JPS58225330A - Differential dynamometer - Google Patents

Differential dynamometer

Info

Publication number
JPS58225330A
JPS58225330A JP10928982A JP10928982A JPS58225330A JP S58225330 A JPS58225330 A JP S58225330A JP 10928982 A JP10928982 A JP 10928982A JP 10928982 A JP10928982 A JP 10928982A JP S58225330 A JPS58225330 A JP S58225330A
Authority
JP
Japan
Prior art keywords
drive shaft
sub
drive shafts
bevel gear
main drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10928982A
Other languages
Japanese (ja)
Inventor
Yoshikazu Izumi
和泉 嘉一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP10928982A priority Critical patent/JPS58225330A/en
Publication of JPS58225330A publication Critical patent/JPS58225330A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/14Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by using rotary bodies, e.g. vane

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To enable various measurements, by using a main drive shaft connected to a motor and two auxiliary drive shafts connected to said main drive shaft through a differential mechanism to compare and measure reference load with load to be measured. CONSTITUTION:Torque T1 transmitted to a main drive shaft 2 from a motor 1 is transmitted to auxiliary drive shafts 4, 5 from a differential mechanism 3 in an equally distributed state. The container 38 of the auxiliary drive shaft 4 is filled with reference load having known viscosity and the container 39 of the auxiliary drive shaft 5 is filled with a specimen. The rotary speeds of each auxiliary drive shafts 4, 5 are measured by rotary speed meters 36, 37 and power consumption is measured by a dynamometer 35. As the reference load, one of which the viscosity is changed with the elapse of time is used and, when a mixture prepared by mixing sand or gravel in a cement paste is used as the specimen, a viscosity ratio can be detected by calculating the influence of sand or gravel from the inverse number of a rotary speed ratio.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、動力計に関する。特に、試料の粘度を基準負
荷の粘度に対応させて測定するに適する動力計に関する
本のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a dynamometer. In particular, this book concerns a dynamometer suitable for measuring the viscosity of a sample in correspondence with the viscosity of a reference load.

〔従来技術の説明〕[Description of prior art]

一般に、回転粘度計では回転子軸にかかるトルクを測定
して、この測定したトルクから被測定物の粘度を計算し
ている。すなわち、回転子軸KかかるトルクをTとする
と、 T=η・γ・V      ・・・・・・・・・・・・
(1)ただし、ηは粘度、γはすり速度、■は粘度計の
実効容積 となる。
Generally, a rotational viscometer measures the torque applied to the rotor shaft, and calculates the viscosity of the object to be measured from the measured torque. In other words, if the torque applied to the rotor shaft K is T, then T=η・γ・V ・・・・・・・・・・・・
(1) However, η is the viscosity, γ is the sliding speed, and ■ is the effective volume of the viscometer.

ここで、実効容積Vは同一粘度針では一定であ勺、ず勺
速度rも一定にして測定することが可能である。したが
って、粘度の異なる試料に対してT′=l′・y−V 
       ・・・・・・・・・・・・(2)となる
Here, the effective volume V is constant for needles with the same viscosity, and it is possible to measure the same while keeping the speed r constant. Therefore, T′=l′・y−V for samples with different viscosities
・・・・・・・・・・・・(2)

(1)式を(2)式で割ると、 または η′=−・T′     ・・・・・・・・・・・・(
4)となる。
Dividing equation (1) by equation (2), or η'=-・T' ・・・・・・・・・・・・(
4).

したがって、η/Tを機器定数として測定しておけば、
トルクT′から試料の粘度η′を知ることができる。
Therefore, if η/T is measured as an instrument constant,
The viscosity η' of the sample can be determined from the torque T'.

しかし、通常の回転粘度計ではずり速度の計算全容易に
するために、回転子と固定子を同心円筒にしたり、円筒
形カップと円錐形とを組合わせる等して攪拌部分を構成
している。このため、塊状物を含む試料では、回転子に
より均一に攪拌されず、単に回転子との接触面での摩擦
のみ全トルクとして読取ってしまうことがある。また、
回転子を攪拌羽根のような形状にして、試料全体を流動
させるように構成したものもある。しかし、回転子の各
部分での速度が複緋に変化するので、トルクを正確に測
定することができたい。
However, in order to easily calculate the shear rate with a normal rotational viscometer, the stirring part is constructed by making the rotor and stator concentric cylinders, or by combining a cylindrical cup and a conical shape. . For this reason, a sample containing lumps may not be uniformly agitated by the rotor, and only the friction at the contact surface with the rotor may be read as the total torque. Also,
Some devices have a rotor shaped like a stirring blade to flow the entire sample. However, since the speed at each part of the rotor varies rapidly, it is desirable to be able to accurately measure torque.

また、液体と固体微粒子の混合物である分散系は流体の
性質を示し、回転粘度計で粘度を測定できるが、微粒子
の分散や凝集の状態に応じて時間的に粘度が大幅に変化
する。この液体と固体微粒子の混合物に他の物質を加え
て混合することが行われる。例えば、セメントペースト
に砂と砂利等の他の物質を混合してコンクリートを製造
したり、小豆粉、水、砂糖の混合物に切シ餅等の他の物
質を加えてしる仁を作る仁とが行われている。
Furthermore, a dispersion system, which is a mixture of liquid and solid particles, exhibits the properties of a fluid, and its viscosity can be measured using a rotational viscometer, but the viscosity changes significantly over time depending on the state of dispersion or aggregation of the particles. Other substances are added to this mixture of liquid and solid particles and mixed. For example, cement paste is mixed with other substances such as sand and gravel to make concrete, or a mixture of adzuki bean flour, water and sugar is mixed with other substances such as cut rice cakes to make shirujin. is being carried out.

このとき、混入した物質を含む分散系の流動性は、この
物質を混入する前の分散系の粘性と密接な関係があるも
のと推定できるが、混入する前の分散系の粘度自体が上
述のように変化する。したがって、この物質の影響を正
確に測定するため罠は、この物質を混入した分散系と混
入する前の分散系とを同時に同一の測定機を使用してそ
の粘度を測定する必要がある。しかし、混入する物質が
微粒子と呼べぬような大きな塊状物である場合には、上
述のように回転粘度計では粘度測定ができず、流体中に
混入された塊状物の影響を流体の粘度に関連させて測定
することができない。
At this time, it can be assumed that the fluidity of the dispersion system containing the mixed substance is closely related to the viscosity of the dispersion system before this substance is mixed, but the viscosity of the dispersion system before mixing itself is the same as described above. It changes like this. Therefore, in order to accurately measure the influence of this substance, it is necessary to simultaneously measure the viscosity of the dispersion system mixed with this substance and the dispersion system before mixing using the same measuring device. However, if the mixed substance is a large lump that cannot be called a particulate, the rotational viscometer cannot measure the viscosity as described above, and the influence of the lump mixed into the fluid can be reflected in the viscosity of the fluid. cannot be measured in relation to

〔発明の目的〕[Purpose of the invention]

本発明はこの点を改良するもので、大きな塊状物を混入
した混合物であっても、その流動性を塊状物の混入前の
流体の粘性と関連づけて測定することができる差動動力
針を提供することを目的とする。
The present invention improves this point by providing a differential power needle that can measure the fluidity of a mixture containing large lumps in relation to the viscosity of the fluid before mixing with the lumps. The purpose is to

〔発明の要旨〕[Summary of the invention]

本発明は、主駆動軸と、この主駆動軸に駆動動力を与え
る駆動動力源と、仁の主駆動軸に差動機構を介して接続
される2本の副駆動軸と、上記主駆動軸および上記2本
の副駆動軸がそれぞれ回転自在に貫通し上記駆動動力源
の外枠が固着された基台と、上記駆動動力源の出力を検
出する手段と、上記2本の副駆動軸の各回転速度を検出
する手段とを備え、上記副駆動軸のそれぞれに負荷を与
えるように構成されたことを特徴とする。
The present invention includes a main drive shaft, a drive power source that provides driving power to the main drive shaft, two sub-drive shafts connected to the main drive shaft via a differential mechanism, and the main drive shaft. a base through which the two sub-drive shafts rotatably pass through and to which the outer frame of the drive power source is fixed; means for detecting the output of the drive power source; The apparatus is characterized in that it includes means for detecting each rotational speed, and is configured to apply a load to each of the sub-drive shafts.

また、差動機構が、主駆動軸がその中心部を貫通しこの
主駆動軸に固着された第一のかさ歯車と、この第一のか
さ歯車と対向して設けられ上記主駆動軸がその中心部を
回転自在に貫通する第二のかさ歯車と、この第一のかさ
歯車および第二のかさ歯車KtlJ合し相対向して設け
られた一対の第三および第四のかさ歯車とで構成され、
上記副駆動軸の一方が上記第二のかさ歯車の回転により
駆動され、上記副駆動軸の他方が上記第一のかさ歯車の
回転により駆動されることが良い。
In addition, the differential mechanism is provided with a first bevel gear through which the main drive shaft passes through a center portion thereof and is fixed to the main drive shaft, and a first bevel gear that faces the first bevel gear. Consisting of a second bevel gear that rotatably penetrates through the center, and a pair of third and fourth bevel gears that are provided facing each other and interlock the first bevel gear and the second bevel gear KtlJ. is,
It is preferable that one of the sub-drive shafts is driven by the rotation of the second bevel gear, and the other of the sub-drive shafts is driven by the rotation of the first bevel gear.

また、基台が、差動機構を覆うケースであることが良い
Further, it is preferable that the base is a case that covers the differential mechanism.

また、本発明は2本の副駆動軸にそれぞれ等しい攪拌羽
根が固着され、上記基準負荷を与える手段が一定容量の
粘度が既知である流体であり、上記被測定負荷が上記一
定容量の被測定流体である′″1v′**、=16・ 
          ζまた2本の副駆動軸に与えられ
る負荷が、一方が基準負荷で他方が被測定負荷である仁
とが良い。
Further, in the present invention, equal stirring blades are fixed to each of the two auxiliary drive shafts, the means for applying the reference load is a constant volume of a fluid with a known viscosity, and the load to be measured is the constant volume to be measured. Fluid ′″1v′**, = 16・
ζAlso, it is preferable that the loads applied to the two sub-drive shafts be such that one is a reference load and the other is a measured load.

本発明は第一の観点として動力測定するための動力計で
あり、第二の観点としてこれを粘度測定のための粘度計
とするものである。
The first aspect of the present invention is a dynamometer for measuring power, and the second aspect of the present invention is a viscometer for measuring viscosity.

〔実施例による説明〕[Explanation based on examples]

本発明の一実施例を図面に基づいて説明する。 An embodiment of the present invention will be described based on the drawings.

第1図は本発明一実施例の要部構造図である。FIG. 1 is a structural diagram of main parts of an embodiment of the present invention.

第1図は大きく分けて、モータ1と、これに連結された
主駆動軸2と、この主駆動軸2と差動機構3を介して接
続される副駆動軸4および5と、この副駆動軸4および
5にそれぞれ固着された攪拌羽根6および7と、上記モ
ータ1が固着された基台8とで構成されている。
FIG. 1 shows a motor 1, a main drive shaft 2 connected to the motor 1, a sub drive shaft 4 and 5 connected to the main drive shaft 2 via a differential mechanism 3, and a sub drive shaft 2 connected to the motor 1. It consists of stirring blades 6 and 7 fixed to shafts 4 and 5, respectively, and a base 8 to which the motor 1 is fixed.

第1図の中央縦断面図を第2図に示す。モータ1は支持
枠10により基台8に固着される。このモータ1の回転
軸11はカップリング12により主駆動軸2に連結され
る。この主駆動軸2け基台8および支持板13を回転自
在に貫通し、その下端は軸受14に回転自在に保持され
る。この主駆動軸2の上部に差動機構3を構成する大か
さ歯車16を固着する。
FIG. 2 shows a central vertical cross-sectional view of FIG. 1. The motor 1 is fixed to the base 8 by a support frame 10. A rotating shaft 11 of this motor 1 is connected to a main drive shaft 2 by a coupling 12. The main drive shaft rotatably passes through the two-piece base 8 and the support plate 13, and its lower end is rotatably held by a bearing 14. A large bevel gear 16 constituting the differential mechanism 3 is fixed to the upper part of the main drive shaft 2.

この差動機構3は上記大かさ歯車16と、この大かさ歯
車16と相対向し上記主駆動軸2とその中心部が回転自
在に嵌合する大かさ歯車17と、この大かさ歯車16お
よび17に歯合する一対の小かさ歯車18および19で
構成される。この小かさ歯車18および19を支軸21
および22に固着し、仁の支軸21および22を支持板
25.26にそれぞれ回転自在に支持する。この支持板
25.26を上記支持板13および平歯車27に螺着す
る。
The differential mechanism 3 includes the large bevel gear 16, a large bevel gear 17 which faces the large bevel gear 16 and whose center portion is rotatably fitted to the main drive shaft 2, and the large bevel gear 16 and the large bevel gear 17. It consists of a pair of small bevel gears 18 and 19 that mesh with gear 17. These small bevel gears 18 and 19 are connected to a support shaft 21.
and 22, and rotatably support the support shafts 21 and 22 on support plates 25 and 26, respectively. The support plates 25 and 26 are screwed onto the support plate 13 and the spur gear 27.

この平歯車27はその中心部が上記主駆動軸2と回転自
在に嵌合され、南部は平歯* 28と歯合する。この平
歯車28の中心部Kld上記副駆動軸4が固着される。
This spur gear 27 has its central portion rotatably fitted to the main drive shaft 2, and its southern portion engages with spur teeth *28. The center portion Kld of this spur gear 28 is fixed to the auxiliary drive shaft 4 .

この副駆動軸4け基台8を回転自在に貫通する。また、
上記大かさ歯車17の下端には平歯車30が固着され、
仁の平歯車30の中心部は上記主駆動軸2と回転自在に
嵌合し、その歯部は平歯車31と歯合する。
The four auxiliary drive shafts pass through the base 8 rotatably. Also,
A spur gear 30 is fixed to the lower end of the large bevel gear 17,
The center portion of the socket-shaped spur gear 30 is rotatably fitted to the main drive shaft 2, and its teeth mesh with the spur gear 31.

この平歯車31の中心部には上記副駆動軸5が固着され
、この副駆動軸5は上記基台8を回転自在に貫通する。
The auxiliary drive shaft 5 is fixed to the center of the spur gear 31, and the auxiliary drive shaft 5 rotatably passes through the base 8.

また、千fe*、30は支持リング32により支持され
る。
Further, 1,000fe*, 30 is supported by a support ring 32.

第3図は本発明一実施例の要部ブロック構成図である。FIG. 3 is a block diagram of main parts of an embodiment of the present invention.

第3図で、35はモータIK接続される動力計であり、
36および37は副駆動軸4および5の回転速度を検出
する回転速度組であシ、38および39は試料または基
準負荷となる流体等を注入する容積Vが等しい容器であ
る。
In Fig. 3, 35 is a dynamometer connected to the motor IK,
Reference numerals 36 and 37 are a rotational speed set for detecting the rotational speed of the sub-drive shafts 4 and 5, and 38 and 39 are containers having the same volume V into which a sample or a fluid serving as a reference load is injected.

ここで、動力計35としては実効値電力計、回転速度計
36.37としては軸上あるいは軸と連動する円板上の
反射マークからの反射光を電気パルスとして計数する光
学系回転速度計等が用いられる。          
         −・このよう々構成で、本発明の特
徴ある動作を説明する。
Here, the dynamometer 35 is an effective value wattmeter, and the tachometer 36.37 is an optical tachometer that counts reflected light from a reflective mark on the shaft or a disc that is linked to the shaft as an electric pulse. is used.
- The characteristic operation of the present invention will be explained using such a configuration.

モータlから主駆動軸2に伝達されるトルクT1は、差
動機構3により副駆動軸4および5に均等に分配されて
伝達される。
Torque T1 transmitted from the motor 1 to the main drive shaft 2 is equally distributed and transmitted to the sub drive shafts 4 and 5 by the differential mechanism 3.

すなわち、副駆動軸4および5にかかる負荷が同一の場
合、あるいは共に無負荷の場合には、モータ1により主
駆動軸2が回転されると差動機構3の小かさ歯車18.
19が同−回転速度で自転するとと本に、この差動機構
3および平歯車27.30が主駆動軸2とともに回転す
る。このため副駆動軸4および5は同一回転速度で回転
する。また、副駆動軸4および5にかかる負荷が異なる
場合には、小かさ歯車18.19の自転する回転速度が
負荷に応じて変化し、例えば副駆動軸4の負荷が副駆動
軸5の負荷よシ重負荷となると、この負荷の差に応じて
副駆動軸4および5の回転速度に差を生じる。
That is, when the loads applied to the auxiliary drive shafts 4 and 5 are the same, or when both are unloaded, when the main drive shaft 2 is rotated by the motor 1, the small bevel gear 18 of the differential mechanism 3 is rotated.
19 rotates at the same rotational speed, the differential mechanism 3 and the spur gears 27 and 30 rotate together with the main drive shaft 2. Therefore, the sub-drive shafts 4 and 5 rotate at the same rotational speed. Furthermore, when the loads applied to the sub-drive shafts 4 and 5 are different, the rotational speed of the small bevel gears 18 and 19 changes depending on the load, and for example, the load on the sub-drive shaft 4 is different from the load on the sub-drive shaft 5. When the load becomes heavier, a difference occurs in the rotational speeds of the sub-drive shafts 4 and 5 in accordance with the difference in load.

いま、モーターの出力をT1とし装置の摩擦損失をT2
とすると、トルク(T1−72’ )が副駆動軸4.5
に均等に分配される。したがって、上記(1)式、(2
)式より、本発明に係る動力計ではしたがって、 ?−r  =  η′・γ′         ・・・
−・・・・団・(6)または となる。
Now, let the motor output be T1 and the friction loss of the device be T2.
Then, the torque (T1-72') is 4.5
evenly distributed. Therefore, the above equation (1), (2
), the dynamometer according to the present invention has the following equation. −r = η′・γ′ ・・・
-・・・dan・(6)or becomes.

すなわち、試料の測定に際しては、まず副駆動軸4.5
を無負荷とした状態で主駆動軸2を回転させ、−このと
きの消費動力を動力計35で測定する。これにより、(
5)式のT2が得られる。
That is, when measuring a sample, first the sub drive shaft 4.5
The main drive shaft 2 is rotated with no load, and the power consumption at this time is measured with a dynamometer 35. This results in (
5) T2 of the formula is obtained.

次に、副駆動軸4の容器38に粘度ηの既知の基準負荷
(例えば、水、シリコン油等)を充填し、副駆動軸5の
容器39に試料を充填する。このときの各副駆動軸4.
50回回転度を回転速度計36.37で測定し、消費動
力を動力計35で測定する。
Next, the container 38 of the sub-drive shaft 4 is filled with a known reference load (for example, water, silicone oil, etc.) having a viscosity η, and the container 39 of the sub-drive shaft 5 is filled with a sample. Each sub-drive shaft 4 at this time.
50 rotations are measured with a tachometer 36, 37, and power consumption is measured with a dynamometer 35.

この測定結果により、(7)式より試料の粘度η′が算
出される。また、このときの基準負荷の消費動力が既知
であれば、試料の粘度η′における消費動力も動力計3
5の測定値からこの既知の消費動力を減算することによ
って算出される。
Based on this measurement result, the viscosity η' of the sample is calculated from equation (7). In addition, if the power consumption of the reference load at this time is known, the power consumption at the sample viscosity η' can also be calculated using the dynamometer.
It is calculated by subtracting this known power consumption from the measured value of 5.

また、基準負荷として粘度ηが時間的に変化するもの(
例えば、セメントペースト)を使用し、試料としてこの
セメントペーストに砂や砂利等を混入したものを使用す
る場合には、この砂や砂利の影響を回転速度比の逆数r
/、/を算出することにより(7)式から粘度比として
検出できる。このため、セメントペーストの設計等にお
いて、砂や砂利の影響をセメントペーストの粘度を基準
にして算出し、この結果に基づいて機器の動力や強度を
正確に設計できる。
In addition, as a reference load, a load whose viscosity η changes over time (
For example, when using cement paste) and using a sample mixed with sand or gravel, the influence of this sand or gravel can be calculated by the reciprocal of the rotational speed ratio r.
By calculating / and /, it can be detected as a viscosity ratio from equation (7). Therefore, when designing cement paste, etc., the influence of sand and gravel can be calculated based on the viscosity of the cement paste, and the power and strength of equipment can be accurately designed based on this result.

また、駆動トルクが副駆動軸4および5に均等に配分さ
れるためには、各副駆動軸4.5に連結する部品の慣性
モーメントの和が等しくなければならない。このことを
実現するために、平歯車30の厚さを変えたり、副駆動
軸4.5に重りを取付けるなどして副駆動軸4および5
の無負荷時、あいは同一試料を攪拌したときにその回転
速度が等しく々るように製作時に調整される。
Further, in order for the drive torque to be evenly distributed to the sub-drive shafts 4 and 5, the sum of the moments of inertia of the parts connected to each sub-drive shaft 4.5 must be equal. To achieve this, the thickness of the spur gear 30 may be changed or a weight may be attached to the auxiliary drive shaft 4.5.
The rotational speed is adjusted at the time of manufacture so that the rotation speed is the same when no load is applied and when the same sample is stirred.

また上記実施例では、副駆動軸4および5は互いに逆回
転する構成を示したが、攪拌羽根6および7の形状によ
っては正転と逆転時のトルクが異なることがあるため、
平歯車27と平歯車28の間あるいは平歯車30と31
の間に平歯車を1個追加して副駆動軸4および5の回転
方向を一致させることが良い。
Further, in the above embodiment, the sub-drive shafts 4 and 5 rotate in opposite directions, but depending on the shape of the stirring blades 6 and 7, the torque during normal rotation and reverse rotation may differ.
Between spur gear 27 and spur gear 28 or between spur gears 30 and 31
It is preferable to add one spur gear between them so that the rotation directions of the auxiliary drive shafts 4 and 5 coincide with each other.

また、上記実施例では、副駆動軸4および50回転速度
比を1=1にした場合を示したが、基準負荷と試料の粘
度比が著しく大きい場合には、副駆動軸4または50回
転速度が著しく高速となり、回転速度の正確な測定が困
難となるので、平歯車28と31の歯数を変えて副駆動
軸4および50回転速度比を予めずらしておいてもよい
。この場合でも、(6)式、(7)式の関係は維持され
ておシ、平歯車27と30における回転速度とトルクの
積は常に等しい。
In addition, in the above embodiment, the case where the rotational speed ratio of the sub-drive shafts 4 and 50 was set to 1=1 was shown, but if the viscosity ratio of the reference load and the sample is extremely large, the rotation speed of the sub-drive shafts 4 and 50 may be Since the rotational speed becomes extremely high and it becomes difficult to accurately measure the rotational speed, the number of teeth of the spur gears 28 and 31 may be changed to deviate the rotational speed ratio of the auxiliary drive shafts 4 and 50 in advance. Even in this case, the relationships expressed by equations (6) and (7) are maintained, and the products of the rotational speeds and torques of the spur gears 27 and 30 are always equal.

また、差動機構3の構成本上記実施例に示すものに限ら
ず、例えば平歯車とリング歯車の組合せで構成するもの
等多種数構成できる。
Further, the configuration of the differential mechanism 3 is not limited to the one shown in the above embodiment, but can be configured in many different ways, such as a combination of spur gears and ring gears.

1だ、上記実施例では本発明を粘度計に実施する場合を
示したが、基準負荷として一方の副駆動軸に制動力の既
知な標準ブレーキを取付けてもよい。この場合には、試
料は流体や液体に限定されることが々く、試料の摩擦抵
、抗が回転速度比として検出される。
1. In the above embodiment, the present invention is applied to a viscometer, but a standard brake with a known braking force may be attached to one of the auxiliary drive shafts as a reference load. In this case, the sample is often limited to fluid or liquid, and the frictional resistance of the sample is detected as a rotational speed ratio.

〔効果の説明〕[Explanation of effects]

以上説明したように本発明によれば、主駆動軸に伝達さ
れる駆動トルクを差動機構を介して2本の副駆動軸に均
等に分配して伝達することとした。
As described above, according to the present invention, the drive torque transmitted to the main drive shaft is equally distributed and transmitted to the two sub-drive shafts via the differential mechanism.

17たがって、 (a)  一方の副駆動軸に制動力既知の標準ブレーキ
や標準ベアリング等の基準負荷を取付ければ、他方の副
駆動軸に取付壁たブレーキやベアリング等の制御力 あ
るいは摩擦抵抗が容易に検出でき、製品品質の検査を簡
単に行うことができる。
17 Therefore, (a) If a reference load such as a standard brake or standard bearing with a known braking force is attached to one sub-drive shaft, the control force or frictional resistance of the brake, bearing, etc. that is attached to the other sub-drive shaft will be can be easily detected and product quality can be easily inspected.

壕だ本発明を粘度計として使用すれば、(b)粉末や塊
状物の流体性が粘度既知である液体の粘度に対する比率
として測定できる。
By using the present invention as a viscometer, (b) the fluidity of a powder or lump can be measured as a ratio to the viscosity of a liquid whose viscosity is known.

(C)  また、液体に粉末や塊状物を混合したものの
粘度を粉末や塊状物を混合する前の液体の粘度との比率
として測定できる。しかも、この液体の粘度が経時的に
変化するものでろつても2軸による同時測定であるため
正確表測定が可能となる。
(C) Also, the viscosity of a liquid mixed with powder or lumps can be measured as a ratio to the viscosity of the liquid before mixing the powder or lumps. Furthermore, even if the viscosity of this liquid changes over time, accurate table measurements are possible because simultaneous measurements are performed using two axes.

(d)  また、重合促進剤または重合禁止剤等の添加
物を混合したモノマーと添加物を混合しないモノマーと
を温度管等しくして同時測定すれば添加剤の影響を粘度
比として測定できる。
(d) Furthermore, if a monomer mixed with an additive such as a polymerization accelerator or a polymerization inhibitor and a monomer mixed with no additive are simultaneously measured in the same temperature tube, the influence of the additive can be measured as a viscosity ratio.

以上(b)〜(d)に記載した効果は、従来の回転粘度
針では与えることができなかった優れた効果であり、こ
れにより混合機等の設計精度を著しく向上することがで
きる。
The effects described in (b) to (d) above are excellent effects that could not be provided by conventional rotational viscosity needles, and thereby the design accuracy of mixers and the like can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例の要部構造図。 第2図は第1図の結合または摺動の関係を明確にするた
め図面の一部を誇張して描いた断面図。 第6図は上記実施例の要部ブロック構成図。 1・・・モータ、2・・・主駆動軸、3・・・差動機構
、4.5・・・副駆動軸、6.7・・・攪拌羽根、8・
・・基台、16.1;7・・・大かさ歯車、18.19
・・・小かさ歯車、27.28.30,31・・・平歯
車、35・・・動力計、36.37・・・回転速度計、
3B、39・・・容器。 y+12 図 第3 回
FIG. 1 is a structural diagram of main parts of an embodiment of the present invention. FIG. 2 is a sectional view in which a part of the drawing is exaggerated in order to clarify the connection or sliding relationship in FIG. 1. FIG. 6 is a block diagram of the main parts of the above embodiment. DESCRIPTION OF SYMBOLS 1... Motor, 2... Main drive shaft, 3... Differential mechanism, 4.5... Sub drive shaft, 6.7... Stirring blade, 8...
...Base, 16.1;7...Large bevel gear, 18.19
...Small bevel gear, 27.28.30,31...Spur gear, 35...Dynamometer, 36.37...Rotational speed meter,
3B, 39... Container. y+12 Figure 3rd

Claims (5)

【特許請求の範囲】[Claims] (1)  主駆動軸と、 この主駆動軸に駆動動力を与える駆動動力源と、この主
駆動軸に差動機構を介して接続される2本の副駆動軸と
、 上記主駆動軸および上記2本の副駆動軸がそれぞれ回転
自在に負通し上記駆動動力源の外枠が固着された基台と
、 上記駆動動力源の出力を検出する手段と、上記2本の副
駆動軸の各回転速度を検出する手段と 全備え、 上記2本の副駆動軸のそれぞれに負荷を与えるように構
成された ことを特徴とする 差動動力計。
(1) A main drive shaft, a drive power source that provides driving power to this main drive shaft, two sub-drive shafts connected to this main drive shaft via a differential mechanism, the above-mentioned main drive shaft and the above-mentioned a base to which an outer frame of the drive power source is fixed, through which two sub-drive shafts are rotatably passed through each other; a means for detecting the output of the drive power source; and a means for detecting the output of the drive power source; A differential dynamometer, comprising: a means for detecting speed; and a differential dynamometer configured to apply a load to each of the two sub-drive shafts.
(2)差動機構は、 主駆動軸がその中心部を貫通しこの主駆動軸に固着され
た第一のかさ歯車と、 この第一のかさ歯車と対向して設けられ上記主駆動軸が
その中心部を回転自在に貫通する第二のかさ歯車と、 この第一のかさ歯車および第二のかさ歯車に歯合し相対
向して設けられた一対の第三および第四のかさ歯車と で構成され、 上記副駆動軸の一方が上記第二のかさ歯車の回転により
駆動され、 上記副駆動軸の他方が上記第一のかさ歯車の回転により
駆動される 特許請求の範囲第(1)項に記載の差動動力計。
(2) The differential mechanism includes a first bevel gear with a main drive shaft passing through its center and fixed to the main drive shaft, and a first bevel gear provided opposite to the first bevel gear and with the main drive shaft fixed to the main drive shaft. a second bevel gear that rotatably passes through the center thereof; a pair of third and fourth bevel gears that mesh with the first bevel gear and the second bevel gear and are provided facing each other; Claim (1), wherein one of the sub-drive shafts is driven by the rotation of the second bevel gear, and the other of the sub-drive shafts is driven by the rotation of the first bevel gear. Differential dynamometer as described in Section.
(3)  基台が、 差動機構を覆うケースである 特許請求の範囲第(1)項に記載の差動動力計。(3) The base is This is a case that covers the differential mechanism. A differential dynamometer according to claim (1). (4)2本の副駆動軸に与え−られる負荷が、一方が基
準負荷でIC他方が被測定負荷である特許請求の範囲第
(1)項に記載の差動動力計。
(4) The differential dynamometer according to claim (1), wherein one of the loads applied to the two sub-drive shafts is a reference load and the other IC is a measured load.
(5)主駆動軸と、 この主駆動軸に駆動動力を与える駆動動力源と、この主
駆動軸に差動機構を介して接続される2本の副駆動軸と
、 上記主駆動軸および上記2本の副駆動軸がそれぞれ回転
自在に貫通し上記駆動勢力源の外枠が固着された基台と
、 上記駆動動力源の出力を検出する手段と、上記副駆動軸
の一方に基準負荷を与える手段と、上記2本の副駆動軸
の各回転速度を検出する手段と 全備え、 上記副駆動軸の他方に被測定負荷を与えるように構成さ
れ、 上記2本の副駆動軸にそれぞれ等しい攪拌羽根が固着さ
れ、 上記基準負荷を与える手段が粘度が既知である所冗容量
の流体であり、 上記被測定負荷が上記所定容量の被測定流体である 粘度計。
(5) a main drive shaft; a drive power source that provides driving power to this main drive shaft; and two sub-drive shafts connected to this main drive shaft via a differential mechanism; a base through which two sub-drive shafts rotatably pass through each other and to which an outer frame of the drive force source is fixed; a means for detecting the output of the drive power source; and a reference load applied to one of the sub-drive shafts. and a means for detecting the respective rotational speeds of the two sub-drive shafts, configured to apply a measured load to the other of the sub-drive shafts, and equal to each of the two sub-drive shafts. A viscometer to which a stirring blade is fixed, the means for applying the reference load is a redundant volume of fluid with a known viscosity, and the load to be measured is the predetermined volume of the fluid to be measured.
JP10928982A 1982-06-24 1982-06-24 Differential dynamometer Pending JPS58225330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10928982A JPS58225330A (en) 1982-06-24 1982-06-24 Differential dynamometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10928982A JPS58225330A (en) 1982-06-24 1982-06-24 Differential dynamometer

Publications (1)

Publication Number Publication Date
JPS58225330A true JPS58225330A (en) 1983-12-27

Family

ID=14506397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10928982A Pending JPS58225330A (en) 1982-06-24 1982-06-24 Differential dynamometer

Country Status (1)

Country Link
JP (1) JPS58225330A (en)

Similar Documents

Publication Publication Date Title
FI125375B (en) Method and apparatus for making a concrete pulp
EP0798549B1 (en) Rheometer
US4594883A (en) Monitoring physical properties of a fluid
US5321974A (en) Method and device for determining rheological properties
SU1745139A3 (en) Method of determination of plasticity and rheology properties of mouldable materials
In et al. Fourier transform mechanical spectroscopy of the sol-gel transition in zirconium alkoxide ceramic gels
Green High-speed rotational viscometer of wide range. Confirmation of Thereiner equation of flow
GB2466705A (en) Paint mixing device having a viscometer
CN207908302U (en) A kind of asphalt bonding lubrication test device of adjustable speed
Asbeck et al. A high shear method of rating brushability of paints
JPS58225330A (en) Differential dynamometer
CN104849401B (en) Magnetic flow liquid redispersibility quantitative measuring method
DE19752221C2 (en) Process for measuring the viscosity of mash
CN108225939A (en) Measure the device and method of fresh concrete yield stress
EP0216994B1 (en) Method for the determination of the gelifying time of a reaction resin
Prakash et al. Measurement of velocity distribution in the Brabender farinograph as a model mixer, using Laser‐doppler anemometry
CN204462124U (en) Magnetic flow liquid redispersibility apparatus for quantitatively
US3533275A (en) Viscosimeter
US2485424A (en) Viscosimeter
CN87207349U (en) Rheometer for determining two-parameter with rotary inner vane in outer drum
Banfill Applications of rheology in mortar production
Green et al. The effect of thixotropy on plasticity measurements
US2807160A (en) High shear viscosimeter
JPH05256755A (en) Method and apparatus for detecting progressing degree of material kneading
US4742719A (en) Mixing process simulating method and system for evaluating wedge flow