JPS58223805A - Feedforward operation control system of plural sets of equipment - Google Patents

Feedforward operation control system of plural sets of equipment

Info

Publication number
JPS58223805A
JPS58223805A JP10694882A JP10694882A JPS58223805A JP S58223805 A JPS58223805 A JP S58223805A JP 10694882 A JP10694882 A JP 10694882A JP 10694882 A JP10694882 A JP 10694882A JP S58223805 A JPS58223805 A JP S58223805A
Authority
JP
Japan
Prior art keywords
load
flow rate
pump
curve
schedule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10694882A
Other languages
Japanese (ja)
Other versions
JPH0656151B2 (en
Inventor
Makoto Shiotani
塩谷 真
Yuji Maeda
裕司 前田
Fumito Shinomiya
四宮 文人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57106948A priority Critical patent/JPH0656151B2/en
Publication of JPS58223805A publication Critical patent/JPS58223805A/en
Publication of JPH0656151B2 publication Critical patent/JPH0656151B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To ensure a simple and economical control for pump operation, by correcting the switching time point for number of operating devices so that a pump discharge volume accumulation curve never exceeds upper and lower limit load accumulation curves but just passes through these curves. CONSTITUTION:The information on the switching time point (corresponding to a black dot of operating device number time point 49) is neglected in an operation schedule to use only the information on combinations of pumps and their switching order. On the contrary, both combinations of pumps and their using orders are given as existing information. Based on the new estimated value of flow rate load (solid lines of load flow rate estimated value 48 and cumulative load flow rate estimated value 45), the switching time is momentarily decided (solid lines of pump discharge flow rate 47 and volume 42 obtained by adding initial storage volume 40 to the volume 47 and white dot of operating device number switching point 46). If a schedule is not obtained owing to a big difference between the new estimated value and the first estimated value, an operation schedule is decided again by a conventional method.

Description

【発明の詳細な説明】 本発明は“、バッファ(たとえば、池、タンク。[Detailed description of the invention] The present invention relates to "buffers (e.g. ponds, tanks).

蓄熱槽、など、)を有する系における複数台の機器(た
とえば、ポンプ、ブロワ、冷凍機、など)の運転切換頻
度の低減、省エネルギー、等を目的とるために、ポンプ
の吸入側に池を有する排水系を例にとって説明する。
A pond is provided on the suction side of the pump for the purpose of reducing the frequency of operation switching of multiple devices (e.g., pumps, blowers, refrigerators, etc.) and saving energy in a system with a heat storage tank, etc.) This will be explained using a drainage system as an example.

従来、排水系において、流入量に応じて時間変化する内
水値が、ある範囲内におさまるように、ポンプの運転ス
ケジュールを運転ポンプの台数制御によって決定する方
法たとえば、(特願昭50−153315号)が提案さ
れている。を友、運転ポンプの速度制御等によって決定
する方法たとえば、(4ij願昭52−57716号]
も提案されている。
Conventionally, in a drainage system, a method of determining a pump operation schedule by controlling the number of operating pumps so that the internal water value, which changes over time depending on the inflow amount, falls within a certain range. No.) has been proposed. For example, (4ij Application No. 52-57716)
has also been proposed.

対象とする水系のモデルを第1図に示す。このモデルで
のポンプの運転制御の目的は、この水系において、流入
口500から供給された水を蓄える貯水池50を溢れさ
せず、かつ、貯水池を空にせずに、しかも制約条件(詳
しくは後述)を満たすように外水側52へ排水すべくポ
ンプ51を運転することである。
Figure 1 shows a model of the target water system. The purpose of pump operation control in this model is to prevent the reservoir 50, which stores water supplied from the inlet 500, from overflowing and to avoid emptying the reservoir under certain constraints (details will be described later) in this water system. The pump 51 is operated to discharge water to the outside water side 52 so as to fill the water.

このことを第2図を用いて説明すると次のようになるう 第2図において、横軸は時間(t)、縦軸は累積流量(
ΣQ)を示す。
This can be explained using Figure 2 as follows.In Figure 2, the horizontal axis is time (t), and the vertical axis is cumulative flow rate (t).
ΣQ).

まず、実揚程が一足の場合を説明する。曲線21は、貯
水池への流入量を過去の実績から予測して求めた予測流
入量累積曲線、曲線22は予測流入量累積値に貯水池の
初助貯水量を加えたもの(上限予測曲線)である。曲線
23は予測流入量累積値から貯水池の貯水余裕量を差し
引いたもの(下限予測曲線)、曲線24はポンプの累積
吐出量(ポンプの運転ルート)である。貯水池を空に−
しないためには、曲線24が曲線22を上まわつてはな
らないし、貯水池を溢れさせないためには、曲線24が
曲線23を下まわってはならない。すなわち、曲線24
は、曲線22と曲線23の間になければならない。
First, a case where the actual lifting height is one foot will be explained. Curve 21 is a predicted cumulative inflow curve obtained by predicting the inflow into the reservoir from past results, and curve 22 is the cumulative predicted inflow amount plus the initial storage volume of the reservoir (upper limit prediction curve). be. The curve 23 is the predicted inflow cumulative value minus the storage capacity of the reservoir (lower limit predicted curve), and the curve 24 is the cumulative pump discharge volume (pump operating route). Empty the reservoir
In order to avoid this, the curve 24 must not exceed the curve 22, and in order to prevent the reservoir from overflowing, the curve 24 must not go below the curve 23. That is, curve 24
must be between curves 22 and 23.

今、実揚程が一定と仮定しているため、ポン11台当シ
の吐出量は一定である。したがって、あるポンプの組合
せA、B、Cで運転した場合の累積吐出量は、第3図に
示すようにある傾きをもった直線A、B、Cで示せる。
Now, since it is assumed that the actual head is constant, the discharge amount per pump 11 is constant. Therefore, the cumulative discharge amount when a certain combination of pumps A, B, and C are operated can be represented by straight lines A, B, and C with a certain slope, as shown in FIG.

また、曲線24の折れ曲る点は、運転ポンプの台数、速
度、翼角の変更を意味する。変更頻度は、ポンプ設備の
保守の面から少ない方が良いことは明らかであり、この
ためには、できるだけ長い曲線24を見つければよい。
Further, the bending point of the curve 24 means a change in the number of operating pumps, speed, and blade angle. It is clear that the frequency of changes should be less in terms of maintenance of the pump equipment, and for this purpose, it is sufficient to find a curve 24 that is as long as possible.

曲線の見つけ方として、従来の方法では、設置ポンプの
全ての組合せについて累積吐出量曲線を始点から引き、
曲、1Il122または曲線23と又わる点を求め、そ
の交点を新たな始点として同じ操作を繰り返し、その中
から交わる点までの長さが最長のもの、ないしは、交わ
る点の個数が一番少ないもの、ないしは、個々の線分に
つけた評価値(たとえば、消費エネルギー]°の累積が
最小のもの、を曲線24として探索していた。
To find the curve, the conventional method is to draw the cumulative discharge volume curve from the starting point for all combinations of installed pumps,
Find the point that crosses the song, 1Il122 or curve 23, repeat the same operation using that intersection as a new starting point, and find the one with the longest length from that point to the intersection, or the one with the least number of intersections. , or the one with the smallest cumulative evaluation value (for example, consumed energy) of each line segment was searched for as the curve 24.

上記制御方法は、 (+1  特定の運転ルートを選び出す演算(評価関数
値の比較)を採用することによってその候補数を事前に
しぼることができ、ダイナミックプログラミング法を用
いた方法、たとえば、(fF願昭50−95867号ン
に比べ、演算装置におけるメモリの削減と演算時間の短
縮がはがれる。
The above control method can narrow down the number of candidates in advance by adopting a calculation (comparison of evaluation function values) to select a specific driving route, and a method using a dynamic programming method, for example, (fF Application Compared to No. 50-95867, the memory capacity and calculation time in the arithmetic unit can be reduced.

(b)  運転ルートの候補を選び出す演算において、
上限曲線と下限曲線とによって定まる境界でのみ折れ曲
線運転ルートを候補として得ているため、候補として選
ばれた運転ルートは必ず折れ曲シ回数が少ないものが選
択されることになる。
(b) In the calculation for selecting driving route candidates,
Since driving routes with bending curves are obtained as candidates only at the boundary defined by the upper limit curve and the lower limit curve, the driving route selected as a candidate is always the one with the least number of bends.

したがって、ポンプ等の台数切換の操作回数が少なく、
装置のいたみが少ない制御が可能となる。
Therefore, the number of operations for switching the number of pumps, etc. is reduced, and
Control with less damage to the equipment is possible.

(c)  Mンプを速度制御する場合にも上記のことが
できる。
(c) The above can also be done when controlling the speed of the M pump.

(d)  実揚程変化によるポンプの吐出量変化を考慮
できる。
(d) Changes in pump discharge amount due to changes in actual pump head can be taken into account.

などの長所を有する反面、っぎのような短所も有する。Although it has advantages such as, it also has disadvantages such as.

(a)  ポンプの運転スケジュールを決めるに当って
流入負荷の予測値を用いるため、予測値に誤差があった
場合、求めた運転スケジュールではうまく運転できない
可能性がある。
(a) Since the predicted value of the inflow load is used to determine the pump operation schedule, if there is an error in the predicted value, there is a possibility that the pump cannot be operated properly with the determined operation schedule.

(b)  流人負荷の予測値が時々刻々修正される毎に
運転スケジュールを初めから決め直すため、計算時間が
かかり、また、そうして求めた運転スケジュールは全体
を通じてみると台数切換頻度が高くなる可能性が高い。
(b) The operation schedule is determined from the beginning every time the predicted value of the drifting load is revised from time to time, which takes calculation time, and the operation schedule determined in this way requires frequent changes in the number of vehicles. There is a high possibility that it will.

本発明の目的は、上記従来技術の欠点を解決するために
なされたものであり、簡便な方法でしかも経済的なポン
プ運転制御方式を提供するものである。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art, and to provide a simple and economical pump operation control system.

以下、本発明の原理を図により詳細に説明する。Hereinafter, the principle of the present invention will be explained in detail with reference to the drawings.

本発明においては、第4図に示すように、流入負荷の予
測値が、予測計算を行なう時点までの最新の情報に基づ
いて時々刻々史新して与えられるものとする。第4図に
おいて、点線で示すのは時刻1oにおける予測値に基づ
いて考えた場合であり、実線で示すのは時刻’s  (
’1>to )における予測値に基づいて考えた場合で
ある。
In the present invention, as shown in FIG. 4, it is assumed that the predicted value of the inflow load is updated every moment based on the latest information up to the time when the prediction calculation is performed. In FIG. 4, the dotted line shows the case based on the predicted value at time 1o, and the solid line shows the case based on the predicted value at time 's (
This is a case based on the predicted value in '1>to).

第4図(a)は横軸に時間tをとり、縦軸に累積流量Σ
Qをとった場合の散明図、第4図(b)は(87図にお
いて、縦軸に流量Qをとった場合の説明図である。
In Fig. 4(a), the horizontal axis shows time t, and the vertical axis shows cumulative flow rate Σ.
FIG. 4(b) is an explanatory diagram when the flow rate Q is plotted on the vertical axis in FIG. 87.

第4図において、41は累積負荷流量の実測値、42は
累積ポンプ吐出流量に初期貯留量4o′f、加えfc!
、44は目標貯留量、45t’j累積負荷流量予測値、
46は運転台数切換点、47はポンプ吐出流量、4si
、1負荷流量予測値、49は運転台数切換時刻、である
In FIG. 4, 41 is the actual measured value of the cumulative load flow rate, and 42 is the cumulative pump discharge flow rate plus the initial storage amount 4o'f, fc!
, 44 is the target storage amount, 45 t'j cumulative load flow rate prediction value,
46 is the switching point for the number of operating units, 47 is the pump discharge flow rate, 4si
, 1 load flow rate predicted value, and 49 is the operating number switching time.

本発明の基本的考え方は、まずはじめは従来と同じ方法
により、流入負荷の最初の予測[(48゜45の点線の
方)に基づいてポンプの運転スケジュール(47,42
の点線の方、および、46の(・  ヵ) fr[J6
B、エヶやよゆ、。、。よ、1F河応する万]氏関する
渭翌は煕仇し、とンいクポンプの組合せをどういうJI
B番で切換えていくかに関する情報だけを利用する。
The basic idea of the present invention is that the pump operation schedule (47, 42
The dotted line and 46(・ka) fr[J6
B. Egayayoyu. ,. [Yo, 1F Kawae Suruman] Mr. Weiji, who was in charge, was furious and asked what kind of JI was the combination of the pump pump.
Only the information regarding whether to switch at number B is used.

逆に、このようにして決められたポンプの組合せとその
使用順番を既知の情報として与え、流量負荷の新たな予
測値(48,45の実線の方)に基づいて、貯水池を溢
れさせた夛空にしたりしないように、切換時刻を時々刻
々決める(47゜42の実線の方、および、46のOの
方)。
Conversely, given the combination of pumps determined in this way and the order in which they are used as known information, the number of pumps that overflow the reservoir is calculated based on the new predicted value of flow rate load (the solid line at 48 and 45). The switching time is determined from time to time so as not to run empty (the solid line at 47°42 and the O at 46).

ここで、新たな予測値と最初の予測値が大幅に異なるこ
とにより、最初に決めたポンプ組合せとその使用順番と
を使ったのではうまくスケジュールが求まらない場合に
は、あらために従来の方法により運転スケジュールを決
め直す。
If the new predicted value and the original predicted value are significantly different and the schedule cannot be determined using the initially determined pump combination and order of use, then the conventional Re-determine the driving schedule depending on the method.

さらに、このようにして決められた運転スケジュールに
従ってポンプを運転している時に1水位の測定値が予め
設定した危険水位を超えた時には、従来のフィードバッ
ク制御に移シ、安全水位にまで戻す。
Further, when the measured value of one water level exceeds a preset dangerous water level while operating the pump according to the operation schedule determined in this way, the system switches to conventional feedback control and returns the water level to a safe water level.

上記の方法をとることによシ、次のことが可能となる。By adopting the above method, the following becomes possible.

(1)流量負荷予測値に誤差があシ、予測値が時々刻々
修正される場合にも運転スケジュールを時々刻々修正さ
せることができる。
(1) Even if there is an error in the predicted flow rate load value and the predicted value is revised from time to time, the operation schedule can be modified from time to time.

(2)  上記(1)の場合に、切換回数を少なく保っ
たままの運転スケジュールにできる。
(2) In the case of (1) above, the operation schedule can be set while keeping the number of switchings small.

(3)上記(1)の場合に、運転スケジュールを全て決
め直すのではなく、切換時刻のみを決め直せば良いので
、計算時間が短かくてすみ、オンライン制御に適する。
(3) In the case of (1) above, it is only necessary to re-determine the switching time instead of re-determining the entire operation schedule, so the calculation time is short and it is suitable for online control.

以下、本発明を実施例を参照して詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

本発明による複数台の機器のフィードフォワード運転制
御装置は、第5図に示すように、負荷予測部1、運転ス
ケジュール決定部2、切換時刻修正決定部3、機器制御
器4、再予測判別部5、計よび、検出器6、とから成る
。切換時刻修正決定部3は、内部凸点探索部31、切換
時刻修正部32、および、運転スケジュール追加計算判
定部33、とから成る。検出器6は、プロセス7から流
量や水位の状態210を検出し、機器制御器4は、ポン
プ等の機器8へ起動−停止の信号211を伝えるように
なっている。
As shown in FIG. 5, the feedforward operation control device for a plurality of devices according to the present invention includes a load prediction unit 1, an operation schedule determination unit 2, a switching time correction determination unit 3, an equipment controller 4, and a re-prediction determination unit. 5, a meter, and a detector 6. The switching time correction determination unit 3 includes an internal convex point search unit 31, a switching time correction unit 32, and a driving schedule additional calculation determination unit 33. The detector 6 detects the flow rate and water level status 210 from the process 7, and the equipment controller 4 transmits a start-stop signal 211 to equipment 8 such as a pump.

第5図において、実線の矢印は本発明による装置の動作
の流れを示し、破線の矢印は情報の流れを示す。本発明
による装置の動作を以下に説明する。
In FIG. 5, solid arrows indicate the flow of operation of the apparatus according to the invention, and dashed arrows indicate the flow of information. The operation of the device according to the invention will now be described.

負荷予測部1では、たとえば、特願昭53−13051
8号の方法に従って、流入量を予測し、その値201,
207を運転スケジュール決定部2および再予測判定部
5へそれぞれ送る。運転スケジュール決是部2では、た
とえば、特願昭50−153315号の方法に従って、
運転台数切換時刻と運転台数から成るスケジュールを決
定し、情報202として切換時刻修正決定部3における
内部凸点探索部31へ送るとともに、決められたスケジ
ュール通りに運転した場合の水位の予測値を求め、怪報
208として再予測判・足部5に送る。
In the load prediction unit 1, for example, Japanese Patent Application No. 53-13051
According to the method of No. 8, the inflow amount is predicted and its value is 201,
207 to the driving schedule determining section 2 and the re-prediction determining section 5, respectively. For example, in the driving schedule decision section 2, according to the method disclosed in Japanese Patent Application No. 153315-1980,
A schedule consisting of the switching time of the number of operating vehicles and the number of operating vehicles is determined and sent as information 202 to the internal convex point search unit 31 in the switching time correction determining unit 3, and a predicted value of the water level when operating according to the determined schedule is determined. , and send it to the re-prediction section/foot section 5 as a strange news 208.

再予測判定部5では、検出器6から送られたプロセスの
流入量と水位の状態に関する実測値の情報209および
負荷予測部1から送られた流入量の予測値207と運転
スケジュール決足部2から送られた水位の予測値208
とから、実測値と予測値との差を求め、その差が予め決
められt値よりも大きいか否かを時々刻々判別し、差が
大きくなれば負荷予測部1へ制御を移し負荷の再予測を
行なわせる。再予測の場合、負荷予測部1では流入量の
再予測値206を直接、切換時刻修正決定部3の内部凸
点探索部31へ送る。
The re-prediction determining unit 5 uses the information 209 of actual measured values regarding the inflow amount and water level status of the process sent from the detector 6, the predicted value 207 of the inflow amount sent from the load predicting unit 1, and the operation schedule determining unit 2. Predicted water level value 208 sent from
Then, the difference between the measured value and the predicted value is determined, and it is determined from time to time whether the difference is larger than the predetermined t value. If the difference becomes large, control is transferred to the load prediction unit 1 and the load is recalculated. Make predictions. In the case of re-prediction, the load prediction section 1 directly sends the re-prediction value 206 of the inflow amount to the internal convex point search section 31 of the switching time correction determination section 3 .

切換時刻修正決定部3では、再予測値206が入力され
ると再予測値に対しても池を空にしたり溢れさせたり・
しないように、すでに入力されている運転スケジュール
202のうち運転台数切換時刻を修正する。
When the re-predicted value 206 is input, the switching time correction determining unit 3 empties or overflows the pond also for the re-predicted value.
In order to avoid this, the operating vehicle number switching time in the operation schedule 202 that has already been input is corrected.

具体的には、まず、内部凸点探索部31において、負荷
の再予測値206の時間的累積曲線とそれを池貯留容量
分だけ平行移動した曲線にはさまれた領域の内側に凸に
なる点を探索しその点を示i      す情報2゜3
ヶ切換時刻修正部、□へ送、。探索方法は、時間的累積
曲線についてはその勾配の増加速度が負になる点、時間
的累積曲線を池貯留容量分だけ平行移動した曲線につい
てはその勾配の増加速度が正になる点を見出すことによ
る。
Specifically, first, the internal convex point search unit 31 detects a convex point inside the area sandwiched between the temporal cumulative curve of the load re-prediction value 206 and the curve obtained by translating it by the pond storage capacity. Information that searches for a point and indicates that point 2゜3
Switching time correction section, send to □. The search method is to find the point where the rate of increase in the slope of the temporal cumulative curve is negative, and the point where the rate of increase in the slope of the temporal cumulative curve that is translated in parallel by the pond storage capacity is positive. by.

次に、切換時刻修正部32に制御が移り、そこでは、ま
ず、流入量予測値206の時間的累積曲線と最初の流入
量予測値201に対比して決めたポンプ吐出量累積曲線
との交点が、最初の流入量予測値201に対応して決め
た交点(すなわち運転台数切換時刻)と異なつ几時刻に
なるか否かを調べ、最初に異なった時刻になるポンプ運
転台数切換時刻以降の吐出量累積曲線(すなわち、運転
台数スケジュール・・・切換時刻)を次の様に修正する
Next, control is transferred to the switching time correction unit 32, which first determines the intersection of the temporal cumulative curve of the predicted inflow value 206 and the cumulative pump discharge rate curve determined in comparison with the initial predicted inflow value 201. is at a different time from the intersection (i.e., the time when the number of pumps in operation is switched) determined corresponding to the first predicted inflow value 201, and then Modify the discharge amount cumulative curve (i.e., operating number schedule...switching time) as follows.

切換時刻以降の吐出量累積曲線として、(1)最初の流
入量予測値に対応して決めたポンプ台数のうち、次に来
るべきポンプ台数の吐出量に相当する勾配を有し、 (2)  (a)  内部凸点探索部31で探索した領
域内部凸点を通る直線、又は、 (b)  切換前の吐出量累積曲線と負荷再予測値の累
積曲線又はそれを池貯留容量分だけ平行移動した累積曲
線との交点を通る直線、又は、(C)  現時刻におけ
る吐出量累積曲線上の点を通・る直線、 のうち、(3)最初の予測値に対応する吐出量累積曲線
との交点を現時刻以降に有する直線で、かつ、(4]予
め与えられた時間以上で一番長い時間、再予測値から作
成した上下限累積曲線と交差することののない直線を、
帯索する。
As a discharge amount cumulative curve after the switching time, (1) it has a slope corresponding to the discharge amount of the next number of pumps among the number of pumps determined in accordance with the first predicted inflow value, and (2) (a) A straight line passing through the area internal convex points searched by the internal convex point search unit 31, or (b) A cumulative curve of the discharge amount cumulative curve and the load re-prediction value before switching, or a parallel translation of it by the pond storage capacity. or (C) a straight line passing through a point on the cumulative discharge rate curve at the current time, of which (3) the straight line passing through the point on the cumulative discharge rate curve corresponding to the first predicted value. A straight line that has an intersection point after the current time, and (4) a straight line that does not intersect the upper and lower limit cumulative curve created from the re-predicted values for the longest time beyond a pre-given time,
to rope.

ここで、(5バυで採用した勾配では、(4)の予め与
えられた時間内に上下限累積曲線と交差してしまう場合
には、(13でさらに次に来るべきポンプ台数の吐出量
に相当する勾配を採用する。
Here, if the gradient adopted in (5 bar υ) intersects the upper and lower limit cumulative curve within the pre-given time in (4), then in (13) the discharge amount of the next number of pumps is calculated. Adopt the slope corresponding to .

また、(6)このようにして探索した直線と最初の予測
値に対応する吐出量累積曲線との交点が新しい台数切換
時刻となるわけであるが、その切換時刻ではそこまで運
転していたポンプの運転時間が(4)の予め与えられた
時間以下になってしまとうきは、(4)で二番目に長い
時間上下限累積曲線と交差することのない直線を選ぶ。
In addition, (6) The intersection of the straight line searched in this way and the discharge volume cumulative curve corresponding to the first predicted value becomes the new number switching time, but at that switching time, the pumps that had been operating up to that point If the operating time becomes less than the predetermined time in (4), select a straight line that does not intersect the second longest time upper/lower limit cumulative curve in (4).

ただし、(7)切換時刻がそζまで運転していたポンプ
の運転開始時刻よりも譚らに前であっても、(3)の条
件(現時刻以降であること)を満足していれば良い。
However, (7) Even if the switching time is before the operation start time of the pump that had been operating up to that point, as long as the condition (3) (being after the current time) is satisfied. good.

(8)以上の操作を目標時効に到達するまで繰り返し行
なう。
(8) Repeat the above operations until the target aging is reached.

切換時刻修正部32では、以上で決めた運転スケジュー
ル204を出力し、次の運転スケジュール追加計算判定
部33へ送る。
The switching time correction unit 32 outputs the driving schedule 204 determined above and sends it to the next driving schedule additional calculation determination unit 33.

運転スケジュール追加計算判定部33では、切換時刻修
正部32で求めた運転スケジュール204が、目標時刻
まで到達する前に最初の予測値に対する吐出量累積曲線
の勾配も使い果したか否かを調べ、使い果している場合
には、その時点から新たに運転スケジュール決定を追加
計算させるべく、制御を運転スケジュール決定部2へ移
る。それでもスケジュールが決まらない場合は、現時刻
から運転スケジュールを決定し直すべく、やはり制御を
運転スケジュール決定部2へ移す。
The operation schedule additional calculation determination unit 33 checks whether the operation schedule 204 obtained by the switching time correction unit 32 has used up the slope of the discharge amount cumulative curve with respect to the first predicted value before reaching the target time. If it has been used up, control is transferred to the driving schedule determination unit 2 to perform additional calculations to determine a new driving schedule from that point onwards. If the schedule is still not determined, the control is still transferred to the driving schedule determining section 2 to re-determine the driving schedule from the current time.

運転スケジュールが全て決まるとその情報205を機器
制御器4へ渡す。
Once all the operating schedules are determined, the information 205 is passed to the equipment controller 4.

機器制御器4では、運転スケジュール205を受取り、
機器8ヘエネルギーの供給(起動)や停止の信号211
を送る。
The equipment controller 4 receives the operation schedule 205,
Signal 211 for supplying (starting) or stopping energy to the device 8
send.

これまでの説明は、ポンプの吸入側に池を有する排水系
を例にとって行なったが、本発明は、ノ(ソファを有す
る系における複数台の機器の運転切−頻度低減、省エネ
ルギー、等を目的としたオンライン修正型フィードフォ
ワード機器の運転制御に使える。たとえば、エアタンク
を有するブロワの台数制御、冷凍機のコンプレッサの制
御等にも利用可能である。
The explanation so far has been made using a drainage system having a pond on the suction side of the pump as an example, but the present invention aims to reduce the frequency of shutting down multiple devices in a system with a sofa, save energy, etc. It can be used to control the operation of online correction type feedforward equipment.For example, it can also be used to control the number of blowers with air tanks, compressors of refrigerators, etc.

以上説明したごとく本発明によれば、次の効果を得るこ
とができる。
As explained above, according to the present invention, the following effects can be obtained.

(1)  流入負荷の予測値に誤差があっても、誤差が
所定の値以上になった時、再予測を行なえばポンプ運転
スケジュールの変更が可能であり、最適なポンプ運転を
行なうことができる。
(1) Even if there is an error in the predicted value of the inflow load, if the error exceeds a predetermined value, the pump operation schedule can be changed by re-predicting, allowing optimal pump operation. .

(、(2)負荷。丙子、1.にともない1、転オケワー
ー。
(, (2) Load. Heiko, 1. According to 1. 1, turn around.

を全て決め直すのではなく、初めの予測値に基づいて決
めたスケジュールのうち、ポンプ台数し、切換時刻のみ
を修正変更する方式を採用しているため、計算時間が短
かく、オンラインの制御に利用できる。
Instead of re-determining everything, we use a method that changes only the number of pumps and the switching times of the schedule determined based on the initial predicted values, which shortens calculation time and makes online control easier. Available.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は排水系のモデル図、第2図はポンプ運転スケジ
ュール決定方法の討明図、第3図Vi運転ポンプの組合
せと累積吐出量の関係の説明図、第4図は本発明の原理
説明図、第5図は本発明の一実施例のブロック構成図で
ある。 ′:!fJ l 目 VJz  図
Figure 1 is a model diagram of the drainage system, Figure 2 is a discussion diagram of the pump operation schedule determination method, Figure 3 is an explanatory diagram of the relationship between Vi operation pump combinations and cumulative discharge volume, and Figure 4 is the principle of the present invention. The explanatory diagram, FIG. 5, is a block configuration diagram of an embodiment of the present invention. ′:! fJ l eye VJz diagram

Claims (1)

【特許請求の範囲】[Claims] 1、 ある水量の流入により貯水池が溢れるのを防止す
るためのポンプ運転制御装置において、負荷の流入流量
を予測し、その予測値に基づいて運転台数切換時刻と運
転台数とから成る準最適な運転スケジュールを決定し、
決定された運転スケジュールに従ってポンプを運転した
場合の流量や水位の予測値と実際の流量や水位の測定値
との差が大きくなった時、負荷の再予測を行なわせ、負
荷の再予測がなされると、再予測された負荷の時間的累
積値なる下限負荷累積曲線とそれを池の貯留容量分だけ
上方に平行移動させた上限負荷累積曲線とをつくり、上
記準最適運転スケジュールに従ったポンプ吐出量累積曲
線が上記上限および下限負荷累積−−からはみ出すこと
なく通シ抜けるように、上記運転台数切換時刻を修正す
ることを特徴とする複数台の機器のフィードフォワード
運転制御方式。
1. In a pump operation control device that prevents a reservoir from overflowing due to the inflow of a certain amount of water, the inflow flow rate of the load is predicted, and based on the predicted value, semi-optimal operation is determined by switching the number of operating units and the number of operating units. decide on the schedule,
When the difference between the predicted flow rate or water level when the pump is operated according to the determined operation schedule and the actual measured flow rate or water level becomes large, the load is re-estimated. Then, a lower limit load accumulation curve, which is the temporal cumulative value of the re-predicted load, and an upper limit load accumulation curve, which is shifted upward in parallel by the storage capacity of the pond, are created, and the pump is operated according to the above sub-optimal operation schedule. A feedforward operation control system for a plurality of devices, characterized in that the switching time of the number of devices in operation is corrected so that the discharge amount cumulative curve passes through the upper limit and lower limit load cumulative curve without exceeding the upper limit and lower limit load cumulative curve.
JP57106948A 1982-06-23 1982-06-23 Feedforward operation control method for multiple pumps Expired - Lifetime JPH0656151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57106948A JPH0656151B2 (en) 1982-06-23 1982-06-23 Feedforward operation control method for multiple pumps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57106948A JPH0656151B2 (en) 1982-06-23 1982-06-23 Feedforward operation control method for multiple pumps

Publications (2)

Publication Number Publication Date
JPS58223805A true JPS58223805A (en) 1983-12-26
JPH0656151B2 JPH0656151B2 (en) 1994-07-27

Family

ID=14446589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57106948A Expired - Lifetime JPH0656151B2 (en) 1982-06-23 1982-06-23 Feedforward operation control method for multiple pumps

Country Status (1)

Country Link
JP (1) JPH0656151B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079202A (en) * 2010-10-05 2012-04-19 Hitachi Ltd Method for calculating clean water supply quantity of distributing reservoir clean water supply system, program thereof, and distributing reservoir clean water supply system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143002A (en) * 1977-05-20 1978-12-13 Hitachi Ltd Pump driving control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143002A (en) * 1977-05-20 1978-12-13 Hitachi Ltd Pump driving control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079202A (en) * 2010-10-05 2012-04-19 Hitachi Ltd Method for calculating clean water supply quantity of distributing reservoir clean water supply system, program thereof, and distributing reservoir clean water supply system

Also Published As

Publication number Publication date
JPH0656151B2 (en) 1994-07-27

Similar Documents

Publication Publication Date Title
US11248598B2 (en) Optimal efficiency operation in parallel pumping system with machine learning
JPS58223805A (en) Feedforward operation control system of plural sets of equipment
CN115329160A (en) Global optimal energy-saving speed curve generation method for high-speed train
JPS6132681B2 (en)
JP2730188B2 (en) Water pump predictive operation controller
JPH0791765A (en) Heat source controller
JPS598022A (en) Controlling system of operation for plural devices
JPH0614294B2 (en) Control method for operating number of multiple pumps
JP2003013866A (en) Control device for number of pumps
JP3849734B2 (en) Water distribution control method considering the water level of clean water reservoir and distribution reservoir
JP2762991B2 (en) Pump well water level control method
JP2708826B2 (en) Water supply control device
JP3278932B2 (en) Rainwater pump controller
JPH05133344A (en) Method and device for controlling operational set quantity of pump
JPH05248358A (en) Water level control device
JPS6128780A (en) Liquid feed device
JPH08240194A (en) Terminal pressure constant control device of water feed system for water service
JP3073634B2 (en) Elevator group management control device
JPH0695701A (en) Controller for the number of filters in water purifying system
JPH07145784A (en) Number of rainwater pump operation controlling method
JPH04160405A (en) Pump operation quantity controller
JPH06195102A (en) Pump controller
JPH0311173A (en) Estimated operation controller for water supply pump
JPS6132684B2 (en)
JPS61156415A (en) Level control method of cleaning bed