP10761582 A JP 10761582A JP 10761582 A JP10761582 A JP 10761582A JP S58225354 A JPS58225354 A JP S58225354A
Authority
JP
Japan
Prior art keywords
antibody
antigen
reaction
reagent
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10761582A
Other languages
Japanese (ja)
Other versions
JPH0322587B2 (en
Inventor
Makoto Nakamura
誠 中村
Katsunobu Doi
土井 勝宣
Tokio Kano
時男 嘉納
Akira Tamagawa
玉川 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP10761582A priority Critical patent/JPS58225354A/en
Publication of JPS58225354A publication Critical patent/JPS58225354A/en
Publication of JPH0322587B2 publication Critical patent/JPH0322587B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing

Abstract

PURPOSE:To quantitatively measure an antigen simply and rapidly, by a method wherein a first reagent containing a solidified phase particle and a specimen are mixed and the separated particle and a second reagent containing a labelled substance are mixed to bond a labelled antibody-measuring antigen-solidified phase antibody. CONSTITUTION:A specimen 26 is portionwise injected in a reaction container 11 from a nozzle 28 and a first reagent 30 containing a particle prepared by converting an antibody specifically reacting the antigen in the specimen to a solidified phase is portionwise injected therein from a nozzle 32 to obtain a mixed liquid 33 in which antigen- antibody reaction is in turn carried out for a preset time. After the mixed liquid 33 is discharged through a filter 15 and washed, a second reagent containing an antibody labelled with enzyme is injected from a nozzle 41 to bond the enzyme labelled antibody- the measuring antigen-the solidified phase antibody. After the mixed liquid is discharged and washed, a substrate solution 43 relative to the labelling enzyme is portionwise injected from a nozzle 45 to produce a color forming substance. After a reaction stopping liquid 47 is portionwise injected, the reaction liquid 50 is accommodated in a colorimetric cell 51 and absorbancy is measured by a spectrophotometer 52 to quantitatively measure the antigen in the specimen.

Description

【発明の詳細な説明】 本発明は免疫分析法およびこれに用いる試薬および反応
容器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an immunoassay method and reagents and reaction vessels used therein.

抗原−抗体反応は、特定の抗原と抗体との間に起る特異
的な反応であり、これを利用して定置した血液あるいは
体液中の微量抗原(抗体)量は、診断や治療に供されて
いる。この抗原−抗体反応による分析法には、測定対象
の抗原または抗体を定量する際に用いる標識物質の種類
から、放射性同位元素を用いるラジオイムノアッセイ、
酵素ヲ用いるエンザイムイムノアッセイ、螢光物質を用
いるフローイムノアッセイがあり、ながでもラジ、オイ
ムノアッセイは高感度な分析法として知られている。い
ずれの分析法においても測定対象である抗原(抗体)を
定量する際にその抗原C抗体)および標識抗体(抗原)
の結合物と、遊離標識抗体(抗原)とのいわゆるB、f
分離が必要となり、例えばラジオイムノアッセイによる
免疫分析装置として、流入口と流出口とを有し、測定対
象の抗原または抗体と特異的に反応する抗体または抗原
を同相化した反応容器(ohamber )を用いてB
、f分離を行なうようにした貫流形のものが知られてい
る。この装置においては、例えばサンプル中の所定の抗
原を定量する場合は、反応容器として測定抗原に反応す
る抗体を同相化したものを用い、先ずコノ反応″f3器
(antibody ohamber)の流入口に連結
されたチューブ内で第1図Aに示すようにサンプルと放
射性同位元素で標識された抗原とを混合して、第1図B
に示す測定対象の抗原に対応する固相化した抗体を有す
る反応容器に送り、ここで第1図Cに示すようにサンプ
ル内の抗原と標識抗原とを競合させて同相化抗体に結合
させ、同相、化抗体に捕捉されなかった遊離抗原は、反
応容器の流出口を経てシンチレーションカウンタに送っ
て遊離標識抗原をその放射能によって計数する。
The antigen-antibody reaction is a specific reaction that occurs between a specific antigen and an antibody, and using this reaction, trace amounts of antigens (antibodies) in fixed blood or body fluids can be used for diagnosis and treatment. ing. Analysis methods based on this antigen-antibody reaction include radioimmunoassay using radioisotopes,
There are enzyme immunoassays that use enzymes and flow immunoassays that use fluorescent substances, and the simple radioimmunoassays and immunoassays are known as highly sensitive analytical methods. In any analysis method, when quantifying the antigen (antibody) to be measured, the antigen C antibody) and labeled antibody (antigen)
The so-called B, f of the conjugate and the free labeled antibody (antigen)
For example, as an immunoassay device using radioimmunoassay, a reaction vessel (ohamber) having an inlet and an outlet and containing an antibody or antigen that specifically reacts with the antigen or antibody to be measured is used. TeB
, f separation is known. In this device, for example, when quantifying a predetermined antigen in a sample, a reaction vessel in which an antibody that reacts with the antigen to be measured is made in the same phase is used, and the reaction vessel is first connected to the inlet of the antibody ohamber. Mix the sample and radioisotope-labeled antigen as shown in Figure 1A in a prepared tube, and mix the sample and antigen labeled with a radioisotope as shown in Figure 1B.
The sample is sent to a reaction vessel containing an immobilized antibody corresponding to the antigen to be measured as shown in FIG. Free antigens that are not captured by the in-phase labeled antibodies are sent to a scintillation counter via the outlet of the reaction vessel, and free labeled antigens are counted based on their radioactivity.

次に、反応容器内の固相化抗体に捕捉された結合抗原を
溶離緩衝液により固定化抗体から溶離させ、この溶離し
た抗原を第1[Dに示すように反応容器の流出口を経て
シンチレーションカウンタに送って標識抗原をその放射
能によって計数する。このようにして、第2図に示すよ
うな放射能特性を得、その両ピーク値すなわち固相化抗
体に捕捉されなかった遊離標識抗原の計数値のピーク値
と、捕捉されて溶離された標識抗原の計数値のピーク値
との比較に基いてサンプル中の所定の抗原を定量する。
Next, the bound antigen captured by the immobilized antibody in the reaction vessel is eluted from the immobilized antibody with an elution buffer, and the eluted antigen is scintillated through the outlet of the reaction vessel as shown in D. The labeled antigens are sent to a counter and counted by their radioactivity. In this way, radioactivity characteristics as shown in Figure 2 were obtained, with both peak values, that is, the peak value of the count of free labeled antigen that was not captured by the immobilized antibody, and the peak value of the counted value of the free labeled antigen that was not captured by the immobilized antibody, and the captured and eluted label. The predetermined antigen in the sample is quantified based on a comparison of the antigen count with the peak value.

シカし、かかる分析装置においては、サンプルと標識抗
原とを反応容器の流入口に連結したデユープ内で混合す
るため、比較的長いチューブが必要となり、このためコ
ンタミネーションが発生し易いと共にS混合液を反応容
器に送不のに時間がかかり、分析処理能力が低い欠点が
ある。また、放射性同位元素でw4識した化合物は通常
不安定であるため、標識物質を再三調整する必要がある
However, in such an analyzer, the sample and labeled antigen are mixed in a duplex connected to the inlet of the reaction container, so a relatively long tube is required, which tends to cause contamination and the S mixed solution. The drawback is that it takes time to send the sample to the reaction vessel, and the analytical throughput is low. Furthermore, since compounds marked with w4 with a radioactive isotope are usually unstable, it is necessary to repeatedly adjust the labeling substance.

重に、放射性同位元素は人体に危険であり、環境汚染の
立場からその廃棄が困難であると共に、その取扱いには
一定の資格と一定の基準で認可された高価な施設を必要
とし、また測定機器も高価となる等の欠点がある。
In addition, radioactive isotopes are dangerous to the human body, difficult to dispose of due to environmental pollution, and their handling requires expensive facilities with certain qualifications and approvals based on certain standards. There are drawbacks such as the equipment being expensive.

以上の観点から最近では放射性同位元素を酵素に置き換
えてmsしたエンザイムイムノアッセイや、螢光物質を
用いた70−イムノアッセイが、ラジオイムノアッセイ
に匹敵し得る感度と精度を持ち、安全に実施、できる優
れた分析法として採用されている。
From the above points of view, recently, enzyme immunoassays using ms in which radioactive isotopes are replaced with enzymes, and 70-immunoassays using fluorescent substances, have sensitivity and accuracy comparable to radioimmunoassays, and are excellent methods that can be performed safely. It has been adopted as an analytical method.

一方、上記ラジオイムノアッセイ、エンザイムイムノア
ツ七イ、フローイムノアッセイにおける抗原−抗体反応
のステップには比較的長い反応時間を必要とし、この反
応時間を短縮するためには高濃度での均一な抗原−抗体
反応の反応系が必要となる。このような均一な反応系を
得るために、例えばエンザイムイム/アッセイにおいて
、微細なセルロース粒子を固相担体として用い、抗HA
 −抗体反応の場である反応液と、固相担体表面との界
面を増大させ、かつ均一に同相担体粒子を浮遊さ′せる
ようにしたものがある。この分析法は用手法により行な
われ、例えばサンプル中のα−フェトプロティン(α−
fetoprotein )抗原を定量する場合には、
先ず第3図Aに示すように、サンプル1とセルロース粒
子表面に同相化した抗(1−フェトプロティン(ant
i−α−fetoprotein)抗体を含む試薬2と
を試験W8に分注して抗原−抗体反応を行なわせ、α−
フェトプロティンと抗α−フェトプロティンとを結合さ
せる。次に、i81’lBに示すように、試験管δ内に
洗浄用緩衝液手を加えて、aooor、p、m、、 a
 o秒遠心分離した後、上清を吸引除去してセルロース
担体粒子を試験管8内に残す。
On the other hand, the antigen-antibody reaction step in the above-mentioned radioimmunoassay, enzyme immunoassay, and flow immunoassay requires a relatively long reaction time, and in order to shorten this reaction time, uniform antigen-antibody at high concentration is required. A reaction system is required for the reaction. In order to obtain such a homogeneous reaction system, for example, fine cellulose particles are used as a solid phase carrier in an enzyme/assay, and anti-HA
- There is a method in which the interface between the reaction solution, which is the site of antibody reaction, and the surface of the solid phase carrier is increased, and the particles of the same phase carrier are suspended uniformly. This analytical method is carried out manually, for example, α-fetoprotein (α-fetoprotein) in the sample.
When quantifying fetoprotein) antigen,
First, as shown in FIG. 3A, sample 1 and anti-(1-fetoprotein
i-α-fetoprotein) antibody-containing reagent 2 was dispensed into test W8 to perform an antigen-antibody reaction.
Binding fetoprotein and anti-α-fetoprotein. Next, as shown in i81'lB, wash buffer was added to the test tube δ, and aooor, p, m, a
After centrifugation for o seconds, the supernatant is removed by suction to leave the cellulose carrier particles in the test tube 8.

その徒弟3FyJOに示すように、試#管3内に酵素標
識抗体である共役抗α−フェトプロティン(CO−nj
ugated anti−α−fetoprotein
 )を含む試薬5を   ;1加えて抗原−抗体反応を
行なわせ、抗α−フェトプロティン−α−フェトプロテ
ィン−共役抗α−フェトプロティンの結合物を形成させ
る。次に、第8図りに示すように、試験管8内に洗浄用
緩衝液4を加えて、3000r、p、m、、 81)秒
速心分離した後、上清を吸引除去してセルロース担体粒
子を試験管δ内に残す。この第8図りに示す洗浄工程を
8回繰返jことにより、第8図Gにおける抗原−抗体反
応において反応しなかった酵素標識抗体を洗浄除去して
B、f分離を行なう。その後、第8図Eに示すように、
試験管8内に酵素基質液6を加えて、セルロース粒子表
面に捕捉された標識酵素との酵素−基質反応を行なわせ
、これにより捕捉された標識酵素量に比例した駄の発色
物質を生成する。この酵素−基質反応を所定時間行なわ
せた後、試験管8を800Or−p、m、、 30秒遠
心分離して発色物質を含む上清を、第31mFに示すよ
うに比色セルフに吸引吐出して分光光度計8により吸光
度を測定し、この測定値に基いて、既知濃度のサンプル
から求めた吸光度とα−フェトプロティン抗原との検策
線からサンプルl中のα−フェトプロティン抗原を定量
する。
As shown in the apprentice 3FyJO, the enzyme-labeled antibody conjugated anti-α-fetoprotein (CO-nj
ugated anti-α-fetoprotein
) is added to cause an antigen-antibody reaction to form a conjugate of anti-α-fetoprotein-α-fetoprotein-conjugated anti-α-fetoprotein. Next, as shown in the eighth diagram, the washing buffer 4 was added to the test tube 8, and the cells were separated at 3000 r, p, m, 81) seconds, and the supernatant was removed by suction to remove the cellulose carrier particles. is left in the test tube δ. By repeating this washing step shown in Figure 8 eight times, the enzyme-labeled antibody that did not react in the antigen-antibody reaction in Figure 8G is washed away, and separations B and F are performed. Then, as shown in Figure 8E,
Enzyme substrate solution 6 is added to test tube 8 to cause an enzyme-substrate reaction with the labeled enzyme captured on the surface of the cellulose particles, thereby producing a colored substance proportional to the amount of captured labeled enzyme. . After allowing this enzyme-substrate reaction to occur for a predetermined time, the test tube 8 is centrifuged at 800 Or-p, m, for 30 seconds, and the supernatant containing the coloring substance is aspirated and discharged into a colorimetric cell as shown at No. 31 mF. Then, the absorbance is measured using a spectrophotometer 8, and based on this measured value, the α-fetoprotein antigen in the sample 1 is quantified from the calibration line between the absorbance determined from the sample with a known concentration and the α-fetoprotein antigen. do.

上述したエンザイムイムノアツセイにおいてハ、。In the enzyme immunoassay mentioned above.

同相担体粒子として通常用いられているビーズ、ボール
状のものを用いるアッセイ糸に比較して、セルロース粒
子を用いることで、抗原−抗体反応の場である反応液と
同相担体との界面を増大さぜ、かつ固相担体表面子を均
一に浮遊させることにより均一な反応系を得ている。し
かし、この分析法におい又は、サンプル1と固相化した
抗体を有するセルロース粒子を含む試薬2との抗原−抗
体反応後にセルロース粒子とその反応液を分離するため
、セルロース粒子と酵素標識抗体を含む試薬5との抗原
−1′1°L体反応後にセルロース粒子とその反応液を
分離するため、およびセルロース粒子と酵素基質液6と
の酵素−基質反応後に、その反応液(発色物質を含む)
を比色セルフに分離し゛て分取するために、それぞれ遠
心分離が必要となるため、操作が面倒となる欠点がある
。また、遠心分離後その上清を吸引する際にセルロース
粒子も吸引してしまう技術的難点もある。更に、上述し
た分析法においては、発色物質を含む反応液を比色セル
7に移した後、試験管3内に残ったセルロース粒子を除
去するのが困難なため、試験管3をポリスチレン製でデ
ィスポーザブルとしているが、このように試験管3を使
い捨てとすると、サンプルが血清、1rl′I漿等の体
液で測定路r後反応液等の廃棄物を消711する(局舎
には、反応液と試験管との両方を消毒しなければならな
いため、廃棄処理が極めて繁雑となる欠点がある。
Compared to assay threads that use beads or balls that are commonly used as in-phase carrier particles, the use of cellulose particles increases the interface between the reaction solution and in-phase carrier, which is the site of antigen-antibody reaction. Moreover, by uniformly suspending the particles on the surface of the solid phase carrier, a uniform reaction system is obtained. However, in this analysis method, in order to separate cellulose particles and their reaction solution after the antigen-antibody reaction between sample 1 and reagent 2 containing cellulose particles having immobilized antibodies, cellulose particles and an enzyme-labeled antibody are included. In order to separate the cellulose particles and the reaction solution after the antigen-1'1°L reaction with the reagent 5, and after the enzyme-substrate reaction between the cellulose particles and the enzyme substrate solution 6, the reaction solution (containing a coloring substance) is added.
Since centrifugation is required for colorimetric self-separation and fractionation, it has the disadvantage of being cumbersome to operate. Furthermore, there is a technical difficulty in that cellulose particles are also aspirated when the supernatant is aspirated after centrifugation. Furthermore, in the above analysis method, it is difficult to remove the cellulose particles remaining in the test tube 3 after transferring the reaction solution containing the coloring substance to the colorimetric cell 7, so the test tube 3 is made of polystyrene. Although the test tube 3 is disposable, if the test tube 3 is made disposable in this way, the waste such as the reaction liquid after the measurement path r is quenched with body fluids such as serum or 1rl'I serum (the station building does not contain any reaction liquid). Since both the test tube and the test tube must be sterilized, the disadvantage is that disposal becomes extremely complicated.

本発明の目的は上述した種々の欠点を除去し、簡単かつ
迅速に測定対象の抗原または抗体を定tiでき、特に自
動化に適した免疫分析法を提供しようとするものである
〇 本発明の免疫分析法は、測定対象の抗原または抗体と特
異的に反応する抗体または抗原を同相化した粒子を含む
第1試薬とサンプルとを混合して抗原−抗体反応を行な
わせた後その混合液と前記粒子とをフィルタで分離する
工程と、この分離された粒子と、前記測定対象の抗原ま
たは抗体と特異的に反応する抗体または抗原を結合した
標識物質を含む第2試薬とを混合して抗原−抗体反応を
行なわせた後その混合液と前記粒子とをフィルタで分離
する工程と、この分離された粒子と、前記標識物質の存
在下で特定の物質を生成し得る第8試薬とを混合して反
応を行なわせる工程よ、この反応によって得られる前記
特定の物質を比色測定して前記サンプル中の測定対象の
抗原または抗体の定量を行なう工程とをJIIH次に行
なうことを特徴とすφものである。
The purpose of the present invention is to eliminate the various drawbacks mentioned above, to provide an immunoassay method that can easily and quickly determine the antigen or antibody to be measured, and is particularly suitable for automation. The analysis method involves mixing a sample with a first reagent containing an antibody that specifically reacts with the antigen or antibody to be measured, or particles that are in phase with the antigen, causing an antigen-antibody reaction. The separated particles are mixed with a second reagent containing an antibody that specifically reacts with the antigen or antibody to be measured, or a labeling substance bound to the antigen. A step of performing an antibody reaction and then separating the mixed solution and the particles using a filter, and mixing the separated particles with an eighth reagent capable of producing a specific substance in the presence of the labeling substance. The method is characterized in that the following steps are performed next: a step of carrying out a reaction, and a step of colorimetrically measuring the specific substance obtained by this reaction to quantify the antigen or antibody to be measured in the sample. It is something.

本発明の能の目的は、上記免疫分析法に用いるに好適な
、測定対象の抗原または抗体と特異的に反応する抗体ま
たは抗原を固相化した粒子を含む試薬を提供しようとす
るものである。
An object of the present invention is to provide a reagent containing particles immobilized with an antibody or antigen that specifically reacts with the antigen or antibody to be measured, which is suitable for use in the above-mentioned immunoassay method. .

本発明の試薬は、所定の比重、形状、大きさを有し、表
面に前記測定対象の抗原または抗体と特異的に反応する
所定の抗体または抗原を同相化した粒子をもって構成し
たことを特徴とするものである。
The reagent of the present invention is characterized by comprising particles having a predetermined specific gravity, shape, and size, and having a predetermined antibody or antigen that specifically reacts with the antigen or antibody to be measured on the surface thereof. It is something to do.

更に本発明の池の目的は、上記免疫分析法に用いるに好
適な反応容器を提供しようとするものである。
A further object of the present invention is to provide a reaction vessel suitable for use in the above-mentioned immunoassay method.

本発明の反応容器は、一端に注入口を、池端に排出口を
有し、これら注入口と排出口との間に前記第1試薬の粒
子を通過させないフィルタを設けたことを特徴とするも
のである。
The reaction container of the present invention has an inlet at one end and an outlet at the end of the pond, and is characterized in that a filter is provided between the inlet and the outlet to prevent particles of the first reagent from passing through. It is.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第4図は本発明の反応容器の一例の構成を示す断面図で
ある。この反応容器11は注入口12と排出口13とを
有する。注入口12および排出口18を結ぶ通路14の
一部には該通路141を閉塞するように、測定対象の抗
原または抗体と特異的に反応する抗体または抗原を固相
化した粒子の通過を阻止し、反応液等を通過させる例え
ばガラスより成るフィルタ15を設ける。また、フィル
タ15の近傍で排出口18側には例えはステンレス製の
金網より成るストッパ16を設けると共に、これらフィ
ルタ15とストッパ16との間に例えばシリコンゴムよ
り成る板弁17を配置し、反応容器11内の圧力方向に
応じて第5図Aに示すように板弁17をフィルタ15か
ら離間させて反応液等をフィルタ15を通して排出口1
8から排出させると共に、第5図Bに示すように板弁1
7をフィルタ15に密着させて反応液等のフィルタ15
の通過を阻止するよう構成する。なお、フィルタ15は
強度的に許容される限り厚さを薄くするのが好適である
FIG. 4 is a sectional view showing the structure of an example of the reaction vessel of the present invention. This reaction vessel 11 has an inlet 12 and an outlet 13. A part of the passage 14 connecting the inlet 12 and the outlet 18 is provided with a passage 141 so as to block the passage of particles immobilized with an antibody or antigen that specifically reacts with the antigen or antibody to be measured. A filter 15 made of glass, for example, is provided to allow the reaction liquid and the like to pass through. Further, a stopper 16 made of, for example, a stainless steel wire mesh is provided near the filter 15 on the side of the discharge port 18, and a plate valve 17 made of, for example, silicone rubber is arranged between the filter 15 and the stopper 16, so that the reaction Depending on the pressure direction in the container 11, the plate valve 17 is separated from the filter 15 as shown in FIG.
8, and the plate valve 1 as shown in FIG. 5B.
7 in close contact with the filter 15 to remove the reaction liquid, etc. from the filter 15.
be configured to prevent the passage of. Note that it is preferable that the thickness of the filter 15 be made as thin as possible in terms of strength.

第6図A〜工は第4図に示した反応容器11を用いる本
発明の免疫分析法の一例の順次の工程を説明するための
線図であり、反応容”器11は模式的に示しである。本
J+ljでは反応客器11の排出口13を二方弁21を
介して空気中に開放すると共に、二方弁22、ポンプ2
3および二方弁24を介し′C空気中に開放する。先ず
、第6図AにおいC二方弁21および二方弁22を閉、
二方弁24を開としてポンプ23を吸引作動させて空気
を吸引した後、二方弁22を開、二方弁24を閉として
ポンプ23を排出作動させて吸引した空気を排出口13
から反応容器11内に供給し、これにより板弁17を第
5図Bに示すよ)にフィルタ15に密着させて反応容器
11内の通路14を閉塞した状態(以下この状態を「板
弁17の閉」と称する)で、ヤンプルカップ25に収容
されたサンプル26をポンプ27およびサンプルノズル
28を介して注入口12から反応容器11内に分注する
と共に、試薬タンク29に収容された測定対象の抗原(
抗体)と特異的に反応する抗体(抗原)を固相化した粒
子を含む第1試薬8oをポンプ81および分注ノズル8
2を介して注入口12がら反応容器11内に分注して混
合液88を得、サンプル26中の抗原(抗体)と同相化
した抗体(抗原、)との抗原−抗体反応を室温または恒
温槽内で一定時間行なわせる。
6A to 6D are diagrams for explaining the sequential steps of an example of the immunoassay method of the present invention using the reaction container 11 shown in FIG. 4, and the reaction container 11 is schematically shown. In this J+lj, the outlet 13 of the reaction vessel 11 is opened to the air via the two-way valve 21, and the two-way valve 22 and the pump 2 are
3 and open to air through a two-way valve 24. First, in FIG. 6A, close the C two-way valve 21 and the two-way valve 22,
After opening the two-way valve 24 and operating the pump 23 to suck air, the two-way valve 22 is opened, the two-way valve 24 is closed, the pump 23 is operated to discharge, and the sucked air is transferred to the exhaust port 13.
is supplied into the reaction vessel 11, whereby the plate valve 17 is brought into close contact with the filter 15 (as shown in FIG. At the same time, the sample 26 contained in the Yampuru cup 25 is dispensed from the injection port 12 into the reaction vessel 11 via the pump 27 and the sample nozzle 28, and the sample 26 contained in the reagent tank 29 is dispensed into the reaction vessel 11. antigen(
A first reagent 8o containing particles immobilized with an antibody (antigen) that specifically reacts with the antibody (antibody) is pumped through a pump 81 and a dispensing nozzle 8.
2 into the reaction container 11 through the injection port 12 to obtain a mixed solution 88, and the antigen-antibody reaction between the antigen (antibody) in the sample 26 and the in-phase antibody (antigen) is carried out at room temperature or at a constant temperature. Let the process take place in the tank for a certain period of time.

第1試薬30は、本例では抗体(抗原)の固相担体粒子
として平均直径1 (1(lμ111.比重1゜o3〜
1.05の球状ナイロン粒子を用い、これをINHOI
溶液で6+1”c、8時間加水分解した後純水で洗浄し
、次に1%グルタルアルデヒド中で24”C,1時間反
応させた後0.25Mリン酸す□トリウム緩衝液(1)
I(7,5)で洗浄し、ぞの後1. OQ/lnlの割
合で測定対象の抗原(抗体)と特異的に反応する抗体(
抗原)を加えた0、25Mリン酸ナトリウム緩衝液中で
4’C,24時間反応させて抗体(抗原)を同相化し、
次にその反応液を除去して+1.25Mリン酸ナトリウ
ム緩衝液で洗浄した後0. IM Na07 。
In this example, the first reagent 30 is a solid phase carrier particle of an antibody (antigen) with an average diameter of 1 (lμ111.specific gravity 1°o3~
Using 1.05 spherical nylon particles, INHOI
Hydrolyzed in a solution at 6+1"C for 8 hours, washed with pure water, then reacted in 1% glutaraldehyde at 24"C for 1 hour, and then 0.25M sodium phosphate buffer (1)
Wash with I(7,5) and then 1. An antibody (antibody) that specifically reacts with the antigen (antibody) to be measured at a ratio of OQ/lnl
Antigen) was added to the antibody (antigen) by reacting it at 4'C for 24 hours in 0.25M sodium phosphate buffer, and
Next, the reaction solution was removed and washed with +1.25M sodium phosphate buffer. IM Na07.

1 mMMgC7,、0,1%牛血清アルブミン、O,
X %Na、N8を含む0,01Mリン酸ナトリウム緩
衝液中に浮遊させて構成する。この第1試118oは4
°cjで保存する。
1 mM MgC7, 0.1% bovine serum albumin, O,
It is suspended in a 0.01M sodium phosphate buffer containing X% Na, N8. This first attempt 118o is 4
Store at °cj.

このように、固相担体粒子として、平均直径100μm
、比重1. (18〜1.05の球状ナイロン粒子を用
いれば、抗原−抗体反応の場である混合液と、固相担体
表面との界面を大きくとることができると共に、これを
混合液中に均一に浮遊させることができ、したがって均
一な反応系を得ることができる。
In this way, as solid phase carrier particles, the average diameter is 100 μm.
, specific gravity 1. (If spherical nylon particles of 18 to 1.05 are used, the interface between the mixed liquid, which is the site of antigen-antibody reaction, and the surface of the solid phase carrier can be made large, and the particles can be suspended uniformly in the mixed liquid. Therefore, a homogeneous reaction system can be obtained.

次に、第6図Bにおいて、二方弁22が開、二方弁24
が閉の状態下でポンプ23を吸引作動させ、これにより
板弁17を開いて反応容器11内の混合液38をフィル
タ15を通してナイ四ン粒。
Next, in FIG. 6B, the two-way valve 22 is opened and the two-way valve 24 is opened.
When the pump 23 is closed, the pump 23 is operated for suction, thereby opening the plate valve 17 and allowing the mixed liquid 38 in the reaction vessel 11 to pass through the filter 15 to obtain four grains.

子と分離して吸引した後、二方弁21を開としてポンプ
23を排出作動させて吸引した混合液を排出する。
After separating the mixed liquid from the liquid and sucking it, the two-way valve 21 is opened and the pump 23 is operated to discharge the mixed liquid, thereby discharging the sucked mixed liquid.

その後、第6図Cにおいて、板弁17が閉となるように
二方弁21,22,24およびポンプ28を作動させた
状態で、洗浄液タンク34内に収容された洗浄液85を
ポンプ86および分注ノズル87を介して注入口12か
ら反応容器ll内に分注してから、第6図Bにおいて説
明したようGこ二方弁21,22,24およびポンプ2
8を作動させて板弁17を開として分注した洗浄液を排
出し、これによりフィルタ15およびブイロン粒子を洗
浄する。この洗浄工程はl同または複数回行なう。
Thereafter, in FIG. 6C, the two-way valves 21, 22, 24 and the pump 28 are operated so that the plate valve 17 is closed, and the cleaning liquid 85 contained in the cleaning liquid tank 34 is pumped through the pump 86 and the pump 28. After dispensing into the reaction vessel 11 from the injection port 12 through the injection nozzle 87, the G two-way valves 21, 22, 24 and the pump 2 are injected as explained in FIG. 6B.
8 to open the plate valve 17 and discharge the dispensed cleaning liquid, thereby cleaning the filter 15 and the buiron particles. This washing step is performed one or more times.

次に、第6図りにおいて、板弁]7を閉として試薬タン
ク88に収容された測定対象の抗原(抗体)に対する抗
体(抗原)に酵素標識した第2試g[9を、ポンプ40
および分注ノズル41を介して注入口12から反応容6
11内に分注して、室温または恒温槽内で一定時間抗原
一抗体反16を行なわセ、これにより酵素標識抗体(抗
原)−測定抗原(抗体)−固相化抗体(抗原)を結合さ
せる。この第2試薬89の標識酵素としては、例えばマ
レートデヒドロゲナーゼ、グルコース・6・リン酸脱水
素酵素、グルコース酸化酵素、ホースラディツシュパー
オキシダーゼ、アセチルコリンエスデラーゼ、アルカリ
ホスファターゼ、ペルオキシダーゼ、コリコアミラーゼ
、リゾチーム、β−D・ガラクトシダーゼ等の高い活性
を有し、使用される基質が比較的安価でかつ安定な酵素
を使用することができる。
Next, in the sixth diagram, the plate valve] 7 is closed and the second sample g [9, which is an enzyme-labeled antibody (antigen) against the antigen (antibody) to be measured stored in the reagent tank 88, is transferred to the pump 40.
and the reaction volume 6 from the injection port 12 via the dispensing nozzle 41.
11 and perform antigen-antibody incubation for a certain period of time at room temperature or in a thermostatic bath.This allows the enzyme-labeled antibody (antigen) - the antigen to be measured (antibody) - and the immobilized antibody (antigen) to bind. . Examples of the labeling enzyme for the second reagent 89 include malate dehydrogenase, glucose 6-phosphate dehydrogenase, glucose oxidase, horseradish peroxidase, acetylcholine esterase, alkaline phosphatase, peroxidase, colicoamylase, and lysozyme. , β-D galactosidase, etc., which have high activity, use relatively inexpensive substrates, and are stable enzymes can be used.

上記の抗原−抗体反応後は、第6図Bおよび0において
説明した操作を行なってフィルタ15およびナイロン粒
子を洗浄液で洗浄し、その後第6図Eに示すように、板
弁17を閉として試薬タンク42に収容された標識酵素
に対する基質溶液である第3試薬43をポンプ44およ
び分注ノズル45を介して注入1」12から反応容器1
1内に分注し、室温または恒温槽内で一定時間酵素一基
質反応を行なわせ、これにより発色物質を生成する藁こ
の@3試薬43の基質溶液は、第2試薬89の標識酵素
が、アルカリホスファターゼのときはフェニルリン酸・
2・ナトリウムおよび今一アミノアンチピリン、ペルオ
キシダーゼのときは()−フェニレンジアミン、β−D
−ガラクトシダーゼのときはC)−二トロフェノール・
β−D−ガラクトシド、ダルコース酸化酵素のときはβ
−D−グルコース等を用いることができる。
After the above antigen-antibody reaction, the filter 15 and nylon particles are washed with a cleaning solution by performing the operations explained in FIGS. 6B and 0, and then, as shown in FIG. 6E, the plate valve 17 is closed and the reagent is The third reagent 43, which is a substrate solution for the labeled enzyme stored in the tank 42, is injected from the reaction container 1 through the pump 44 and the dispensing nozzle 45.
The substrate solution of the reagent 43 is dispensed into the substrate solution of the second reagent 89, and the enzyme-substrate reaction is carried out for a certain period of time at room temperature or in a constant temperature bath, thereby producing a coloring substance. For alkaline phosphatase, phenyl phosphate,
2.Sodium and imaminoantipyrine, for peroxidase ()-phenylenediamine, β-D
- In the case of galactosidase, C) - ditrophenol.
β-D-galactoside, β in the case of darcose oxidase
-D-glucose etc. can be used.

一定時間の酵素−基質反応を行なわせた後は、第6図F
に示すように、板弁17を閉じた状態で・反応停止液タ
ンク46内に収容した反応停止液47をポンプ48およ
び分注ノズル4gを介して注入口12から反応容器11
内に分注し、これにより酵素−基質反応を停止させて発
色物質の増加を停止させた反応液50を得る。酵2−基
質反応はp)Iを変化さぜることで容易にその反応を停
止させることができるから、反応停止液47としてはH
Cjl 、 H,So、溶液等を用いることができる。
After carrying out the enzyme-substrate reaction for a certain period of time, Fig. 6F
As shown in FIG. 2, with the plate valve 17 closed, the reaction stop liquid 47 contained in the reaction stop liquid tank 46 is injected into the reaction vessel 11 from the injection port 12 via the pump 48 and the dispensing nozzle 4g.
Thereby, a reaction solution 50 is obtained in which the enzyme-substrate reaction is stopped and the increase in coloring substance is stopped. Since the enzyme 2-substrate reaction can be easily stopped by changing p)I, H is used as the reaction stop solution 47.
Cjl, H, So, a solution, etc. can be used.

その後、第6図Gにおいて、二方弁22を開、二方弁2
4を閉としてポンプ23を吸引作動させ、これにより板
弁17を開いて反応容器11内の反応液50をフィルタ
15を通してナイロン粒子と分離して吸引した後、二方
弁21を開としてポンプ2;3を排出作動させて吸引し
た反応液5 +1を比色セル51内に収容する。
After that, in FIG. 6G, the two-way valve 22 is opened, and the two-way valve 22 is opened.
4 is closed to operate the pump 23, thereby opening the plate valve 17 and sucking the reaction liquid 50 in the reaction container 11 through the filter 15, separating it from nylon particles.The two-way valve 21 is then opened to operate the pump 23. ; 3 is discharged and the reaction liquid 5+1 sucked is stored in the colorimetric cell 51.

次に、第6図Hに示すように、比色セル51内に収容さ
れた反応液60の吸光度を分光光度a152で測定し、
この測定値に基いて、既知濃度の    ′ランプルか
ら求めた吸光度と測定抗1j;< (抗体)との検量線
からサンプル22中の測定抗原(抗体)を定量する。ま
た、反応容器11は第6図BおよびCにおいて説明した
操作を行なって洗浄液で洗′ 浄した後、第6図工に示
すように反応容器11内に残存する洗浄液およびナイロ
ン粒子を吸引ノズル58および吸引ポンプ54を介して
排出して次の”ν゛ンブル分析に備える。
Next, as shown in FIG. 6H, the absorbance of the reaction liquid 60 contained in the colorimetric cell 51 is measured using a spectrophotometer a152,
Based on this measurement value, the antigen to be measured (antibody) in the sample 22 is quantified from a calibration curve between the absorbance obtained from the known concentration of `lampurus and the measured anti-1j;< (antibody). Further, after the reaction vessel 11 is cleaned with the cleaning liquid by performing the operations explained in FIGS. 6B and 6C, the cleaning liquid and nylon particles remaining in the reaction vessel 11 are removed by the suction nozzle 58 and the nylon particles as shown in FIG. 6. It is discharged via the suction pump 54 and prepared for the next "v-amble analysis."

上述した吸引ノズル68は、例えば第7図AおよびBに
正面図および底面図をそれぞれ示すように、ノズル先端
の端面にナイロン粒子が通過し得る切欠き55を形成し
たものを用いる。このような吸引ノズル58を用いれは
、その先端をフィルタ15に接触させて吸引することに
より、ナイロン粒子および残留する洗浄液を効果的に吸
引除去することができる。
The above-described suction nozzle 68 has a notch 55 formed at the end surface of the nozzle tip through which nylon particles can pass, as shown in FIGS. 7A and 7B, for example, in front and bottom views, respectively. When such a suction nozzle 58 is used, by bringing its tip into contact with the filter 15 and suctioning, the nylon particles and the remaining cleaning liquid can be effectively suctioned and removed.

第8図は本発明の反応容器の池の例の構成を示゛ず断面
図である。この反応容器61はフィルタ15の注入口1
2側の面を凹面状に加工した点のみが第1図に示すもの
と異なるものである。この反応容器61を用いれば第6
図工に示す吸引工程において、ナイロン粒子はフィルタ
15の凹面の中心部に集まるから、これを容易かつ確実
に吸引除去することができる。
FIG. 8 is a sectional view, but does not show the structure, of an example of the pond of the reaction vessel of the present invention. This reaction vessel 61 is the inlet 1 of the filter 15.
The only difference from the one shown in FIG. 1 is that the second side surface is processed into a concave shape. If this reaction vessel 61 is used, the sixth
In the suction step shown in the drawing, the nylon particles gather at the center of the concave surface of the filter 15, so that they can be easily and reliably removed by suction.

なお、本発明は上述した例にのみ限定されるものではな
く、幾多の変形または変更が可能である。
Note that the present invention is not limited to the above-mentioned example, and can be modified or changed in many ways.

例えば、上述した反応容器11.61においてはいずれ
も板弁17およびストッパ16を設けたが、フィルタ1
5の孔径、面積、反応容器の内径、反応(混合)液等の
量を適切に設宗すれば、これら板弁17およびストッパ
16を用いることなく排出口18側からの空気圧により
反応(混合)液等を反応容器内に有効に保持することが
できる。また、上述した例では測定対象の抗原(抗体)
に特異的に反応する抗体く抗原)の固相担体粒子として
ナイロン粒子を用いたが、セルロース、ABS。
For example, the plate valve 17 and the stopper 16 are provided in the reaction vessels 11.61 described above, but the filter 11.61 is provided with the plate valve 17 and the stopper 16.
If the hole diameter and area of 5, the inner diameter of the reaction vessel, the amount of reaction (mixing) liquid, etc. are set appropriately, the reaction (mixing) can be carried out by air pressure from the outlet 18 side without using these plate valves 17 and stoppers 16. Liquids and the like can be effectively retained within the reaction container. In addition, in the above example, the antigen (antibody) to be measured
Nylon particles were used as solid phase carrier particles for antibodies (antigens) that specifically react with cellulose, ABS.

ポリスチレン、スチレン−ブタジェン樹脂等の粒子、あ
るいは鉄粉のような比重の大きい芯物質の表面を比重の
小さい膜で被覆して比重をコントロールしたマイクロカ
プセル等を用いることもできる。更に、上述した分析法
においては、第6図Fにおいて反応停止液47を分注し
て酵素−基質反応を停止させたが、一定時間の酵素−基
質反応後その反応液5()をフィルタ15を通して比色
セル51に吐出させるようにすれば、ナイロン粒子に捕
捉されCいる標識酵素はフィルタ15によってナイロン
粒子と基質液とに分離され、これにより基質は酵素作用
を受けなくなって反応が停止するから、第6図Fの工程
を除くことができる。更にまた1、F述した例では反応
液50を比色セル51に移して測光したが、反応容器1
1を通して直接測光することもできる。
It is also possible to use particles of polystyrene, styrene-butadiene resin, or the like, or microcapsules whose specific gravity is controlled by coating the surface of a core substance with a high specific gravity such as iron powder with a film with a low specific gravity. Furthermore, in the above-mentioned analysis method, the enzyme-substrate reaction was stopped by dispensing the reaction stop solution 47 in FIG. By discharging the labeled enzyme into the colorimetric cell 51 through the filter 15, the labeled enzyme captured by the nylon particles is separated into the nylon particles and the substrate liquid by the filter 15, whereby the substrate is no longer subjected to enzyme action and the reaction is stopped. From this, the process shown in FIG. 6F can be eliminated. Furthermore, in the example described in 1 and F, the reaction liquid 50 was transferred to the colorimetric cell 51 for photometry, but the reaction vessel 1
1 can also be used for direct photometry.

以上実施例で説明したように、本発明に係る免疫分析法
においては、測定対象の抗原(抗体)と特異的に反応す
る抗体(抗原)を固相化する同相担体粒子として、混合
液と固相担体表面との界面が大きく、かつ均一に浮遊し
得るようにその比重、形状、大きさをコントロールした
ものを用いたから、均一な反応系を得ることができる。
As explained in the examples above, in the immunoassay method according to the present invention, a mixed solution and a solid phase are used as in-phase carrier particles that immobilize antibodies (antigens) that specifically react with the antigen (antibody) to be measured. A uniform reaction system can be obtained because the phase carrier has a large interface with the surface and its specific gravity, shape, and size are controlled so that it can float uniformly.

また、上記粒子を通過させないフィルタを有する反応容
器を用いることにより、遠心分離を行なうことなく該粒
子を分離すること・ができるから、分析操作が簡単にな
り、自動化が容易にできる。また、反応容器は洗浄する
ことにより繰返し使用することができるから、分析終了
後の消毒や廃棄処理が非常に容易になる利点がある。
Furthermore, by using a reaction vessel having a filter that does not allow the particles to pass through, the particles can be separated without centrifugation, which simplifies the analytical operation and facilitates automation. Furthermore, since the reaction container can be used repeatedly by cleaning, it has the advantage that disinfection and disposal after analysis are very easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第11321IA−Dはラジオイムノアッセイによる順
次の二■:程を説明するための線図、 第2図は第1図に示すラジオイムノアッセイによる計数
値の一例を示す線図、 第3図ANFはエンザイムイムノアツセイによる従来の
順次の工程を説明するための線図、第4図は本発明の反
応容器の一例の構成を示す断面図、 第5図AおよびBは第4図に示す反応容器の板弁の動作
を説明するだめの線図、 第6図A〜工は本発明の免疫分析法の−・例の順次の工
程を説明するだめの線図、 第7図AおよびBは第6図工に示す吸引ノズル    
への−例の構成を示す正面図および底面図、第8図は本
発明の反応容器の池の例のt1/1威を示・ず断面図で
ある。 11、−1・・・反応容器   12・・・注入口18
・・・排出1」14・・・通路 15・・・フィルタ     16・・・ストッパ17
・・・板弁       21.22.24・・・二方
弁28、27.81.86.4(+、 44.48.5
4・・・ポンプ25・・・サンプルカップ  26・・
・サンプル28・・・サンプルノズル 21)* 88.42・・・試薬タンク80・・・第1
試薬 82、37.41.45.49・・・分注ノズル88・
・・混合液      84・・・洗浄液タンク85・
・・洗浄液      89・・・第2試薬48・・・
第8試薬     46・・・反応停止液タンク47・
・・反応停止液    1lIO・・・反応液51・・
・比色カル     52・・・分光光度計58・・・
吸引ノズル    55・・・切欠き第11゛4 A     II      CI) 瀉敲#1衝液 第: I’s図 dtM(介) 第8図 第4図 fフ 第5図 A      I( Σ qコ
11321IA-D is a diagram for explaining the successive two-stage process by radioimmunoassay; Figure 2 is a diagram showing an example of counts by radioimmunoassay shown in Figure 1; Diagram for explaining conventional sequential steps by assay; FIG. 4 is a sectional view showing the configuration of an example of the reaction vessel of the present invention; FIGS. 5A and B are plates of the reaction vessel shown in FIG. 4. Diagrams illustrating the operation of the valve; FIGS. 6A-6 are diagrams illustrating the sequential steps of the immunoassay method of the present invention; FIGS. 7A and B are diagrams 6-D; Suction nozzle shown in
FIG. 8 is a front view and a bottom view showing the configuration of an example of the reaction vessel according to the present invention, and FIG. 11, -1... Reaction container 12... Inlet 18
...Discharge 1''14...Passage 15...Filter 16...Stopper 17
... Plate valve 21.22.24 ... Two-way valve 28, 27.81.86.4 (+, 44.48.5
4...Pump 25...Sample cup 26...
・Sample 28...Sample nozzle 21)* 88.42...Reagent tank 80...First
Reagent 82, 37.41.45.49...dispensing nozzle 88.
・Mixed liquid 84 ・Cleaning liquid tank 85 ・
...Washing liquid 89...Second reagent 48...
8th reagent 46... Reaction stop solution tank 47.
...Reaction stop solution 1lIO...Reaction solution 51...
・Colorimetric Cal 52...Spectrophotometer 58...
Suction nozzle 55...Notch No. 11゛4 A II CI) Diaphragm #1 Soup No.: I's diagram dtM (intermediate) Figure 8 Figure 4 f Figure 5 A I (Σ q)

Claims (1)

【特許請求の範囲】 L 測定対象の抗原または抗体と特異的に反応する抗体
または抗原を固相化した粒子を含む第1試薬とサンプル
とを混合して抗原−抗体反応を行なわせた後その混合液
と前記粒子とをフィルタで分離する工程と、 この分離された粒子と、前記測定対象の抗原または抗体
と特異的に反応する抗体または抗原を結合した標識物質
を含む第2試薬とを混合して抗原−抗体反応を行なわせ
た後その混合液と前記粒子とをフィルタで分離する工程
と、 この分離された粒子と、前記標識物質の存在下で特定の
物質を生成し得る第3試薬とを混合して反応を行なわせ
る工程と、 この反応によって得られる前記特定の物質を比色測定し
て前記サンプル中の測定対象の抗原または抗体の定縦を
行なう工程とを順次に行なうことを特徴とする免疫分析
法。 λ 前記第2試薬の標識物質として標識酵素を用い、前
記第3試薬として前記標識酵素に対する基質溶液を用い
ることを特徴とする特許請求の範囲第1項記載の免疫分
析法。 8、 測定対象の抗原または抗体と特異的に反応する抗
体または抗原を同相化した粒子を含む第1試薬とサンプ
ルとを混合して抗原−抗体反応を行なわせた後その混合
液と前記粒子とをフィルタで分離する工程と、この分離
された粒子と、前記測定対象の抗原または抗体と特異的
に反応する抗体または抗原を結合した標識物質を含む第
2試薬とを混合して抗原−抗体反応を行なわせた後その
混合液と前記粒子とをフィルタで分離する工程と、この
分離された粒子と、前記標識物質の存在下で特定の物質
を生成し得る第8試薬とを混合して反応を行なわせる工
程と、この反応によって得られる前記特定の物質を比色
測定して前記すンプル中の測定対象の抗原または抗体の
定置を行なう工程とを順次に行なう免疫分析法に用いる
前記第1試薬の粒子を、 所定の比重、形状、大きさを有し、表面に前記測定対象
の抗原または抗体と特異的に反応する所定の抗体または
抗原を同相化した粒子をもって構成したことを特徴とす
る試薬。 4 測定対象の抗原または抗体と特異的に反応する抗体
または抗原を固相化した粒子を含む第1試薬とサンプル
とを反応容器内で混合して抗原−抗体反応を行なわせた
後その混合液をフィルタを通して排出する工程と、前記
反応容器に残った粒子と、前記測定対象の抗原または抗
体と特異的に反応する抗体または抗原を結合した標識物
質を含む車z試薬とを混合して抗原−抗体反応を行なわ
せた後その混合液をフィルタを通して排出する工程と、
前記反応容器に残った粒子と、前記標識物質の存在下で
特定の物質を生成し得る第8試薬とを混合して反応を行
なわせる工程と、この反応によって得られる前記特定の
物質を比色測定して前記サンプル中の測定対象の抗原ま
たは抗体の定量を行なう工程とを順次に行なう免疫分析
法に用いる反応容器であって、 一端に注入]]を1他端に排出し1を有し、これら注入
口と排出口との間に前記第1試薬の粒子を通過させない
フィルタを設けたことを特徴とする反応容器1.
[Scope of Claims] L A first reagent containing an antibody that specifically reacts with the antigen or antibody to be measured or a particle immobilized with the antigen is mixed with the sample to perform an antigen-antibody reaction, and then A step of separating the mixed liquid and the particles using a filter, and mixing the separated particles with a second reagent containing a labeling substance bound to an antibody or antigen that specifically reacts with the antigen or antibody to be measured. a third reagent capable of producing a specific substance in the presence of the separated particles and the labeling substance; and a step of colorimetrically measuring the specific substance obtained by this reaction to determine the antigen or antibody to be measured in the sample, sequentially. Characteristic immunoassay method. λ The immunoassay method according to claim 1, characterized in that a labeled enzyme is used as the labeling substance of the second reagent, and a substrate solution for the labeled enzyme is used as the third reagent. 8. Mixing the sample with a first reagent containing an antibody that specifically reacts with the antigen or antibody to be measured, or a particle in which the antigen is in phase, causing an antigen-antibody reaction, and then combining the mixed solution with the particles. The separated particles are mixed with a second reagent containing an antibody that specifically reacts with the antigen or antibody to be measured, or a labeling substance that binds the antigen to perform an antigen-antibody reaction. and then separating the mixed solution and the particles using a filter, and mixing and reacting the separated particles with an eighth reagent capable of producing a specific substance in the presence of the labeling substance. and a step of colorimetrically measuring the specific substance obtained by this reaction to immobilize the antigen or antibody to be measured in the sample. The reagent particles have a predetermined specific gravity, shape, and size, and are characterized in that they are composed of particles having a predetermined antibody or antigen that specifically reacts with the antigen or antibody to be measured on the surface thereof. reagent. 4 A first reagent containing an antibody that specifically reacts with the antigen or antibody to be measured, or particles on which the antigen is immobilized, and a sample are mixed in a reaction container to perform an antigen-antibody reaction, and then the mixed solution is prepared. The particles remaining in the reaction container are mixed with a reagent containing an antibody that specifically reacts with the antigen or antibody to be measured, or a labeling substance bound to the antigen. a step of performing an antibody reaction and then discharging the mixture through a filter;
A step of mixing the particles remaining in the reaction container with an eighth reagent capable of producing a specific substance in the presence of the labeling substance to cause a reaction, and colorimetrically comparing the specific substance obtained by this reaction. A reaction container used in an immunoassay method in which the steps of measuring and quantifying the antigen or antibody to be measured in the sample are sequentially performed, the reaction container having one injected into one end and discharged into the other end. 1. A reaction vessel characterized in that a filter is provided between the inlet and the outlet to prevent particles of the first reagent from passing through.
JP10761582A 1982-06-24 1982-06-24 Analysis method of immune and reagent and reaction container used therein Granted JPS58225354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10761582A JPS58225354A (en) 1982-06-24 1982-06-24 Analysis method of immune and reagent and reaction container used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10761582A JPS58225354A (en) 1982-06-24 1982-06-24 Analysis method of immune and reagent and reaction container used therein

Publications (2)

Publication Number Publication Date
JPS58225354A true JPS58225354A (en) 1983-12-27
JPH0322587B2 JPH0322587B2 (en) 1991-03-27

Family

ID=14463658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10761582A Granted JPS58225354A (en) 1982-06-24 1982-06-24 Analysis method of immune and reagent and reaction container used therein

Country Status (1)

Country Link
JP (1) JPS58225354A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123819A (en) * 1975-04-07 1976-10-28 Summa Corp Fixed immune adsorbing agent
JPS54154397A (en) * 1978-03-31 1979-12-05 Union Carbide Corp Reaction and separation device for automatic soliddphase immunity measurement
JPS5673347A (en) * 1979-10-26 1981-06-18 Guigan Jean Analyser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123819A (en) * 1975-04-07 1976-10-28 Summa Corp Fixed immune adsorbing agent
JPS54154397A (en) * 1978-03-31 1979-12-05 Union Carbide Corp Reaction and separation device for automatic soliddphase immunity measurement
JPS5673347A (en) * 1979-10-26 1981-06-18 Guigan Jean Analyser

Also Published As

Publication number Publication date
JPH0322587B2 (en) 1991-03-27

Similar Documents

Publication Publication Date Title
US4424279A (en) Rapid plunger immunoassay method and apparatus
AU639703B2 (en) Automated method and device for performing solid-phase diagnostic assay
EP1417489B1 (en) Rapid diagnostic device and assay
CA1225586A (en) Method of performing an immuno-assay, article for use therein and method for making such article
US4197287A (en) Method and apparatus for performing in nitro clinical diagnostic tests using a solid phase assay system having special utility for use with automatic pipetting equipment
CN105195243B (en) The magnetic microparticle chemiluminescence micro-fluidic chip that a kind of myoglobins is quantitatively detected
JPH0222560A (en) Reactor for performing sequential analytic test
EP0480497A1 (en) Device for performing a rapid single manual assay
JP2005518531A (en) Method and apparatus for accurately moving and manipulating fluid by centrifugal force and / or capillary force
JPH11316226A (en) Cartridge for automatic measurement and automatic measuring method
JPH0782016B2 (en) Container for antibody or antigen measurement
JPS6126860A (en) Method and device for executing analysis measurement
CA1140045A (en) Carcinoembryonic antigen determination
EP2715368A1 (en) Tsh immunoassays and processes for performing tsh immunoassays in the presence of endogenous contaminants in restricted wash formats
EP2715356B1 (en) Tsh immunoassays employing scavenging reagents for cross-reacting endocrine glycoprotein hormone analogues
EP0381450A3 (en) Assay for bone alkaline phosphatase
CN101147065A (en) Immunoassay method and immunoassay kit to be used therein
JPS58225354A (en) Analysis method of immune and reagent and reaction container used therein
JPH01301165A (en) Immunoassay
JPH01291163A (en) Method and apparatus for performing chemical reaction and biochemical reaction by porous carrier phase
JPH05346428A (en) Kit for rapidly counting granulocyte and method using the kit
JPS58225355A (en) Analysis method of immune and reaction container used therein
JPS58225356A (en) Analysis method of immune and particulate reagent used therein
NO860937L (en) DIAGNOSTICS FOR ASSAY PROVISIONS.
EP0161247A1 (en) Rapid plunger immunoassay method and apparatus