JPS58223426A - Dry type stack gas desulfurization method - Google Patents

Dry type stack gas desulfurization method

Info

Publication number
JPS58223426A
JPS58223426A JP57105363A JP10536382A JPS58223426A JP S58223426 A JPS58223426 A JP S58223426A JP 57105363 A JP57105363 A JP 57105363A JP 10536382 A JP10536382 A JP 10536382A JP S58223426 A JPS58223426 A JP S58223426A
Authority
JP
Japan
Prior art keywords
desulfurizing agent
agent
column
desulfurization
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57105363A
Other languages
Japanese (ja)
Other versions
JPS6137972B2 (en
Inventor
Shinji Nishizaki
西崎 進治
Akimitsu Tsuji
顕光 辻
Shigehiro Takahashi
高橋 茂紘
Hirotsugu Tsugawa
津川 博次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP57105363A priority Critical patent/JPS58223426A/en
Publication of JPS58223426A publication Critical patent/JPS58223426A/en
Publication of JPS6137972B2 publication Critical patent/JPS6137972B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To improve the regeneration rate of a desulfurizing agent and the efficiency in recovery of sulfur and to prevent the corrosion in a regeneration column by by-passing a cleaning gas for regeneration of the desulfurizing agent in the heating part on the uppermost stream side of a moving layer and discharging the same. CONSTITUTION:A desulfurizing agent adsorbed with SOX in a desulfurization column is introduced through an introducing port 16 into a regeneration column 15, and is heated in the heating part 17 in the internal upper part of the column 15 to desorb the SOX. The desulfurizing agent descending in the column 15 is further brought into contact with the cleaning gas from an introducing port 18 and is cooled in a cooling part 20, whereafter the agent is transferred again from a discharge port 21 into the desulfurization column 10. The cleaning gas ascends in countercurrent with the moving layer of the desulfurizing agent descending in the column 15 and is discharged from a cleaning gas discharge port 19 formed in the downflow part of the part 17. Since the SOX of a high concn. desorbed from the desulfurizing agent is discharged on the downstream side of the part 17, there is no possibility that the SOX cooled and desorbed by contact with the unheated desulfurizing agent in the port 16 is adsorbed again on the desulfurizing agent as in the prior art, and the corrosion by the condensation in the column 15 is prevented. The SOX of a high concn. is discharged at high temp. and the rate of recovery of S is improved.

Description

【発明の詳細な説明】 本発明はボイラ等燃焼機器よシ排出される燃焼排ガス中
から硫黄酸化物を除去する乾式排煙脱硫方法に係シ、特
に脱硫剤再生率及びイオウ回収効率を向上させると共に
再生塔内の腐蝕を防止した乾式排煙脱硫方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dry flue gas desulfurization method for removing sulfur oxides from combustion exhaust gas discharged from combustion equipment such as boilers, and particularly improves desulfurization agent regeneration rate and sulfur recovery efficiency. The present invention also relates to a dry flue gas desulfurization method that prevents corrosion within a regeneration tower.

一般に、乾式排煙脱硫方法として、す「ガス中の硫黄酸
化物を脱硫剤で吸着除去し、この硫黄酸化物を吸着した
脱硫剤を加熱した後ガス洗浄して脱硫剤として再生する
七共に、脱硫剤加熱時に脱硫剤から離脱した二酸化イオ
ウを還元してイオウを回収するようにした方法が知られ
ている。
In general, as a dry flue gas desulfurization method, the sulfur oxides in the gas are adsorbed and removed using a desulfurization agent, the desulfurization agent that has adsorbed the sulfur oxides is heated, and then the gas is washed to regenerate it as a desulfurization agent. A method is known in which sulfur dioxide released from a desulfurizing agent is reduced during heating of the desulfurizing agent to recover sulfur.

具体的には、第1図に示す如くボイラ等の燃焼機器より
排出された燃焼排ガス(以下排ガスという)は先ず脱硫
塔1に導入され、そこで脱硫剤たる活性炭と接触し、排
ガス中の硫黄酸化物(SOx )が活性炭に吸着し除去
される。硫黄酸化物が除去された処理排ガスは、系外へ
排出される。一方、硫黄酸化物を吸着した活性炭は再生
塔2に移送され、そこで加熱さハるこ七によシ二酸化イ
オウが離脱する。加熱されて二酸化イオウが離脱した活
性炭は、ガス洗浄された後再び脱硫塔1に戻されて、脱
硫剤として再使用されることになる。また、再生塔2内
で活性炭から離脱した二酸化イオウは洗浄ガスと共にイ
オウ回収塔3に移送され、そこで石炭等の還元剤によシ
還元きれてイオウを回収するようになっている。
Specifically, as shown in Figure 1, combustion exhaust gas (hereinafter referred to as exhaust gas) discharged from combustion equipment such as a boiler is first introduced into a desulfurization tower 1, where it comes into contact with activated carbon, which is a desulfurization agent, and oxidizes the sulfur in the exhaust gas. substances (SOx) are adsorbed and removed by activated carbon. The treated exhaust gas from which sulfur oxides have been removed is discharged outside the system. On the other hand, the activated carbon that has adsorbed sulfur oxides is transferred to the regeneration tower 2, where it is heated and sulfur dioxide is released. The activated carbon from which sulfur dioxide has been removed by heating is gas-washed and then returned to the desulfurization tower 1 to be reused as a desulfurization agent. Further, the sulfur dioxide separated from the activated carbon in the regeneration tower 2 is transferred together with the cleaning gas to the sulfur recovery tower 3, where it is reduced by a reducing agent such as coal and the sulfur is recovered.

ところで、従来、再生塔2において脱硫剤は、第2図に
示す如く再生塔2の上端部に形成された脱硫剤導入口4
から導入され、塔内上部に設けられた加熱部5で加熱さ
れつつ塔内部を降下し、その下端部に形成された再生脱
硫剤排出口6から排出されるようになっている。一方、
加熱処理された脱硫剤を洗浄する洗浄ガスは、再生塔2
下部に形成された洗浄ガス導入ロアから導入され、上記
脱硫剤の移動層に向流して塔内部を上昇し、その上部に
形成された洗浄ガス排出口8よシ脱硫剤から離脱した高
濃度二酸化イオウを伴なって外部へ排出されるようにな
っている。
By the way, conventionally, in the regeneration tower 2, the desulfurization agent is supplied through the desulfurization agent inlet 4 formed at the upper end of the regeneration tower 2, as shown in FIG.
The desulfurizing agent is introduced from the column, descends inside the column while being heated by a heating section 5 provided at the upper part of the column, and is discharged from a regenerated desulfurization agent outlet 6 formed at the lower end of the column. on the other hand,
The cleaning gas for cleaning the heat-treated desulfurization agent is supplied to the regeneration tower 2.
Highly concentrated carbon dioxide is introduced from the cleaning gas introduction lower formed at the bottom, rises inside the column countercurrently to the moving layer of the desulfurization agent, and is released from the desulfurization agent through the cleaning gas outlet 8 formed at the top. It is discharged to the outside along with sulfur.

ところが、洗浄ガス排出口8を再生塔2の加熱部5より
上部に形成したために、その排出口8から排出する洗浄
ガス乃至高濃度二酸化イオウが、再生塔2内上部におい
て脱硫剤パ導入口4から塔内に導入された加熱されてい
ない脱硫剤と接触し、冷却されてしまった。そのために
、加熱によシ離脱させた二酸化イオウが再び脱硫剤に吸
着されてしまうという問題が生じ、脱硫剤の再生を十分
に行なうことができなかった。
However, since the cleaning gas discharge port 8 is formed above the heating section 5 of the regeneration tower 2, the cleaning gas or high concentration sulfur dioxide discharged from the discharge port 8 flows into the desulfurization agent inlet 4 in the upper part of the regeneration tower 2. It came into contact with the unheated desulfurization agent introduced into the tower and was cooled. Therefore, a problem arises in that the sulfur dioxide released by heating is adsorbed by the desulfurizing agent again, and the desulfurizing agent cannot be regenerated sufficiently.

また、洗浄ガス乃至高濃度二酸化イオウが冷却されると
その一部が再生塔2内部で結露し、そこに含まれるso
4”、 ct−等のイオンが再生塔2内部を腐蝕してし
まうという問題があった。2また、イオウ回収塔3で高
濃度二酸化イオウからイオウを回収する場合 約800
Cの温度下で二酸化イオウを還元させるが、上述した如
く高濃度二酸化イオウは再生塔2内上部で冷却されてし
まうためにその温度が低いので、従来はイオウ回収塔3
内で還元剤の一部を燃焼させて温度を上昇させつつ還元
処理を行なっていた。したがって、高価な還元剤を多量
に使用しなければならず、経済的でなかった。
In addition, when the cleaning gas or high concentration sulfur dioxide is cooled, a part of it condenses inside the regeneration tower 2, and the SO contained therein becomes dew.
There was a problem that ions such as 4" and ct- corroded the inside of the regeneration tower 2.2 Also, when recovering sulfur from high concentration sulfur dioxide in the sulfur recovery tower 3, approximately 800
Sulfur dioxide is reduced at a temperature of
The reduction process was carried out by burning part of the reducing agent inside the tank to raise the temperature. Therefore, a large amount of expensive reducing agent must be used, which is not economical.

更に、イオウ回収塔3内で還元剤を燃焼させるために塔
内部に燃焼用空気を供給しているが、回収塔3内に燃焼
用空気を供給するとその空気によυ塔内部の二酸化イオ
ウが希釈され、イオウ回収効率が良効でなかった。
Furthermore, combustion air is supplied inside the sulfur recovery tower 3 to burn the reducing agent, but when the combustion air is supplied into the recovery tower 3, the sulfur dioxide inside the υ tower is It was diluted and the sulfur recovery efficiency was not good.

また、上述した如き問題を解決すべく再生塔2内にその
上部から高温に加熱した砂を導入し、これを熱媒体とし
て脱硫剤に直接接触させて熱又換させる方法が試みられ
ているが、脱硫剤再生後に再生脱硫剤と砂とを分離しな
ければならず、その分離処理に問題があった。
Furthermore, in order to solve the above-mentioned problems, a method has been attempted in which heated sand is introduced into the regeneration tower 2 from the upper part, and the sand is brought into direct contact with the desulfurizing agent as a heat medium to exchange heat. However, after regenerating the desulfurization agent, the recycled desulfurization agent and sand had to be separated, and there were problems in the separation process.

そこで、本発明は上述した如き従来の問題点に鑑み、こ
れを有効に解決すべく創案されたものであり、その目的
は、脱硫剤移動層の下流側から上流側に洗浄ガスを導入
して向流接触させると共にその洗浄ガスを移動層の最上
流側の加熱部を迂回させて流出することによシ、脱硫剤
再生率及びイオウ回収効率を向上することができると共
に再生塔内の腐蝕を防止することができる乾式排煙脱硫
方法を提供することである。
In view of the above-mentioned conventional problems, the present invention was devised to effectively solve the problems.The purpose of the present invention is to introduce a cleaning gas from the downstream side to the upstream side of the desulfurizing agent moving layer. By making countercurrent contact and causing the cleaning gas to bypass the heating section on the most upstream side of the moving bed and flow out, it is possible to improve the desulfurization agent regeneration rate and sulfur recovery efficiency, and to prevent corrosion in the regeneration tower. It is an object of the present invention to provide a dry flue gas desulfurization method that can prevent

以下に本発明に係る方法を添付図面に基づいで説明する
The method according to the present invention will be explained below based on the accompanying drawings.

第:3図は本発明に係る方法を説明するための工程図で
ある。10は脱硫塔であり、この脱硫塔10内にボイラ
等の燃焼機器から排出された排ガスがその側部に形成さ
れた排ガス導入口11よシ導入される。脱硫塔10内に
導入された排ガスは、脱硫塔10上部に形成された脱硫
剤供給口12から導入され塔内部を降下する移動脱硫剤
層(活性炭)を直交して通過し、これにより排ガス中の
硫黄酸化物が脱硫剤に吸着除去される。そして、徹黄酸
化物が除去された処理排ガスは、排ガス排出口13から
系外へ排出される。
FIG. 3 is a process diagram for explaining the method according to the present invention. 10 is a desulfurization tower, into which exhaust gas discharged from combustion equipment such as a boiler is introduced through an exhaust gas inlet 11 formed on the side thereof. The flue gas introduced into the desulfurization tower 10 is introduced from the desulfurization agent supply port 12 formed at the top of the desulfurization tower 10 and passes orthogonally through a mobile desulfurization agent layer (activated carbon) that descends inside the tower, thereby reducing the amount of waste gas in the flue gas. sulfur oxides are adsorbed and removed by the desulfurization agent. Then, the treated exhaust gas from which yellowish oxides have been removed is discharged from the exhaust gas outlet 13 to the outside of the system.

また、硫黄酸化物を吸着した脱硫剤は、脱硫塔10下部
に形成された脱硫剤排出口14から排出され、再生塔1
5へ移送される。再生塔15へ移送された脱硫剤は、第
4図に示す如くその上端部に形成された脱硫剤導入口1
6から塔内部へ導入され、そこを降下する。再生塔15
内を降下する脱硫剤は、先ず塔内上部に設けられている
加熱部17を通過し、そこで間接的に熱交換されて30
0〜600 rに加熱される。脱硫剤は、加熱されるこ
とにより吸着していた二酸化イオウを離脱する。
Further, the desulfurization agent that has adsorbed sulfur oxides is discharged from the desulfurization agent outlet 14 formed at the bottom of the desulfurization tower 10, and is discharged from the regeneration tower 1.
Transferred to 5. The desulfurizing agent transferred to the regeneration tower 15 is passed through the desulfurizing agent inlet 1 formed at the upper end as shown in FIG.
6 into the tower and descend there. Regeneration tower 15
The desulfurizing agent descending inside the tower first passes through a heating section 17 provided at the upper part of the tower, where it is indirectly heat exchanged and heated to 30
Heated from 0 to 600 r. The desulfurizing agent releases the adsorbed sulfur dioxide when heated.

加熱処理された脱硫剤は、更に再生塔15内を降下する
が、降下する間に洗浄ガス導入口18から導入された洗
浄ガスと接触し、それによシ洗浄される。洗浄ガスは、
再生塔15下部に形成された洗浄ガス導入口18から塔
内部へ導入され、上記加熱処理されて塔内部を降下する
脱硫剤移動層の下流側から上流側に向流させて塔内部を
上昇し、加熱部17の下流部分に形成された洗浄ガス排
出口19から流出されるようになっている。洗浄ガスで
洗浄され再生された脱硫剤は、再生塔15内下部に設け
られている冷却部20を通過し、そこ−で間接的に熱交
換されて冷却された後、再生塔15下端部に形成された
再生脱硫剤排出口21から排出され、再び脱硫塔10へ
移送されて排ガスの脱硫処理を行なうこととなる。
The heat-treated desulfurizing agent further descends within the regeneration tower 15, but while descending, it comes into contact with the cleaning gas introduced from the cleaning gas inlet 18 and is thereby cleaned. The cleaning gas is
The cleaning gas is introduced into the tower from the cleaning gas inlet 18 formed at the lower part of the regeneration tower 15, and is caused to flow countercurrently from the downstream side to the upstream side of the desulfurization agent transfer layer that is heated and descends inside the tower, and rises inside the tower. The cleaning gas is discharged from a cleaning gas outlet 19 formed at a downstream portion of the heating section 17 . The desulfurizing agent that has been washed with the cleaning gas and regenerated passes through the cooling section 20 provided at the lower part of the regeneration tower 15, where it is cooled by indirect heat exchange, and then is sent to the lower end of the regeneration tower 15. The regenerated desulfurization agent is discharged from the formed regenerated desulfurization agent outlet 21 and transferred to the desulfurization tower 10 again, where the exhaust gas is desulfurized.

一方、再生塔15内で脱硫剤から離脱した高濃度二酸化
イオウは、洗浄ガスと共に加熱部17の下流部分に形成
された洗浄ガス排出口19から300〜600Cの高温
状態で排出され、イオウ回収塔22へ移送される。イオ
ウ回収塔22へ移送された高濃度二酸化イオウは二酸化
イオウ導入口23から塔内部へ導入され、そこで還元剤
導入口24から導入された還元剤(石炭等)と約800
Cの温度下で接触し、それにより還元されて元素イオウ
を回収するようになっている。
On the other hand, the highly concentrated sulfur dioxide released from the desulfurization agent in the regeneration tower 15 is discharged together with the cleaning gas at a high temperature of 300 to 600 C from the cleaning gas outlet 19 formed in the downstream part of the heating section 17, and is then removed from the sulfur recovery tower. 22. The highly concentrated sulfur dioxide transferred to the sulfur recovery tower 22 is introduced into the tower from the sulfur dioxide inlet 23, where it is combined with the reducing agent (coal, etc.) introduced from the reducing agent inlet 24 and about 800
C and thereby be reduced to recover elemental sulfur.

尚、イオウ回収塔22内では、塔内温度を約800Cに
維持すべく還元剤の一部を燃焼させているが、この還元
剤を燃焼させるために塔内部へ燃焼用空気を供給してい
る。
In the sulfur recovery tower 22, a part of the reducing agent is burned in order to maintain the temperature inside the tower at about 800C, and combustion air is supplied to the inside of the tower to burn this reducing agent. .

また、脱硫剤が脱硫及び再生処理により消耗。In addition, the desulfurization agent is consumed due to desulfurization and regeneration processing.

摩耗した場合には、脱硫塔10内に新しい脱硫剤が補給
されることになっている。
When the desulfurization agent is worn out, new desulfurization agent is to be replenished into the desulfurization tower 10.

したがって、脱硫剤から離脱した高濃度二酸化イオウを
加熱部17の下流側で排出するようにしたので、二酸化
イオウが従来のように脱硫剤導入口16から導入された
加、熱されていない脱硫剤に接触して冷却される虞れが
全くなく、よって離脱した二酸化イオウが再び脱硫剤に
吸着されることはない。
Therefore, since the highly concentrated sulfur dioxide released from the desulfurization agent is discharged downstream of the heating section 17, the sulfur dioxide is removed from the desulfurization agent that has not been heated or heated, unlike the conventional desulfurization agent introduction port 16. There is no risk of cooling due to contact with the desulfurizing agent, and therefore, the released sulfur dioxide will not be adsorbed by the desulfurizing agent again.

また、二酸化イオウは再生塔15内で冷却されることが
ないのでそこで結露することはなく、したがって二酸化
イオウ乃至洗浄ガス中に含まれる5042乙Ct−等の
イオンによる再生塔15内部の腐蝕を防止することがで
きる。
In addition, since the sulfur dioxide is not cooled in the regeneration tower 15, no dew condensation occurs therein, thereby preventing corrosion inside the regeneration tower 15 due to ions such as 5042Ct- contained in the sulfur dioxide or cleaning gas. can do.

史に、高濃度二酸化イオウを加熱部17の下流側で排出
するようにしたのでそれを300〜600Cの高温状態
で排出することができ、よってイオウ回収塔22で二酸
化イオウを還元する場合、その温度を上昇させるために
燃焼させる還元剤が少なくてすみ経済的である。
Historically, since highly concentrated sulfur dioxide was discharged downstream of the heating section 17, it could be discharged at a high temperature of 300 to 600C. Therefore, when reducing sulfur dioxide in the sulfur recovery tower 22, the It is economical because it requires less reducing agent to be burned to raise the temperature.

また、イオウ回収塔22内に供給する還元剤燃焼用空気
も少なくてすむので、その空気による二酸化イオウ希釈
率が小さくなり、イオウ回収効率が向上する。
Moreover, since less air for reducing agent combustion is supplied into the sulfur recovery tower 22, the dilution rate of sulfur dioxide by the air is reduced, and the sulfur recovery efficiency is improved.

また、洗浄ガスを加熱処理された脱硫剤移動層の下流側
から上流側に向流させて導入したので、二酸化イオウを
脱硫剤から効果的に離脱させると(!:ができ、再生効
率が向上するはかシか高度の再生が可能である。
In addition, since the cleaning gas was introduced countercurrently from the downstream side to the upstream side of the heat-treated desulfurizing agent moving bed, sulfur dioxide is effectively separated from the desulfurizing agent (!:), and the regeneration efficiency is improved. A high degree of regeneration is possible.

尚、第5図に示す如く再生塔15の上端部に脱離ガス導
入口25を形成し、この脱離ガス導入口25を介して塔
上部から脱離ガスを導入すると共にこの脱離ガスを加熱
部17通過後洗浄ガス排出口19から流出させるように
すると、洗浄ガス排出口19から排出される高濃度二酸
化イオウのわト出がよシ効果的に行なわれ、よシ優れた
効果を発揮する。
As shown in FIG. 5, a desorption gas inlet 25 is formed at the upper end of the regeneration tower 15, and the desorption gas is introduced from the upper part of the tower through the desorption gas inlet 25. If the cleaning gas is allowed to flow out from the cleaning gas outlet 19 after passing through the heating section 17, the highly concentrated sulfur dioxide discharged from the cleaning gas outlet 19 will be more effectively discharged, and an excellent effect will be exhibited. do.

以上の説明で明らかな如く本発明によれは次の如き優れ
た効果を発揮する。
As is clear from the above explanation, the present invention exhibits the following excellent effects.

(1)二酸化イオウを加熱部の下流側で排出するように
したので、脱硫剤から離脱した二酸化イオウが加熱され
ていない脱硫剤に接触して冷却されることはない。した
がって、脱硫剤から11111脱した二酸化イオウが再
び脱硫剤に吸着されることはない。
(1) Since the sulfur dioxide is discharged downstream of the heating section, the sulfur dioxide released from the desulfurization agent does not come into contact with the unheated desulfurization agent and be cooled. Therefore, the 11111 sulfur dioxide removed from the desulfurization agent is not adsorbed by the desulfurization agent again.

(2)二酸化イオウは、再・主塔内で冷却されて結露す
ることがないので、S04.Ct等のイオンによる再生
塔内の腐蝕を防止することができ、再生塔の耐久性を向
上させることができる。
(2) Since sulfur dioxide is cooled in the main tower and does not condense, S04. Corrosion inside the regeneration tower due to ions such as Ct can be prevented, and the durability of the regeneration tower can be improved.

(3)洗浄ガスを加熱処理された&硫剤移動層の下流側
から上流側に向流させて導入したので、二酸化イオウを
脱硫剤から効果的に離脱させることができ、両生効率が
向上すると共に高度の再生を行なうことができる。
(3) Since the cleaning gas is introduced in a countercurrent manner from the downstream side to the upstream side of the heat-treated & sulfur agent moving bed, sulfur dioxide can be effectively separated from the desulfurization agent, improving the amphibious efficiency. In addition, high-level regeneration can be performed.

(4)上記(υ、(3)の相乗効果によシ、脱硫剤再生
率が向上する。
(4) Due to the synergistic effect of the above (υ, (3)), the desulfurization agent regeneration rate is improved.

(5)二酸化イオウを加熱部の下流側で排出するように
したのでそれを高温状態で排出することができ、イオウ
回収塔で二酸化イオウを還元する場合に、その温度を上
昇させるために燃焼させる還元剤が少量ですみ、経済的
である。
(5) Since sulfur dioxide is discharged downstream of the heating section, it can be discharged at a high temperature, and when sulfur dioxide is reduced in a sulfur recovery tower, it is burned to raise its temperature. It is economical as only a small amount of reducing agent is required.

(6)  ¥に、イオウ回収塔内に供給する還元剤燃焼
用空気が少なくてすみ、よってその空気による二酸化イ
オウ希釈率が小さくなシ、イオウ回収効率が向上する。
(6) In addition, less air is needed for combustion of the reducing agent to be supplied into the sulfur recovery tower, so the dilution rate of sulfur dioxide by the air is small, and the sulfur recovery efficiency is improved.

(7)排煙脱硫装置全体の効率を向上させることができ
る等優れた効果を発揮する。
(7) It exhibits excellent effects such as being able to improve the efficiency of the entire flue gas desulfurization device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の排煙脱硫方法を説明するための工程図、
第2図は従来の再生塔を示す概略縦断面図、第3図は本
発明に係る排煙脱硫方法を説明するための工程図、第4
図は第3図の再生塔を示す概略縦断面図、第5図は再生
塔の変形例を示す概略縦断面図である。 図中、10は脱硫塔、15は再生塔、17は加熱部、1
8は洗浄ガス導入口、19は洗浄ガス排出口、22はイ
オウ回収塔である。 特許出願人 石川島播磨重工業株式会社代理人弁理士 
 絹 谷 信 雄
Figure 1 is a process diagram for explaining the conventional flue gas desulfurization method.
FIG. 2 is a schematic vertical cross-sectional view showing a conventional regeneration tower, FIG. 3 is a process diagram for explaining the flue gas desulfurization method according to the present invention, and FIG.
This figure is a schematic vertical sectional view showing the regeneration tower of FIG. 3, and FIG. 5 is a schematic vertical sectional view showing a modification of the regeneration tower. In the figure, 10 is a desulfurization tower, 15 is a regeneration tower, 17 is a heating section, 1
8 is a cleaning gas inlet, 19 is a cleaning gas outlet, and 22 is a sulfur recovery tower. Patent applicant: Patent attorney representing Ishikawajima-Harima Heavy Industries Co., Ltd.
Nobuo Kinuya

Claims (1)

【特許請求の範囲】[Claims] 排ガス中の硫黄酸化物を脱硫剤にて吸着除去し、硫黄酸
化物を吸着した脱硫剤を加熱しガス洗浄して脱硫剤とし
て再生すると共に、脱硫剤から離脱した二酸化イオウを
還元してイオウを回収する乾式排煙脱硫方法において、
上記脱硫剤の移動層を形成し、該移動層の下流側から上
流側に上記洗浄ガスを導入して向流接触させると共にそ
の洗浄ガスを移動層の最上流側の加熱部を迂回させて流
出させるようにしたことを特徴とする乾式排煙脱硫方法
Sulfur oxides in exhaust gas are adsorbed and removed by a desulfurizing agent, and the desulfurizing agent that has adsorbed sulfur oxides is heated and gas washed to regenerate it as a desulfurizing agent, and the sulfur dioxide released from the desulfurizing agent is reduced to produce sulfur. In the dry flue gas desulfurization method that recovers
A moving layer of the desulfurization agent is formed, and the cleaning gas is introduced from the downstream side of the moving layer to the upstream side of the moving layer to bring about countercurrent contact, and the cleaning gas bypasses the heating section on the most upstream side of the moving layer and flows out. A dry flue gas desulfurization method characterized by:
JP57105363A 1982-06-21 1982-06-21 Dry type stack gas desulfurization method Granted JPS58223426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57105363A JPS58223426A (en) 1982-06-21 1982-06-21 Dry type stack gas desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57105363A JPS58223426A (en) 1982-06-21 1982-06-21 Dry type stack gas desulfurization method

Publications (2)

Publication Number Publication Date
JPS58223426A true JPS58223426A (en) 1983-12-26
JPS6137972B2 JPS6137972B2 (en) 1986-08-27

Family

ID=14405639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57105363A Granted JPS58223426A (en) 1982-06-21 1982-06-21 Dry type stack gas desulfurization method

Country Status (1)

Country Link
JP (1) JPS58223426A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363467U (en) * 1986-10-16 1988-04-26

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121293A (en) * 1978-03-06 1979-09-20 Babcock & Wilcox Ag Method and apparatus for thermally regenerating used active coke or carbon granule

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121293A (en) * 1978-03-06 1979-09-20 Babcock & Wilcox Ag Method and apparatus for thermally regenerating used active coke or carbon granule

Also Published As

Publication number Publication date
JPS6137972B2 (en) 1986-08-27

Similar Documents

Publication Publication Date Title
CN104001403B (en) The technique of a kind of activated coke/charcoal flue gas desulfurization and denitrification and recovery elemental sulfur and device
CA2611872C (en) Waste gas treatment process including removal of mercury
EP1308198B1 (en) Mercury removal method and system
CN103429317B (en) NO in reduction wet flue gasxequipment and system
CN104689679B (en) Desulfurization and denitrification process for coke oven flue gas
CN106881021B (en) After a kind of processing can direct emission tail gas of sulphur purification process
JP5917190B2 (en) Mercury recovery equipment in exhaust gas
CN105597531B (en) A kind of desulfuring and denitrifying apparatus and technique for cock-oven gas purifying
CN205461790U (en) A SOx/NOx control device for coke oven gas cleaning
WO2022033512A1 (en) Near-zero emission type flue gas multi-pollutant integrated removal system and method
TW200827014A (en) Improved wet gas scrubbing process
CN107115775A (en) A kind of agglomeration for iron mine flue gas segmentation enrichment is from the emission reduction SO of exchanging heatxAnd NOxMethod
US4302221A (en) Process for regeneration of carbonaceous adsorbent for use in desulfurization of exhaust gas
JP2977759B2 (en) Exhaust gas dry treatment method and apparatus
CN110354670A (en) A kind of boiler with tailed flue gas takes off white system and method
CN110484283A (en) A kind of coking residual heat integrative recovery process and system
CN108654363A (en) Couple waste heat of coke-oven flue gas and amounts of sulphur contaminants acid-making process
CN112742178A (en) Flue gas desulfurization and SCR denitration combined system and flue gas treatment process
JPS58223426A (en) Dry type stack gas desulfurization method
CN208082173U (en) The processing system of activated coke method coke oven flue gas desulphurization denitration acid vapour is handled with system for preparing sulfuric acid
CN110898606B (en) Method for treating catalytic cracking regenerated flue gas
JPH08155261A (en) Combustion flue gas treatment apparatus
JPH09225310A (en) Method for regenerating denitration catalyst
CN107890755A (en) With the production technology and processing system of system for preparing sulfuric acid processing activated coke method coke oven flue gas desulphurization denitration acid vapour
CN109092008A (en) A kind of sintering flue gas active carbon high-efficiency purification process