JPS58223527A - Electrode copper material for electrospark machining with high cutting property - Google Patents
Electrode copper material for electrospark machining with high cutting propertyInfo
- Publication number
- JPS58223527A JPS58223527A JP10178982A JP10178982A JPS58223527A JP S58223527 A JPS58223527 A JP S58223527A JP 10178982 A JP10178982 A JP 10178982A JP 10178982 A JP10178982 A JP 10178982A JP S58223527 A JPS58223527 A JP S58223527A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- residual stress
- cutting property
- discharge machining
- copper material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H1/00—Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
- B23H1/04—Electrodes specially adapted therefor or their manufacture
- B23H1/06—Electrode material
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、放電加工用電極として使用するのに適した
切削性のすぐれた鋼材に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steel material with excellent machinability suitable for use as an electrode for electrical discharge machining.
一般に、放電加工用電極相には、高導電性が要求される
ことから、純鋼材が使用されている。しかし、この種の
純鋼材は、純度:99.90重量係以」−(ちなみに酸
素含有量は0005〜0015重量%)、ビッカース硬
さ 65以下(通常50〜60)をもち、軟質であるた
め、軽切削によらなければ実質的に切削加工が不可能で
あり、したがって所望の電極形状に寸法精度よく仕」二
げるにはかなりの長時間と熟練を必要とするものであっ
た。Generally, pure steel is used for the electrode phase for electric discharge machining because high conductivity is required. However, this type of pure steel has a purity of 99.90% by weight (by the way, oxygen content is 0005-0015% by weight), a Vickers hardness of 65 or less (usually 50-60), and is soft. However, it is virtually impossible to perform cutting without light cutting, and therefore, it takes a considerable amount of time and skill to finish the desired electrode shape with good dimensional accuracy.
そこで、本発明者等は、上述のような観点から、放電加
工用電極に要求される高導電性を具備した状態で、切削
性の良好な放電加工用電極鋼材を得べく研究を行なった
結果、銅に酸素を含有させて微細な酸化銅(主として亜
酸化銅からなる)が均一に分散した組織を有するものと
すると共に、冷間加工および軟化点直下・の温度での残
留応力除去焼鈍を施してビッカース硬さ、70以」二を
有するものとすると、この結果の銅相は、高専゛敲性を
保持した状態で、きわめてすぐれた切削性を有し、した
がって、これを放電加工用電極の製造に用いた場合には
、所定形状の電極製品への加工が、きわめて短時間で、
切削性および寸法精度よく行なうことができ、しかも残
留応力が実質的に存在しないので、変形の発生も皆無で
あるという知見を得たのでちる。Therefore, from the above-mentioned viewpoint, the present inventors conducted research to obtain an electrode steel material for electrical discharge machining that has good machinability while having the high conductivity required for an electrode for electrical discharge machining. , copper is made to contain oxygen so that it has a structure in which fine copper oxide (mainly consisting of cuprous oxide) is uniformly dispersed, and is subjected to cold working and annealing to remove residual stress at a temperature just below the softening point. When the copper phase is applied to the surface and has a Vickers hardness of 70 or more, the resulting copper phase has excellent machinability while retaining technical strength, and is therefore suitable for electrical discharge machining electrodes. When used in the manufacturing of
It has been found that machining can be performed with good machinability and dimensional accuracy, and there is virtually no residual stress, so no deformation occurs.
したがって、この発明は、」1記知見にもとづいてなさ
れたものであって、酸素を0.02〜005重量係含有
し、残りがCuと不可避不純物からなる組成、並びに微
細な酸化銅が均一に分散した組織を有し、かつ実質的に
残留応力が存在しない状態で、ピンカース硬さニア0以
上を有する切削性のすぐれた放電加工用電極鋼材に特徴
を有するものである。Therefore, this invention has been made based on the findings described in 1. The present invention has a composition containing 0.02 to 0.05% oxygen by weight, the remainder being Cu and unavoidable impurities, and a composition in which fine copper oxide is uniformly distributed. The present invention is characterized by an electrode steel material for electric discharge machining that has a dispersed structure, has a Pinkers hardness of near 0 or more, and has excellent machinability in a state where there is substantially no residual stress.
なお、この発明の放電加工用電極鋼材において、酸素含
有量を0.02〜0.05重量係と限定したのは、その
含有量が0.02%未満では微細な酸化銅の析出が不十
分で所望のすぐれた切削性を確保することができず、一
方0.05%を越えて含有させると、切削性はさらに向
上するようになるものの脆化が著しくなって鋳塊の熱間
加工時に割れが発生しやすくなるという理由によるもの
であり、またビッカース硬さニア0以上と硬質にしたの
は、前記の微細な酸化銅の作用と含まって切削性を向上
させ、併せて放電加工時の電極としての消耗量を減少さ
せるためであり、したがってビッカース硬さが70未満
では微細な酸化鋼の析出が十分であっても満足する切削
性を得ることはできないものである。In addition, in the electrode steel material for electric discharge machining of this invention, the oxygen content is limited to 0.02 to 0.05% by weight because if the content is less than 0.02%, precipitation of fine copper oxide is insufficient. On the other hand, if the content exceeds 0.05%, the machinability will further improve, but embrittlement will become significant and it will be difficult to obtain the desired excellent machinability during hot working of the ingot. This is because cracks are more likely to occur, and the reason why the Vickers hardness is set to near 0 or higher is to improve machinability due to the effect of the fine copper oxide mentioned above, and also to improve machinability during electrical discharge machining. Therefore, if the Vickers hardness is less than 70, satisfactory machinability cannot be obtained even if the precipitation of fine oxidized steel is sufficient.
つぎに、この発明の放電加工用電極鋼材を実施例により
具体的に説明する。Next, the electrode steel material for electrical discharge machining of the present invention will be specifically explained using Examples.
実施例
低周波溝型電気炉を用い、それぞれ第1表に示される純
度および酸素含有量の溶鋼を調製した後、連続鋳造法に
より約1200〜℃の温度で鋳造して厚さ:160mm
X幅:370gX長さ:1400朋の寸法をもった鋳塊
とじ、との鋳塊に約900℃の温度で熱間圧延を施して
板厚ニア5mmの熱延板とし、この場合熱間加工性を評
価する目的で割れ発生の有無を観察し、引続いて割れ発
生のない前記熱延板の1部に冷間圧延を施して板厚:5
0mmの冷延板とし、さらにこの冷延板の1部に、温度
:250℃に2時間保持後、大気中放冷の残留応力除去
焼鈍を施すことによって、本発明銅材1〜3および比較
調料l〜8をそれぞれ製造した。Example Using a low-frequency groove electric furnace, molten steel with the purity and oxygen content shown in Table 1 was prepared, and then cast by a continuous casting method at a temperature of about 1200 to ℃ to a thickness of 160 mm.
An ingot with the dimensions of x width: 370 g x length: 1400 mm is hot rolled at a temperature of approximately 900°C to form a hot rolled plate with a thickness of near 5 mm, in which case hot processing is applied. For the purpose of evaluating the properties, the presence or absence of cracks was observed, and then a portion of the hot-rolled sheet with no cracks was cold-rolled to obtain a plate thickness of 5.
A cold-rolled sheet having a thickness of 0 mm was prepared, and a portion of this cold-rolled sheet was held at a temperature of 250°C for 2 hours and then subjected to residual stress removal annealing by cooling in the atmosphere. Preparations 1 to 8 were each prepared.
ついで、この結果得られた本発明鋼材l〜3および比較
鋼材l〜8について、導電率およびビッカース硬さを測
定すると共に、切削試験、残留応力測定試験、および放
電加工試験を行なった。Next, the electrical conductivity and Vickers hardness of the resulting steel materials 1 to 3 of the present invention and comparison steel materials 1 to 8 were measured, and a cutting test, a residual stress measurement test, and an electric discharge machining test were conducted.
なお、切削試験は、外径:25.、φのドリルを用い、
切削油なしで板厚:50朋の試験片に孔明は加工を行な
い、この時発生した切屑を内径:50、、、、φ×高さ
:200mmのメスシリンダ内へ自然落下させ、この状
態で前記メスシリンダ内の切屑の容積(V)を測定する
と共に、切屑の重量(W)を測定し、この測定結果にも
とづいて、次式。In addition, the cutting test was performed using an outer diameter of 25. , using a φ drill,
Komei machined a test piece with a thickness of 50 mm without cutting oil, and allowed the chips generated at this time to fall naturally into a female cylinder with an inner diameter of 50 mm and a height of 200 mm. The volume (V) of the chips in the female cylinder is measured, and the weight (W) of the chips is also measured. Based on the measurement results, the following formula is calculated.
にしたがってηを算出することによって行ない、このη
の値(ηの値が小さければ小さいほど切削性は良好)に
よって切削性を評価した。This is done by calculating η according to
The machinability was evaluated based on the value of (the smaller the value of η, the better the machinability).
また、残留応力測定試験は、刃幅:2mmのハイス鋼チ
ップをろう付けした丸鋸を用い、試験片の圧延方向と同
方向にそって切断し、この場合残留応力があると丸鋸が
試験片によって締め付けられ、この結果過負荷電流がモ
ーターに流れる現象が生じるが、この現象を読み取るこ
とによって行ない、試験片による締め付けがない状態の
電流値を100係とし、これに対する過負荷率で評価し
た。In addition, in the residual stress measurement test, a circular saw with a blade width of 2 mm and a brazed high-speed steel tip was used to cut the specimen along the same direction as the rolling direction. As a result, an overload current flows to the motor. This was done by reading this phenomenon, and the current value when there was no tightening by the test piece was taken as a factor of 100, and the overload rate was evaluated based on this value. .
さらに放電加工試験は、厚さ:3OmmX幅。Furthermore, the electrical discharge machining test was performed using a thickness of 30mm x width.
30mmX長さ:50朋の試験片を切り出し、この試験
片を電極として用い、被加工材:板厚25mmの市販の
工具鋼板、セツティング:Ip2.セツティング°微調
、△Ip 5.パルス:ON3.休止:0FF4.サー
ボ電圧:0.電流:2A、吸引:20〜25CTLH/
の条件で°行ない、電極試験片の消耗量を測定した。こ
れらの測定結果を第1表に合せて示した。A test piece of 30 mm x length: 50 mm was cut out, and this test piece was used as an electrode. Work material: commercially available tool steel plate with a plate thickness of 25 mm. Setting: Ip2. Setting °Fine adjustment, △Ip 5. Pulse: ON3. Pause: 0FF4. Servo voltage: 0. Current: 2A, Suction: 20-25CTLH/
The test was carried out under the following conditions, and the amount of wear of the electrode test piece was measured. These measurement results are also shown in Table 1.
第1表に示される結果から明らかなように、酸素含有量
が0.02〜005重量係にして、ビッカース硬さニア
0以上を有し、かつ残留応力のない本発明鋼材1〜3は
、いずれも高導電率とすぐれた切削性を、有し、かつ放
電加工に際しても消耗量の低いものである。これに対し
て、比較鋼材1〜′ 8に見られるように、酸素含
有量、ビッカース硬さ、および残留応力に関して、この
うちのいずれかがこの発明の範囲から外れても放電加工
用電極の製造上および特性上、満足な結果を示さないも
のである。As is clear from the results shown in Table 1, steel materials 1 to 3 of the present invention having an oxygen content of 0.02 to 0.05% by weight, a Vickers hardness of near 0 or more, and no residual stress, All of them have high electrical conductivity and excellent machinability, and have low wear amount even during electrical discharge machining. On the other hand, as seen in Comparative Steel Materials 1 to '8, even if any of the oxygen content, Vickers hardness, and residual stress are outside the scope of the present invention, it is still difficult to manufacture electrodes for electrical discharge machining. However, it does not show satisfactory results in terms of the above and characteristics.
また、第1図には本発明銅材3の顕微鏡組織写真を示し
たが、図示されるように微細な酸化銅が1 素地に均一
に分散析出した組織を有しており、かかる組織によって
すぐれた切削性が確保されることが明らかである。In addition, Fig. 1 shows a photo of the microscopic structure of the copper material 3 of the present invention, and as shown in the figure, it has a structure in which fine copper oxide is uniformly dispersed and precipitated in a substrate, and this structure has an excellent structure. It is clear that good machinability is ensured.
上述のように、この発明の鋼材は、すぐれた切削性を有
しているので、どれを放電加工用電極の製造に用いた場
合には、短かい切削加工時間で寸法精度よく最終製品に
加工することができ、かつ残留応力が存在しないので、
寸法変化がなく、したがって正確な寸法精度が保持され
、さらにビッカース硬さ 70以」二の高硬度をもつの
で電極として実用に供した場合には消耗量が少なく使用
寿命の延命化がはかれるなど工業」二重用な特性を有す
るのである。As mentioned above, the steel of the present invention has excellent machinability, so when it is used to manufacture electrodes for electrical discharge machining, it can be processed into final products with high dimensional accuracy in a short machining time. and there is no residual stress, so
There is no dimensional change, therefore accurate dimensional accuracy is maintained, and it also has a high hardness of 70 or more Vickers hardness, so when used as an electrode, there is less wear and the service life is extended, making it an industrial choice. ”It has dual characteristics.
第1図は本発明銅相の顕微鏡による組織写真(100倍
うである。
出願人 玉川機械金属株式会社
代理人 富 1) 和 夫Figure 1 is a microscopic micrograph of the copper phase of the present invention (100x magnification). Applicant: Tamagawa Machinery & Metals Co., Ltd. Agent Tomi 1) Kazuo
Claims (1)
不6■避不純物からなる組成、並びに微細な酸化銅が均
一に分散した組織を有し、かつ実質的に残留応力が存在
しない状態で、ビッカース硬さ。 70以」−を有することを特徴とする切削性のすぐれた
放電加工用電極鋼材。[Scope of Claims] It has a composition containing 0.02 to 0.05% oxygen by weight, the remainder consisting of CU and non-avoidable impurities, and a structure in which fine copper oxide is uniformly dispersed, and substantially Vickers hardness in the absence of residual stress. An electrode steel material for electric discharge machining with excellent machinability, characterized by having a hardness of 70 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10178982A JPS58223527A (en) | 1982-06-14 | 1982-06-14 | Electrode copper material for electrospark machining with high cutting property |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10178982A JPS58223527A (en) | 1982-06-14 | 1982-06-14 | Electrode copper material for electrospark machining with high cutting property |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58223527A true JPS58223527A (en) | 1983-12-26 |
Family
ID=14309932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10178982A Pending JPS58223527A (en) | 1982-06-14 | 1982-06-14 | Electrode copper material for electrospark machining with high cutting property |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58223527A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02221772A (en) * | 1989-02-22 | 1990-09-04 | Arai Pump Mfg Co Ltd | Retainer for peripheral metal fitting type oil seal |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5270496A (en) * | 1975-12-08 | 1977-06-11 | Ekusuperimentarunui Nii Metaro | Porous materials for use in tool electrode and method of manufacturing thereof |
-
1982
- 1982-06-14 JP JP10178982A patent/JPS58223527A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5270496A (en) * | 1975-12-08 | 1977-06-11 | Ekusuperimentarunui Nii Metaro | Porous materials for use in tool electrode and method of manufacturing thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02221772A (en) * | 1989-02-22 | 1990-09-04 | Arai Pump Mfg Co Ltd | Retainer for peripheral metal fitting type oil seal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kapoor et al. | Recent developments in wire electrodes for high performance WEDM | |
KR100302546B1 (en) | Cu-Zn-Al, Sr, Ti, B alloys for EDM(Energy Discharge Machine) wire and its manufacturing method | |
CA1248496A (en) | Electro-discharge wire electrode of copper-zinc- silicon alloy | |
JPS6143418B2 (en) | ||
JPS58223527A (en) | Electrode copper material for electrospark machining with high cutting property | |
US3745296A (en) | Copper tool material for electrical discharge machining | |
JPS5919639A (en) | Electrode wire for wire-cut electric discharge machining | |
JPS6246620B2 (en) | ||
JP3941352B2 (en) | Electrode wire for wire electric discharge machining and manufacturing method thereof | |
JPS6322930B2 (en) | ||
JPH0397817A (en) | Electrode wire for wire electrical discharge machining | |
KR960015516B1 (en) | Method for making cu-zr-mg alloy | |
JPS599298B2 (en) | Wire-cut electrode wire for electrical discharge machining | |
JPS5920437A (en) | Electrode wire for electric discharge machining | |
JPS634619B2 (en) | ||
JPS58197244A (en) | Alloy wire for electrode wire for wire-cut electric spark machining | |
JPH0328497B2 (en) | ||
JPH11209835A (en) | High strength and high conductivity copper alloy of chromiumizirconium type, excellent in deposition resistance | |
JP3348470B2 (en) | Cu alloy for electrical and electronic parts with excellent board cutting workability | |
JPH0724977B2 (en) | Method for manufacturing electrode wire for wire electric discharge machining | |
JPS6257822A (en) | Wire cut electric discharge machining electrode made of cu-alloy | |
KR930000296B1 (en) | Electric wire | |
JPS59222547A (en) | Electrode wire for wire electric spark machining | |
JPS59170230A (en) | Electrode wire for wire electric spark machining | |
JPS59159955A (en) | Electrode wire for wire electric spark machining |