JPS58224946A - Electric tension control apparatus - Google Patents

Electric tension control apparatus

Info

Publication number
JPS58224946A
JPS58224946A JP10644982A JP10644982A JPS58224946A JP S58224946 A JPS58224946 A JP S58224946A JP 10644982 A JP10644982 A JP 10644982A JP 10644982 A JP10644982 A JP 10644982A JP S58224946 A JPS58224946 A JP S58224946A
Authority
JP
Japan
Prior art keywords
tension
signal
deceleration
mechanical loss
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10644982A
Other languages
Japanese (ja)
Other versions
JPH0211504B2 (en
Inventor
Katsuhiko Sugita
克彦 杉田
Tsutomu Sainen
勉 西念
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsudakoma Corp
Original Assignee
Tsudakoma Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsudakoma Industrial Co Ltd filed Critical Tsudakoma Industrial Co Ltd
Priority to JP10644982A priority Critical patent/JPS58224946A/en
Publication of JPS58224946A publication Critical patent/JPS58224946A/en
Publication of JPH0211504B2 publication Critical patent/JPH0211504B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H59/00Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators
    • B65H59/38Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators by regulating speed of driving mechanism of unwinding, paying-out, forwarding, winding, or depositing devices, e.g. automatically in response to variations in tension
    • B65H59/384Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators by regulating speed of driving mechanism of unwinding, paying-out, forwarding, winding, or depositing devices, e.g. automatically in response to variations in tension using electronic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2557/00Means for control not provided for in groups B65H2551/00 - B65H2555/00
    • B65H2557/20Calculating means; Controlling methods
    • B65H2557/262Calculating means; Controlling methods with key characteristics based on feed forward control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Landscapes

  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
  • Tension Adjustment In Filamentary Materials (AREA)

Abstract

PURPOSE:To set tension with high accuracy in an apparatus for electrically controlling tension of a thread at the time of winding and drawing out the thread by providing a tension control portion with a mechanical loss compensating portion and an acceleration and deceleration compensating portion so as to compensate a mechanical loss and fluctuation in a turning energy. CONSTITUTION:A tension control portion 15 of a feedback control system is provided with a mechanical loss compensating portion 19 of a feed forward control system and an acceleration and deceleration compensating portion 20. By these control operations, a mechanical loss of a take-up beam 10 as a rotor and fluctuation in turning energy at the time of acceleration and deceleration are always compensated so as to set tension with high accuracy. As a result, at the time of winding and feeding out a thread, paper, a film sheet or the like as a control object, the winding and feeding operations can be accomplished with low tension.

Description

【発明の詳細な説明】 本発明は、帯状物例えば糸などの制御対象を高速で巻き
取りまたは送シ出すとき、その制御対象の張力を電気的
に制御する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for electrically controlling the tension of a controlled object such as a belt-shaped object, such as a thread, when the object is wound or fed out at high speed.

例えばたて糸糊付機には、巻取装置が設けられている。For example, a warp sizing machine is equipped with a winding device.

この巻取装置は、モータの回転力により、糸を高速で一
定の張力のもとに巻き取っていく。
This winding device winds the yarn at high speed under constant tension using the rotational force of the motor.

糸の張力が増加すると、糸切れなどが起きるため、その
張力は高い精度のもとに制御されなければなら彦い。
If the thread tension increases, thread breakage may occur, so the tension must be controlled with high precision.

特許出願人は、既にこの種の張力制御に有効な制御系を
開発している。その張力制御系は、フィードバック制御
のもとに、巻き取υ用の可変速型直流モータの回転速度
を供給電流によυ制御し、同時に制御対象の糸の張力や
巻取ビームの外径などを電気的に検出し、この検出信号
を供給電流のフィードバック系に入力するようにしてい
る。
The patent applicant has already developed a control system effective for this type of tension control. Under feedback control, the tension control system controls the rotational speed of the variable speed DC motor for winding υ using the supplied current, and at the same time controls the tension of the yarn to be controlled and the outer diameter of the winding beam. is electrically detected, and this detection signal is input to the supply current feedback system.

上記張力制御技術は、従来のフリクション巻取方式また
は変速モータ巻取方式に比較して、高精度で安定な高速
巻取制御を可能とした。しかし今日、さらに高速で、し
かも低張力に対応できる張力制御技術が望まれている。
The above tension control technology enables highly accurate and stable high-speed winding control compared to conventional friction winding systems or variable speed motor winding systems. However, today there is a need for tension control technology that can handle even higher speeds and lower tensions.

上記の要求を実現すゐためには、2つの事項が充足され
なけ、ればならない。その1つは、モータおよび機械系
の時定数を可及的に小さくし、ハイレスポンスを実現す
ることである。他の1つは、制御系の問題で、速い応答
の電流制御のもとで、目標値としての張力に対応する電
流指令を出しておき、フィードバック張力制御系の比例
ゲインを低く設定して、外乱に対して強い制御系を構成
し、瞬時的な張力変動に対しては微分動作により、また
長い時間に対する張力変動に対しては積分動作でそれぞ
れ対応し、制御の安定化を計ることである。
In order to realize the above requirements, two items must be met. One of these is to reduce the time constant of the motor and mechanical system as much as possible to achieve high response. The other problem is the control system. Under fast-response current control, a current command corresponding to the tension as the target value is issued, and the proportional gain of the feedback tension control system is set low. The aim is to construct a control system that is resistant to external disturbances, and to stabilize the control by responding to instantaneous tension fluctuations through differential operation and to responding to long-term tension fluctuations through integral operation. .

一方、すでに述べたように、この種の制御系は、フィー
ドバック制御を基本としている。このため制御系に時間
遅れがアシ、また乱調が起き易い状態にある。張力制御
系の比例ゲインが低く設定されていると、乱調が起きに
くい状態にあるとはいえ、完全に抑えられているわけで
もない。この乱損失、加減速時における回転エネルギー
の変動および起動時の糸の過渡的な変化に起因している
On the other hand, as already mentioned, this type of control system is based on feedback control. For this reason, there is a time delay in the control system, and disturbances are likely to occur. If the proportional gain of the tension control system is set low, disturbances are less likely to occur, but they are not completely suppressed. This random loss is caused by fluctuations in rotational energy during acceleration and deceleration and transient changes in the thread during startup.

そしてこれらの機械損失や回転エネルギーの変動などは
機械系や電気制御系に固有のものであシ、予め計算によ
り求められる。発明者は、その点に着目し、高速でしか
も低張力に適応する理想的な制御の開発を試みた。
These mechanical losses and fluctuations in rotational energy are unique to the mechanical system and electrical control system, and are determined in advance by calculation. The inventor focused on this point and attempted to develop an ideal control that can be applied to high speed and low tension.

したがって本発明の目的は、機械損失や加減速時の回転
エネルギーの変動に対応する補償に有効な張力制御装置
を提供する点にある。上記目的のもとに本発明は、フィ
ードバック制御方式の張力制御部に、フィードフォワー
ド制御系の機械損失補償部および加減速補償部を付加し
、これらの制御動作によ)運転状況に応じて機械損失お
よび加減速時の補償量を逐次算出し、これを張力制御部
に加えることによって、よシ完全な補償を行なうように
している。
Therefore, an object of the present invention is to provide a tension control device that is effective in compensating for mechanical loss and fluctuations in rotational energy during acceleration and deceleration. Based on the above object, the present invention adds a mechanical loss compensating section and an acceleration/deceleration compensating section of a feedforward control system to a tension control section of a feedback control system, and by these control operations, the machine By sequentially calculating the loss and the amount of compensation during acceleration and deceleration and applying these to the tension control section, more complete compensation is achieved.

以下、本発明を図に示す一実施例にもとづいて具体的に
説明する。
Hereinafter, the present invention will be specifically explained based on an embodiment shown in the drawings.

第1図は、本発明の電気式張力制御装置lをたて糸糊付
機の巻取装置2に適用した例を示している。張力の制御
対象としての糸3は、ロール4゜送出シロール15.ロ
ール6 ラミチロール7、張力検出ロール8.ロール9
から巻取ビームIOl/c巻き取られていく。上記送出
しロール5は、直流可変速型のラインモータ11によシ
駆動される関係にあシ、このモータ11は、送シ速度制
御装置12によって制御されている。送9速度制御装置
12d1送シ速度設定器13からの送り速度設定信号V
vを入力し、それにもとづいてラインモータ11に所定
速度の回転を与え、また送出しロール5の回転つまりラ
インモータ11の回転をタコジェネレータ14で検出し
、そのタコジェネレータ14の出力としてのラインモー
タ速度信号vLを帰還量とし、それを比較しながらフィ
ードバック制御のもとに、ラインモータ11の回転を制
御する。この送シ速度制御装置12の特性は、速い応答
速度で安定している。
FIG. 1 shows an example in which the electric tension control device 1 of the present invention is applied to a winding device 2 of a warp sizing machine. The thread 3 whose tension is to be controlled is passed through a roll 4° and a delivery roll 15. Roll 6 Lamichi roll 7, tension detection roll 8. roll 9
The winding beam IOl/c is wound up from the winding beam IOl/c. The delivery roll 5 is driven by a direct current variable speed line motor 11, and this motor 11 is controlled by a delivery speed control device 12. Feed speed setting signal V from the feed speed control device 12d1 feed speed setting device 13
v is input, the line motor 11 is given rotation at a predetermined speed based on it, and the rotation of the delivery roll 5, that is, the rotation of the line motor 11, is detected by the tacho generator 14, and the line motor is output as the output of the tacho generator 14. The speed signal vL is used as a feedback amount, and the rotation of the line motor 11 is controlled under feedback control while comparing it. The characteristics of this feed speed control device 12 are fast response speed and stability.

そして巻取ビーム10は、制御対象の糸3とともに回転
する回転体で、本発明の電気式張力制御装置1によって
制御される関係にある。すなわち電気式張力制御装置l
の張力制御部15は、電流フィードバックを補助帰還ル
ープとし、張力フィードバックを主帰還ループとする制
御系で、高い精度の速度制御のもとに、張力設定器16
により与えられた張力設定信号VTを入力し、これにも
とづいて直流可変速型のモータ17の電、流を制御する
。このモータ17は、巻取ビーム10を回転さ亡て、所
定の張力のもとに糸3を巻き取っていく。
The winding beam 10 is a rotating body that rotates together with the yarn 3 to be controlled, and is controlled by the electric tension control device 1 of the present invention. i.e. electric tension control device l
The tension control unit 15 is a control system in which current feedback is used as an auxiliary feedback loop and tension feedback is used as the main feedback loop.
The tension setting signal VT given by is input, and the current and current of the DC variable speed motor 17 is controlled based on this. This motor 17 rotates the winding beam 10 and winds up the thread 3 under a predetermined tension.

ここで糸3の張力は、張力検出ロール8に現われている
が、その張力値は、張力検出器18によって電気的に検
出され、張力検出信号Vsとして張力制御部15に帰還
される。
Here, the tension of the yarn 3 appears on the tension detection roll 8, and the tension value is electrically detected by the tension detector 18 and fed back to the tension control section 15 as a tension detection signal Vs.

この張力制御部15に対してデジタル式のフィードフォ
ワード制御系の機械損失補償部19.加減速補償部20
.起動補償部21およびこれ−らの補正部22が付設さ
れている。機械損失補償部19は、張力設定信号VTお
よび回転速度検出器23からの回転速度信号VRを逐次
入力して、機械損失Mを算出し、この損失値に対応する
補償信号VMを上記張力制御部15に出力する。また加
減速補償部20は、ラインモータ速度信号v′Lおよび
回転速度信号VRを入力し、回転体すなわち巻取ビーム
10の外径検出およびラインモータ速度信号VLの微分
により微分値dVvdtの検出を行ない、加減速時に短
時間にわたって上記巻取と一ム10の回転エネルギー人
の変動に対応した補償信号Vムを発生し、機械損失補償
部19を通じてその補償信号VAを上記張力制御部15
に出力する他、モータ17の界磁制御部24を制御し、
巻取ビーム10の巻取径に対応した回転トルクを発生さ
せる。また起動補償部21は、起動スイッチ25の動作
と対応し、加減速補償部20および機械損失補償部19
を通じて過渡的な補償信号VDを張力制御部15に印加
する。また補正部22は、張力制御部15の主帰還ルー
プCP山制御)のPjD出力出力大力して、微調整用の
補正計算をし、その補正値α、、α2.α、を各部に送
シ込む。
A mechanical loss compensator 19 of a digital feedforward control system is connected to the tension controller 15. Acceleration/deceleration compensator 20
.. A startup compensation section 21 and a correction section 22 for these components are provided. The mechanical loss compensation section 19 sequentially inputs the tension setting signal VT and the rotational speed signal VR from the rotational speed detector 23, calculates a mechanical loss M, and sends a compensation signal VM corresponding to this loss value to the tension control section. Output to 15. Further, the acceleration/deceleration compensator 20 inputs the line motor speed signal v'L and the rotational speed signal VR, and detects the differential value dVvdt by detecting the outer diameter of the rotating body, that is, the winding beam 10, and differentiating the line motor speed signal VL. Then, during acceleration and deceleration, a compensation signal V is generated corresponding to the fluctuation of the rotational energy of the winding and coil 10 for a short period of time, and the compensation signal VA is transmitted through the mechanical loss compensation section 19 to the tension control section 15.
In addition to outputting to the field controller 24 of the motor 17,
A rotational torque corresponding to the winding diameter of the winding beam 10 is generated. Further, the starting compensation section 21 corresponds to the operation of the starting switch 25, and includes an acceleration/deceleration compensation section 20 and a mechanical loss compensation section 19.
A transient compensation signal VD is applied to the tension control section 15 through the tension control section 15. Further, the correction unit 22 uses the PjD output of the main feedback loop CP peak control of the tension control unit 15 to perform correction calculations for fine adjustment, and calculates the correction values α, α2, . Send α to each part.

さて第2図は、上記電気式張力制御装置1の具体的な構
成を示している。張力設定器16の張力設定信号VTは
、加算点26からP山動作器27に昏 入り、そこでPiD出力Vとなって加算点28.29お
よび電流制御器30を経て、モータ17に目標値として
の張力に対応する電流を与えている。電流制御器30の
出力すなわち電流値は、電流検出器31を経て加算点2
9に負帰還される。このようにして電流制御器30およ
び電流検出器31は、補助帰還ループを形成し、モータ
17の電流31により速度を制御する。一方、張力検出
器18の張力検出信号v8は、加算点26に負帰還され
る。この張力検出器1Bは、PiD動作動作子27もに
、主帰還ループを構成している。ここでPiD動作動作
子27比例、微分、積分動作をし、張力設定信号VTと
張力検出信号1日とを比較し、その偏差にもとづいて電
流制御器30を制御する。この電流制御器aOは、双方
向ブイリスタなどで構成されて′:1 いる。なお、定常時には、張力設定信号VTと張力検出
信号v8とが加算点で相殺されるから、PiD動作動作
子27iD出力出力上ロに近い。そこで実質的な目標値
は、後述するように、機械損失補償部19の内部で与え
られる。
Now, FIG. 2 shows a specific configuration of the electric tension control device 1. As shown in FIG. The tension setting signal VT of the tension setting device 16 enters the P peak actuator 27 from the summing point 26, where it becomes the PiD output V, passes through the summing point 28, 29 and the current controller 30, and is sent to the motor 17 as a target value. A current corresponding to the tension is applied. The output of the current controller 30, that is, the current value, is sent to the summing point 2 via the current detector 31.
Negative feedback is given to 9. Current controller 30 and current detector 31 thus form an auxiliary feedback loop to control speed by current 31 of motor 17. On the other hand, the tension detection signal v8 of the tension detector 18 is negatively fed back to the addition point 26. This tension detector 1B also constitutes a main feedback loop with the PiD operation element 27. Here, the PiD operation element 27 performs proportional, differential, and integral operations, compares the tension setting signal VT and the tension detection signal 1st, and controls the current controller 30 based on the deviation. This current controller aO is composed of a bidirectional builister or the like. Incidentally, in a steady state, the tension setting signal VT and the tension detection signal v8 are canceled out at the addition point, so the output of the PiD operation element 27iD is close to (b). Therefore, the actual target value is given inside the mechanical loss compensator 19, as will be described later.

上記張力設定信号VTは、機械損失補償部19にも入力
され、 、A/D変換器33によシデジタル量に変換さ
れ、同様にA/D変換器34で変換された回転速度信号
”/Rとともに関数器35&C入力される。
The tension setting signal VT is also input to the mechanical loss compensator 19, converted into a digital quantity by the A/D converter 33, and similarly converted by the A/D converter 34 into a rotational speed signal "/". Together with R, it is input to the function unit 35&C.

この関数器35は、低張力から高張力に到るまでの各張
力に関して、回転体の回転数(回転速度)ごとに機械損
失関数fz (VR* VT )をあらかじめ記憶して
おυ、その記憶内容にもとづいて機械的損失を割シ出す
。機械損失関数fs(Vx e VT )は、第3図の
折線近偵曲線で求められる。機械損失Mは、張力設定信
号VTおよび回転速度vRVc比例して増加している。
This function unit 35 stores in advance a mechanical loss function fz (VR* VT) for each number of rotations (rotational speed) of the rotating body for each tension from low tension to high tension. Determine mechanical losses based on content. The mechanical loss function fs (Vx e VT ) is determined by the broken-line Konpi curve in FIG. Mechanical loss M increases in proportion to tension setting signal VT and rotational speed vRVc.

そして関数器35の出力は、係数器36に入力され石。The output of the function unit 35 is then input to the coefficient unit 36.

ここで係数器36は、関数器35の出力信号に設定器3
7で与えられた利得設定用の係数に3を掛け、これと補
正値α8とを加算点38で加え、機械損失Mの補償信号
VMとして加算点39に印加する。ここで時間tの関数
としての補償信号VM(t)は、下記の式で表わせる。
Here, the coefficient unit 36 applies the output signal of the function unit 35 to the setting unit 3.
The gain setting coefficient given in 7 is multiplied by 3, and this and the correction value α8 are added at an addition point 38, and the result is applied to an addition point 39 as a compensation signal VM for the mechanical loss M. Here, the compensation signal VM(t) as a function of time t can be expressed by the following equation.

VM(t) ”” Km ” f2(VR,VT’) 
+ αa(VR,VT)一方、張力設定信号VTは、係
数器41で設定器40によシ与えられた係数に4を掛け
られ、加算点42.39を経てA/D変換器43でアナ
ログiiK変換されてから張力制御部15の加算点28
に加えられる。上記係数器41は、目標の張力に対応す
る電流指令を電流制御器30に常時与えている。
VM(t) ”” Km ” f2(VR, VT')
+ αa (VR, VT) On the other hand, the tension setting signal VT is multiplied by 4 by the coefficient given by the setting device 40 in the coefficient multiplier 41, passed through the addition point 42.39, and converted into an analog signal by the A/D converter 43. ii After K conversion, the addition point 28 of the tension control unit 15
added to. The coefficient unit 41 always gives a current command corresponding to the target tension to the current controller 30.

したがってPiD動作動作子27jD出力viは、すで
に記載したように、定常状態ではゼロに近い。このため
張力制御部15は、外乱に対して安定な動作をする。な
お、この係数器41は、その性質上から張力制御部15
の内部にあってもよい。
Therefore, the PiD operation element 27jD output vi is close to zero in the steady state, as described above. Therefore, the tension control section 15 operates stably against disturbances. Note that this coefficient multiplier 41 is connected to the tension control section 15 due to its nature.
It may be inside the .

次にタコジェネレータ14の出力すなわちラインモータ
速度信号VLは、A/D変換器44によりデジタル量に
変換され、回転速度信号VRとともに割算器45に入力
される。この割算器45は、それらの信号比から、送出
しロール5に対する巻取ビームlOの巻取径を算出する
。この割算器45の出力は、係数器47で設定器46の
係数Hと掛は算されて巻径信号VKとなり、界磁制御部
24のD/A変換器48および増幅器49を経て、モー
タ17の界磁巻線50に印加される。これにより界磁制
御部24は、巻取ビーム10の巻取径の変化に対応して
古−夕17の界磁電流を変化させる。
Next, the output of the tacho generator 14, that is, the line motor speed signal VL, is converted into a digital quantity by the A/D converter 44, and is input to the divider 45 together with the rotational speed signal VR. This divider 45 calculates the take-up diameter of the take-up beam lO with respect to the delivery roll 5 from these signal ratios. The output of the divider 45 is multiplied by the coefficient H of the setter 46 in the coefficient unit 47 to become the winding diameter signal VK, which is then passed through the D/A converter 48 and amplifier 49 of the field control section 24 to the motor 17. is applied to the field winding 50. As a result, the field control section 24 changes the field current of the winder 17 in accordance with the change in the winding diameter of the winding beam 10.

このようにして巻取ビーム10の外径が糸3の巻取りに
よって変化しても、それに必要な巻取トルクが与えられ
る。
In this way, even if the outer diameter of the winding beam 10 changes due to winding of the yarn 3, the necessary winding torque is applied.

また巻径信号Vxは、減速補償器51および加速補償器
52に入力される。減速補償器51および加速補償器5
2は、それぞれ減速時または加速時における回転機械系
の回転エネルギーAの変動を巻取ビーム10の外径に応
じて出力し、それを補償信号Vhの基礎となる信号とし
て出力する。加速時の回転エネルギー人は、第4図に示
すように巻取ビーム10の外径Rの変化によって二次曲
線状に変化する。この関係は、減速時にも同様である。
The winding diameter signal Vx is also input to a deceleration compensator 51 and an acceleration compensator 52. Deceleration compensator 51 and acceleration compensator 5
2 outputs the fluctuation of the rotational energy A of the rotating mechanical system during deceleration or acceleration, respectively, in accordance with the outer diameter of the winding beam 10, and outputs it as a signal that is the basis of the compensation signal Vh. The rotational energy during acceleration changes in a quadratic curve shape as the outer diameter R of the take-up beam 10 changes, as shown in FIG. This relationship also holds true during deceleration.

したがって減速補償器51および加速補償器52は、そ
の回転エネルギー関数fl(VK)に応じた値を記憶し
ておき、それらを選択的に出力する。ラインモータ速度
信号VIJは、A/D変換器44でA/D変換された後
に、微分器53にも入力されている。
Therefore, the deceleration compensator 51 and the acceleration compensator 52 store values corresponding to the rotational energy function fl(VK) and selectively output them. The line motor speed signal VIJ is also input to the differentiator 53 after being A/D converted by the A/D converter 44 .

この微分器53は、ラインモータ速度信号VLの微分動
作をし、微分値dVL/cttを算出し、それを加減速
時の過渡的な時間にわたって係数器54および加減速識
別器55に出力している。加減速識別器55は、微分値
dVL/(itの正負符号を識別し、それにもとづいて
識別信号Sα2を発生し、切換スイッチ56を操作する
。この切換スイッチ56は、加速または減速時の関数を
選択的に係数器54に出力するため、係数器54は、加
速または減速時に対応した回転エネルギー変動の出力を
発生する。
This differentiator 53 performs a differentiating operation on the line motor speed signal VL, calculates a differential value dVL/ctt, and outputs it to a coefficient unit 54 and an acceleration/deceleration discriminator 55 over the transient time during acceleration/deceleration. There is. The acceleration/deceleration discriminator 55 identifies the positive or negative sign of the differential value dVL/(it, generates an identification signal Sα2 based on it, and operates the changeover switch 56. This changeover switch 56 determines the function during acceleration or deceleration. In order to selectively output the output to the coefficient unit 54, the coefficient unit 54 generates an output of rotational energy fluctuation corresponding to acceleration or deceleration.

係数器54の出力は、係数器58により設定器57で与
えられる利得設定用の係数に2と掛は合わされた後、加
算点59で補正値α2と加えられ準補償信号V’hとな
り、その後遅延回路60を経て補償信号’VAとして加
算A61に加えられる。
The output of the coefficient unit 54 is multiplied by 2 by the coefficient unit 58 for the gain setting given by the setter 57, and then added to the correction value α2 at the addition point 59 to become the quasi-compensation signal V'h. It passes through the delay circuit 60 and is added to the addition A61 as a compensation signal 'VA.

ここで時間tの関数としての補償信号VA(1りおよび
準補償信号V’h(t)は、むだ時間設定器62による
  4・むだ時間をTiとしたとき、それぞれ下記の式
で表わせる。
Here, the compensation signal VA (1) and the quasi-compensation signal V'h(t) as a function of time t can be expressed by the following equations, respectively.

VA(t) = V’hCt−Ta )VA(t) −
に2” f t(Vx) ・dVL/dt + αz(
VK)このようにして加減速補償部20は、送出しロー
ル5と巻取ビームlOの回転比および加速および減速と
の関連で、回転エネルギーAの変動を算出し、加算点4
2を通じ、それを補償量として張力制御部15に印加す
る。
VA(t) = V'hCt-Ta)VA(t)-
2” f t(Vx) ・dVL/dt + αz(
VK) In this way, the acceleration/deceleration compensator 20 calculates the fluctuation of the rotational energy A in relation to the rotation ratio and acceleration and deceleration of the delivery roll 5 and the take-up beam IO, and calculates the fluctuation of the rotational energy A,
2, it is applied to the tension control section 15 as a compensation amount.

一方、起動時には過渡的な張力変動が現われるが、その
起動時の張力補償は、起動補償部21によって行なわれ
る。すなわち起動スイッチ25が閉じたとき、その起動
信号Sαlは、ノくルス発生器62に入力される。その
パルス発生器62は、第5図に示すiうに起動信号Sα
lにもとづいてタイミング設定器63の立上りタイミン
グT1およびタイミング設定器64の立下りタイミング
T2で与えられた時間にわたってスイッチ65をオンに
する。
On the other hand, at the time of startup, transient tension fluctuations appear, but the tension compensation at the time of startup is performed by the startup compensator 21. That is, when the start switch 25 is closed, the start signal Sαl is input to the nox generator 62. The pulse generator 62 receives a starting signal Sα as shown in FIG.
1, the switch 65 is turned on for a period of time given by the rising timing T1 of the timing setter 63 and the falling timing T2 of the timing setting device 64.

このため起動時の起動補償に対応する設定器66の利得
設定値に、と補正値αlとが加算点67からスイッチ6
5を経て加算点61に印加され、最終的に張力制御部1
5に送り込まれる。ここで時間tの関数の補償信号Vd
(t)は、起動信号Sαlの単位ステップ関数を帷)と
したとき、下記の式で求められる。
Therefore, the gain setting value of the setter 66 corresponding to the startup compensation at startup, and the correction value αl are added from the addition point 67 to the switch 6
5, is applied to the addition point 61, and is finally applied to the tension control section 1.
Sent to 5. Here, the compensation signal Vd as a function of time t
(t) is determined by the following formula, when the unit step function of the activation signal Sαl is defined as .

このようにして機械損失補償部19.加減速補償部20
および起動補償部21は、機械損失、加減速時の回転エ
ネルギーおよび起動時の補償量を予め算出し、それを張
力制御部15の加算点28に印加する。したがって高精
度の張力制御が可能、となる。
In this way, the mechanical loss compensator 19. Acceleration/deceleration compensator 20
The starting compensation section 21 calculates in advance mechanical loss, rotational energy during acceleration/deceleration, and compensation amount during starting, and applies them to the addition point 28 of the tension control section 15. Therefore, highly accurate tension control is possible.

一方、補正部22は、PiD出力Viを入力して、これ
から前記の補正値α1.α3.α3を計算し、加算点3
8,59.67に出力する。すなわちPiD出力Viは
、A/D変換器68によりデジタル量に変換されて、計
算器69に送られる。ここで計算器69は、前記の補償
結果をP1D出力Viの変化によってチェックし、補正
値α1.α!、α3を算出して、上記補償式に補正量と
して加える。なお、起動補正および加減速補正の計算は
、起動信号Sα1.識別信号SαSの指令によって行表
われる。このため機械損失補償部19.加減速補償部2
0および起動補償部21は、一種の学習機能をもちそれ
ぞれの補償量を修正していく。
On the other hand, the correction unit 22 inputs the PiD output Vi and uses the correction value α1. α3. Calculate α3, add 3 points
Output on 8,59.67. That is, the PiD output Vi is converted into a digital quantity by the A/D converter 68 and sent to the calculator 69. Here, the calculator 69 checks the above-mentioned compensation result by the change in the P1D output Vi, and calculates the correction value α1. α! , α3 are calculated and added to the above compensation equation as a correction amount. Note that calculation of the startup correction and acceleration/deceleration correction is performed using the startup signal Sα1. This is performed by the command of the identification signal SαS. For this reason, the mechanical loss compensation section 19. Acceleration/deceleration compensation section 2
0 and the activation compensation unit 21 have a kind of learning function and correct their respective compensation amounts.

起動時の補1正値α1.加減速時の補正値α禽および機
械損失の補正値α3は、それぞれ下記の計算式によち求
められる。
Correction value α1 at startup. The correction value α during acceleration/deceleration and the correction value α3 for mechanical loss are each calculated using the following formulas.

まず、起動時の補正値α1は、PiD出力viがゼロに
整定するまでの時間T≧tとして、−/l、 Vict
t =o s’A Vj(’)= o  となるように
、補正値α1の値をに=o    N 決める。すなわち次回の補正値α1.n+1は下記式%
式% () 第6図は、PiD出力Viに関して、起動補償したとき
の変化曲線(実線)と起動補償しないときの曲線(破線
)を示している。補償時では変動量が押えられているが
、無補償時には大きなオーバシつぎに加減速時の補正値
α2 (VK)は、上記と同様に下記の式で求められる
First, the correction value α1 at startup is −/l, Vict
The value of the correction value α1 is determined as =o N so that t =o s'A Vj(')=o. That is, the next correction value α1. n+1 is the following formula %
Formula % () FIG. 6 shows a change curve (solid line) when starting compensation is performed and a curve (broken line) when starting compensation is not performed regarding the PiD output Vi. During compensation, the amount of variation is suppressed, but when no compensation is performed, there is a large overhang.Next, the correction value α2 (VK) during acceleration/deceleration is obtained by the following formula in the same way as above.

6g(VK)n+1=α2 (Vx)n+1fTVi 
cttO また、機械損失の補正値αs (vRI VT )は、
以下のようにして求める。機械損失関数fs(VR+ 
VT )が区間CVRla vT l)で一つの直線で
近似されており、VR(tl)=VR1、VR(tll
)=VRII トすれば、整定時間わち次回の補正量α
a (VR#’/T )n+1は、下記の式から求める
6g(VK)n+1=α2(Vx)n+1fTVi
cttO In addition, the mechanical loss correction value αs (vRI VT ) is
Find it as follows. Mechanical loss function fs(VR+
VT ) is approximated by one straight line in the interval CVRla vT l), and VR(tl)=VR1, VR(tll
) = VRII, the settling time, that is, the next correction amount α
a (VR#'/T)n+1 is obtained from the following formula.

”5(VRsVT)n+1 = (’a(VR,VT)
n +〒ft丁”Vidt= as(vR,VT)、ロ
ー ’avi(−!”−)Nk=ON なお、上記実施例は、巻取ビーム10に関して本発明の
電気式張力制御装置1を適用しているが、この装置は過
多出しビームに応用することもできる。また、制御対象
は、糸や織布の処理に限定されず、紙、フィルムシート
などの薄板状帯、あゐいは線条材料の9巻取りや過多に
も利用できる。
"5(VRsVT)n+1 = ('a(VR,VT)
n + 〒ft d”Vidt=as(vR,VT), low'avi(-!”-)Nk=ON Note that in the above embodiment, the electric tension control device 1 of the present invention is applied to the take-up beam 10. However, this device can also be applied to overexposed beams. Moreover, the control target is not limited to the processing of threads and woven fabrics, but can also be used for winding up nine windings of thin strips such as paper and film sheets, or of filamentous materials.

本発明では、フィードバック制御系の張力制御部に対し
、機械損失補償部、加減速補償部が附設されておシ、回
転部の機械損失に対応する補償および加減速時における
回転エネルギーの変動が常時補償されるから、高い精度
のもとに張力設定が可能となる。したがって本発明は、
制御対象としての糸の他、紙、フィルムシートなどの巻
取りまたは送出し時に、低い設定張力のもとに、巻き取
シまたは送シ出しを可能とする。    −
In the present invention, a mechanical loss compensation section and an acceleration/deceleration compensation section are attached to the tension control section of the feedback control system. Since the tension is compensated, it is possible to set the tension with high accuracy. Therefore, the present invention
When winding or feeding out yarn, paper, film sheets, etc. as objects to be controlled, winding or feeding is possible under a low set tension. −

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は巻取装置に本発明の電気式張力制御装置を組込
んだ実施例のブロック線図、第2図は本発明の電気式張
力制御装置のブロック線図、第3図は機械損失のグラフ
、第4図は回転エネルギー変動のグラフ、第5図は起動
時のタイミングチャート図、第6図は起動時の過渡現象
のグラフでおる。 1・・・電気式張力制御装置、 2・・・巻取装置、3
・・・制御対象としての糸、  10・・・回転体とし
ての巻取ビーム、 15・・・張力制御部、 16・・
・張力設定器、 17・・・モータ、 18・・・張力
検出器、19・・・機械損失補償部、 20・・・加減
速補償部。 21・・・起動補償部、 22・・・補正部、 23・
・・回転速度検出器。
Fig. 1 is a block diagram of an embodiment in which the electric tension control device of the present invention is incorporated into a winding device, Fig. 2 is a block diagram of the electric tension control device of the present invention, and Fig. 3 is a mechanical loss 4 is a graph of rotational energy fluctuations, FIG. 5 is a timing chart at startup, and FIG. 6 is a graph of transient phenomena at startup. 1... Electric tension control device, 2... Winding device, 3
... Thread as a controlled object, 10... Winding beam as a rotating body, 15... Tension control unit, 16...
- Tension setting device, 17... Motor, 18... Tension detector, 19... Mechanical loss compensation section, 20... Acceleration/deceleration compensation section. 21... Startup compensation section, 22... Correction section, 23.
...Rotation speed detector.

Claims (1)

【特許請求の範囲】[Claims] 制御対象とともに回転する回転体を駆動する可変速型の
モータと、このモータの回転速度を検出し回転速度信号
を発生する回転速度検出器と、制御対象の張力を検出し
て張力検出信号を発生する張力検出器と、張力設定信号
を発生する張力設定器と、上記の張力設定信号および張
力検出信号を入力し上記モータの回転を制御するフィー
ドバック制御系の張力制御部と、上記の張力設定信号お
よび回転速度信号を入力して電気機械系の機械損失を算
出しこの機械損失に対応すゐ補償信号を上記張力制御部
の加算点に出力するフィードフォワード制御系の機絨損
失補償部と、上記回転体の外径を検出して加減速時に短
時間にわたって上記回転体の回転エネルギーの変動に対
応した補償信号を上記張力制御部の加算点に出力するフ
ィードフォワード制御系の加減速補償部とを具備するこ
とを特徴とする電気式張力制御装置。
A variable speed motor that drives a rotating body that rotates with the controlled object, a rotation speed detector that detects the rotational speed of this motor and generates a rotational speed signal, and a rotational speed detector that detects the tension of the controlled object and generates a tension detection signal. a tension detector that generates a tension setting signal, a tension setting device that generates a tension setting signal, a tension control section of a feedback control system that inputs the tension setting signal and tension detection signal to control the rotation of the motor, and a tension control section that controls the rotation of the motor; and a mechanical loss compensation section of the feedforward control system that calculates the mechanical loss of the electromechanical system by inputting the rotational speed signal and outputs a compensation signal corresponding to the mechanical loss to the addition point of the tension control section; an acceleration/deceleration compensator of a feedforward control system that detects the outer diameter of the rotating body and outputs a compensation signal corresponding to fluctuations in rotational energy of the rotating body for a short period of time during acceleration/deceleration to an addition point of the tension control unit; An electric tension control device comprising:
JP10644982A 1982-06-21 1982-06-21 Electric tension control apparatus Granted JPS58224946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10644982A JPS58224946A (en) 1982-06-21 1982-06-21 Electric tension control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10644982A JPS58224946A (en) 1982-06-21 1982-06-21 Electric tension control apparatus

Publications (2)

Publication Number Publication Date
JPS58224946A true JPS58224946A (en) 1983-12-27
JPH0211504B2 JPH0211504B2 (en) 1990-03-14

Family

ID=14433916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10644982A Granted JPS58224946A (en) 1982-06-21 1982-06-21 Electric tension control apparatus

Country Status (1)

Country Link
JP (1) JPS58224946A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233472A (en) * 1989-02-03 1990-09-17 Georg Sahm Gmbh & Co Kg Fiber winder,in particular winder for almost non-extensible fiber
JP7179242B1 (en) * 2022-04-18 2022-11-28 三菱電機株式会社 Tension controller and tension control system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644142A (en) * 1979-09-14 1981-04-23 Matsushita Electric Ind Co Ltd Tape take-up unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644142A (en) * 1979-09-14 1981-04-23 Matsushita Electric Ind Co Ltd Tape take-up unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233472A (en) * 1989-02-03 1990-09-17 Georg Sahm Gmbh & Co Kg Fiber winder,in particular winder for almost non-extensible fiber
JP7179242B1 (en) * 2022-04-18 2022-11-28 三菱電機株式会社 Tension controller and tension control system
TWI818832B (en) * 2022-04-18 2023-10-11 日商三菱電機股份有限公司 Tension control device and tension control system
WO2023203616A1 (en) * 2022-04-18 2023-10-26 三菱電機株式会社 Tension control device and tension control system

Also Published As

Publication number Publication date
JPH0211504B2 (en) 1990-03-14

Similar Documents

Publication Publication Date Title
US4278213A (en) Control arrangement for a roll carrier
CA2276472A1 (en) Method and apparatus for controlling web tension by actively controlling velocity and acceleration of a dancer roll
US3713009A (en) System for regulating the speed of an axially driven winder drive
US4280081A (en) Motor drive system with inertia compensation
US2943809A (en) Tension control apparatus
US3762663A (en) Static means for generating inertia compensation signals in reel drives
JPS58224946A (en) Electric tension control apparatus
US6047275A (en) Fuzzy logic winder analyzer
US3725755A (en) Systems for driving reels at controlled speed and power and improved apparatus for effecting such driving
JPS61174066A (en) Inertia tension compensative takeup/payoff device
US5268626A (en) Digital proportional integral and derivative control system
JPH09110251A (en) Web tensile force control method
US3519903A (en) System for controlling a strip material roll as a function of speed or tension of traveling strip material
JP3696811B2 (en) Speed / torque control device for tension control motor
JPH0220548B2 (en)
US2881374A (en) Motor control system
JPH02142610A (en) Device for automatically controlling sheet thickness of rolling mill
JPH06206655A (en) Tensile force control device
JPH01104860A (en) Warp feed-out control method in loom
JPH03102059A (en) Control device for no tension rewinding line
JP2909498B2 (en) Motor control device
JPS60199524A (en) Tension control device
JPS63258368A (en) Inertia peak tension compensated wire winding device
SU887398A1 (en) Winding control apparatus
JPH05207772A (en) Servo controller for motor