JPS58222986A - Power recovery device - Google Patents

Power recovery device

Info

Publication number
JPS58222986A
JPS58222986A JP57107341A JP10734182A JPS58222986A JP S58222986 A JPS58222986 A JP S58222986A JP 57107341 A JP57107341 A JP 57107341A JP 10734182 A JP10734182 A JP 10734182A JP S58222986 A JPS58222986 A JP S58222986A
Authority
JP
Japan
Prior art keywords
pressure
cylinder
plunger
pressure liquid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57107341A
Other languages
Japanese (ja)
Inventor
Koichi Beppu
別府 紘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP57107341A priority Critical patent/JPS58222986A/en
Publication of JPS58222986A publication Critical patent/JPS58222986A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Reciprocating Pumps (AREA)

Abstract

PURPOSE:To heighten the power recovery efficiency by recovering the energy of high pressure liquid made avaitable through its pressure reduction by means of a hydraulic motor and by returning the pressure energy as it is to the process through a pressure medium as the energy for coal slurry transportation. CONSTITUTION:Since a pressure medium is discharged from the cylinder chamber of a pressure medium cylinder 9a via a flow rate regulating mechanism 19a, dissolved gas in a solution produced during coal liquefaction in a pressure reducing cylinder 7a (Operation of cylinders 7b and 7c is similar to that of cylinder 7a though their phases are different.) expands. At this time of pressure reduction, a pressure medium discharged from the cylinder 9a is supplied to a hydraulic motor 26 via a switching valve 22a so that the pressure energy is recovered as power to drive a coal slurry feeding pump 25 connected to the hydraulic motor 26 via an electric motor M2. Thus, the energy recovered during reducing the pressure of high pressure liquid can be returned directly as a high pressure liquid supplying source in the process.

Description

【発明の詳細な説明】 本発明は動力回収装置、具体的には、溶解ガスおよび固
形物粒子を含有する高圧液体を減圧する工程を含む化学
プラントにおいて、高圧液体を減圧する際にその高圧液
体の持つエネルギを動力として回収する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power recovery device, specifically, to a chemical plant that includes a step of reducing the pressure of a high-pressure liquid containing dissolved gas and solid particles. This invention relates to a device that recovers the energy possessed by an object as power.

高圧液体を減圧する工程を含む化学プラントとしては、
従来より種々のものがあるが、本明細書では、近年石油
事情の悪化に伴ない再認識されてきた石灰液化プラント
を例とし、弁その他の接液部属に゛とりて過酷な条件と
なる灰分その1mの鉱物質粒子を含む高温高圧の石炭液
化生成物溶液から動力回収する場合について説明する。
As a chemical plant that includes the process of reducing the pressure of high-pressure liquid,
Although there are various conventional methods, in this specification, we will use lime liquefaction plants as an example, which has been re-recognized in recent years due to the deterioration of the petroleum situation. A case will be described in which power is recovered from a high-temperature, high-pressure coal liquefaction product solution containing 1 m of mineral particles.

この石灰液化プラントにおいては、石灰を粉砕し脱水し
た後、溶剤を加えてスラリー化し、これを外圧、予熱し
た後、水素添加反応により液化させ、生じた石炭液化生
成物溶液を気液分跡した後、減圧し、次いで生成物たる
重軽質油を分別蒸留する操作が行なわれる。従来、この
石炭液化生成物溶液の減圧は流量調節弁の絞り効果を利
用して行なわれていたが、灰分その他の鉱物質粒子によ
る摩耗により弁寿命が短かいことおよび石炭液化生成物
溶液の持つ圧力エネルギが熱エネルギとして浪費されて
いることに鑑み、近年その圧力エネルギを回収する装置
が、例えば、特願昭56−108365号明細書にて提
案されている。この’iIJ力回収装置にあっては、シ
リンダにて石炭液化生成物溶液の圧力エネルギを圧力媒
体の圧力エネルギに変換し、外圧蓄圧された圧力媒体に
より油圧モータ等を駆動するものであるが、石炭液化生
成物溶液の減圧をシリンダ内で行なった場合、減圧時、
そのシリンダに対応するシリンダから排出される減圧液
が並列接続された他のシリンダから排出される排出量に
加わり、減圧液に流量変動を生じる問題がある他、減圧
時のエネルギの回収ができず、エネルギ回収効率が悪い
という問題があった。
In this lime liquefaction plant, lime is crushed and dehydrated, then a solvent is added to form a slurry, this is subjected to external pressure and preheating, and then liquefied by a hydrogenation reaction, and the resulting coal liquefaction product solution is made into a gas-liquid mixture. After that, the pressure is reduced, and then the heavy and light oil products are fractionally distilled. Conventionally, this pressure reduction of the coal liquefaction product solution was carried out using the throttling effect of a flow rate control valve, but the life of the valve was short due to wear due to ash and other mineral particles, and the coal liquefaction product solution had In view of the fact that pressure energy is wasted as heat energy, a device for recovering the pressure energy has recently been proposed, for example, in Japanese Patent Application No. 108365/1982. In this 'iIJ force recovery device, the pressure energy of the coal liquefaction product solution is converted into the pressure energy of the pressure medium in the cylinder, and the hydraulic motor etc. is driven by the pressure medium with external pressure accumulated. When the pressure of the coal liquefaction product solution is reduced in the cylinder, when the pressure is reduced,
The decompression fluid discharged from the cylinder corresponding to that cylinder is added to the amount discharged from other cylinders connected in parallel, causing a problem in which the flow rate of the decompression fluid fluctuates, and energy cannot be recovered during depressurization. , there was a problem of poor energy recovery efficiency.

本発明は、このような問題に鑑みてなされたもので、溶
解ガスを含む高圧液の持つエネルギを減圧液に流量変動
を生じさせることなく石灰スラリ輸送用エネルギとして
プロセスに直接帰還することができる動力回収装置を提
供することを目的とする。本発明の他の目的は、エネル
ギ変換ロスを最小限とした回収効率の高い動力回収装置
を提供することである。
The present invention has been made in view of these problems, and allows the energy of high-pressure liquid containing dissolved gas to be directly fed back to the process as energy for transporting lime slurry without causing flow rate fluctuations in the reduced-pressure liquid. The purpose is to provide a power recovery device. Another object of the present invention is to provide a power recovery device that minimizes energy conversion loss and has high recovery efficiency.

本発明に係る動力回収装置は、溶解ガスおよび固形物粒
子を含有する高圧液を供給する高圧液供給弁と、前記高
圧液を減圧した減圧液を排出する減圧液排出弁とを備え
だ複数本の減圧用プランジャ形シリンダを高圧液供給源
および減圧液受容部にそれぞれ並列に配すると共に、低
圧液を供給する。低圧゛液供給用逆止弁と前記低圧液を
昇圧した外圧液を排出する昇圧液排出用逆止弁とを備え
だ複数本の昇圧用プランジャ形シリンダを低圧液供給源
および外圧液受容部にそれぞれ並列に配し、前記減圧用
プランジャ形シリンダと外圧用プランジャ形シリンダを
同数とし、さらに、前記減圧用シリンダのプランジャに
連結されたプランジャおよび圧力媒体流出入室を有する
圧力媒体流出入機構の前記圧力媒体流出入室を圧力媒体
供給源に接続すると共に、該圧力媒体流出入室を、昇圧
用シリンダのプランジャに連結されたプランジャおよび
圧力媒体流出入室を有する圧力媒体流出入機構の圧力媒
体流出入室と液圧モータとに切換弁を介して接続し、高
圧液体を減圧する際の回収エネルギを、直接そのプロセ
スにおける高圧液体供給源として帰還させることを特徴
とするものである。
The power recovery device according to the present invention includes a high-pressure liquid supply valve that supplies a high-pressure liquid containing dissolved gas and solid particles, and a reduced-pressure liquid discharge valve that discharges a reduced-pressure liquid obtained by reducing the pressure of the high-pressure liquid. A plunger type cylinder for pressure reduction is arranged in parallel with the high pressure liquid supply source and the reduced pressure liquid receiving part, respectively, and supplies low pressure liquid. A plurality of pressurizing plunger-type cylinders equipped with a check valve for supplying low-pressure liquid and a check valve for discharging external pressure liquid that has increased the pressure of the low-pressure liquid are used as a low-pressure liquid supply source and an external-pressure liquid receiving part. The pressure medium inflow/outflow mechanism has the same number of plunger type cylinders for pressure reduction and plunger type cylinders for external pressure, respectively arranged in parallel, and further has a plunger connected to the plunger of the pressure reduction cylinder and a pressure medium inflow/outflow chamber. A pressure medium inflow and outflow chamber is connected to a pressure medium supply source, and the pressure medium inflow and outflow chamber is connected to a pressure medium inflow and outflow chamber of a pressure medium inflow and outflow mechanism having a plunger connected to a plunger of a pressurizing cylinder and a pressure medium inflow and outflow chamber. It is characterized in that it is connected to a motor via a switching valve, and the energy recovered when reducing the pressure of high-pressure liquid is directly fed back as a high-pressure liquid supply source in the process.

以下、本発明の実施例を示す添付図面を参照して具体的
に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.

本発明の動力回収装置を石炭液化プラントに適用した例
を示す第1図において、1は低圧液としての石灰スラリ
を収容するタンク、2はタンク内の石炭スラリを圧送す
る可変吐出形ポンプ、3は予熱器、4は石炭水素添加液
化反応塔、5は高子側気液分離塔、6は低圧側気液分離
塔、7は減圧用プランジャ形シリンダ、9.11は圧力
媒体用プランジャ形シリンダ、13は引圧用プランジャ
形シリンダ、15a、15b、′15Cは高圧液供給弁
、16a116b、16Cは減圧液排出弁、23a〜2
3C124a〜24Cは逆止弁、19a〜19Cは流量
調節機構、21はアキュムレータ、17a 〜17C,
18,22a 〜22Cは切換弁、25は低圧液供給ポ
ンプ、26は液圧モータ、28は圧力媒体タンク、29
は圧力媒体供給ポンプ、30はIJ IJ−フ弁、31
は油冷却器、32は逆止弁、34a〜34bは圧力検出
器、M1〜M3は電動モータである。
In FIG. 1 showing an example in which the power recovery device of the present invention is applied to a coal liquefaction plant, 1 is a tank that accommodates lime slurry as a low-pressure liquid, 2 is a variable discharge pump that pumps the coal slurry in the tank, and 3 is a preheater, 4 is a coal hydrogenation liquefaction reaction tower, 5 is a high-pressure side gas-liquid separation tower, 6 is a low-pressure side gas-liquid separation tower, 7 is a plunger type cylinder for pressure reduction, 9.11 is a plunger type cylinder for pressure medium , 13 is a plunger type cylinder for suction, 15a, 15b, '15C are high pressure liquid supply valves, 16a116b, 16C are pressure reducing liquid discharge valves, 23a to 2
3C124a-24C are check valves, 19a-19C are flow rate adjustment mechanisms, 21 are accumulators, 17a-17C,
18, 22a to 22C are switching valves, 25 is a low pressure liquid supply pump, 26 is a hydraulic motor, 28 is a pressure medium tank, 29
is a pressure medium supply pump, 30 is an IJ valve, 31
32 is an oil cooler, 32 is a check valve, 34a to 34b are pressure detectors, and M1 to M3 are electric motors.

前記石炭液化プラントにおいて、タンク1からの石炭ス
ラリは、ポンプ2および後述する動力回収装置によシ約
200〜300 Kg/ tyA程度に昇圧され、供給
フィン33を介して予熱器3へ圧送される。予熱器3で
約300〜400°Cに予熱された石炭スラリは反応塔
4に送られ、そこで添加水素および触媒の作用によシ液
化され、高温高圧の石灰液化生成物溶液となって高圧側
気液分離塔5に送られる。分離された気体は気液分離塔
5の頂部から系外へ導出され、塔底から導出された石灰
液化生成物溶液は本発明に係る動力回収装置により約7
0〜100に7/d程度に減圧されて低圧側気液分離塔
6へ輸送される。
In the coal liquefaction plant, the coal slurry from the tank 1 is pressurized to about 200 to 300 Kg/tyA by the pump 2 and the power recovery device described below, and is then pressure-fed to the preheater 3 via the supply fins 33. . The coal slurry preheated to approximately 300 to 400°C in the preheater 3 is sent to the reaction tower 4, where it is liquefied by the action of added hydrogen and a catalyst, becoming a high-temperature, high-pressure lime liquefaction product solution and flowing to the high-pressure side. It is sent to the gas-liquid separation tower 5. The separated gas is led out of the system from the top of the gas-liquid separation tower 5, and the lime liquefaction product solution led out from the bottom of the tower is collected by the power recovery device according to the present invention.
The pressure is reduced to about 7/d to 0 to 100 and transported to the low pressure side gas-liquid separation tower 6.

本発明の動力回収装置は、高温高圧の石炭液化生成物溶
液を次工程の分留操作圧力にまで減圧する際に、その石
炭液化生成物溶液の持つ圧力エネルギを、石炭スラリを
昇圧して輸送するだめの動力として回収するように適用
したもので、第2図に示すように、高圧液について給液
(状態A→状態13)、減圧(B→C)、排液(C−+
 D )、昇圧(1)→A)の四行程からなる動作サイ
クルを有し、この動作サイクルは次のような操作により
行なわれる。
When the power recovery device of the present invention reduces the pressure of a high-temperature, high-pressure coal liquefaction product solution to the fractional distillation operating pressure for the next step, the power recovery device uses the pressure energy of the coal liquefaction product solution to pressurize the coal slurry and transport it. It is applied to recover the liquid as a power source for the pump, and as shown in Figure 2, high-pressure liquid is supplied (state A→state 13), depressurized (B→C), and drained (C-+
D), pressure increase (1)→A), and this operation cycle is performed by the following operations.

高圧液供給弁15a、15b、15Cおよび減圧液排出
弁16a、16b、16(をそれぞれ備え、高圧液供給
源としての高圧側気液分離塔5および減圧液受容部とし
ての低圧側気液分離塔6に相互に並列に接続された減圧
用シリンダ7a、7b、7Cは、位相が異なるのみで叩
)作は同じであるので、便宜上、外圧行程が終えた状態
Aにある減圧用シリンダ7a系統の動作について説明す
ると、まず、閉状態にある高圧液供給弁15aおよび減
圧液排出弁16aのうち、高圧液供給弁15aを開くと
共に、中立位置から第1位置に切換弁17aを切換える
と高圧側気液分離塔5から高圧の石炭液化生成物溶液が
シリンダ7aに供給され、その圧力エネルギによってプ
ランジャ8aが図の左方へ往動する。このだめプランジ
ャ8aに連結された減圧側圧力媒体用シリンダ9aのプ
ランジャ10aが図の左方へ押圧され、シリンダ室内の
圧力媒体、例えば、作動油や石炭スラリ製造用溶剤は、
流量調節機構19aおよび給液行程時中\ 文位置から第1位置に切換えられた切換弁22aを介し
て、外圧側圧力媒体用シリンダーlaに供給される。昇
圧用シリンダー3aのプランジャ14       、
、。
High-pressure liquid supply valves 15a, 15b, 15C and reduced-pressure liquid discharge valves 16a, 16b, 16 (respectively), high-pressure side gas-liquid separation tower 5 as a high-pressure liquid supply source and low-pressure side gas-liquid separation tower as a reduced-pressure liquid receiving part Since the depressurizing cylinders 7a, 7b, and 7C connected in parallel to each other in the cylinder 6 are the same in operation except for the phase difference, for convenience, the depressurizing cylinder 7a system in the state A after the external pressure stroke is To explain the operation, first, among the high pressure liquid supply valve 15a and the pressure reducing liquid discharge valve 16a which are in the closed state, the high pressure liquid supply valve 15a is opened and the switching valve 17a is switched from the neutral position to the first position. A high-pressure coal liquefaction product solution is supplied from the liquid separation tower 5 to the cylinder 7a, and the plunger 8a is reciprocated to the left in the figure by the pressure energy. The plunger 10a of the decompression side pressure medium cylinder 9a connected to this reservoir plunger 8a is pushed to the left in the figure, and the pressure medium in the cylinder chamber, such as hydraulic oil or a solvent for producing coal slurry, is
It is supplied to the external pressure side pressure medium cylinder la through the flow rate adjustment mechanism 19a and the switching valve 22a which is switched from the open position to the first position during the liquid supply stroke. Plunger 14 of boosting cylinder 3a,
,.

3に連結されたプランジャ12aが図の左方に押圧され
、その結果、外圧用シリンダ13a内の石灰スラリか昇
圧され、逆止弁2=3aを経て石灰スラリ供給ライン3
3に圧送される。このようにして高圧液が減圧用シリン
ダ7aに供給され、切換弁22aが中立位置に戻された
後、高圧液供給弁15aを閉じると、給液行程が終る。
The plunger 12a connected to 3 is pushed to the left in the figure, and as a result, the pressure of the lime slurry in the external pressure cylinder 13a is increased, and the lime slurry supply line 3 passes through the check valve 2=3a.
3. After the high pressure liquid is supplied to the pressure reducing cylinder 7a in this way and the switching valve 22a is returned to the neutral position, the high pressure liquid supply valve 15a is closed, and the liquid supply process ends.

次いで、切換−jT22aを第2位置に切換えると、減
圧行程が行なわれる、すなわち、圧力媒体用シリンダ9
aのシリンダ室から流量調節機構19aを経て圧力媒体
が排出されるだめ、減圧用シリンダ7a内の石炭液化生
成物溶液中の溶解ガスが膨張する。なお、本発明の動力
回収装置においては、この減圧時、シリンダ9aから吐
出される圧力媒体を切換弁22aを介して液圧モータ2
6に供給し、減圧時のエネルギを回収するようにしてい
る。すなわち、液圧モータ26を圧力媒体で駆動して、
液圧モータ26に電動モータM2を介して連結された石
炭スラリ供給ポンプ25を駆動する動力として回収して
いる。この供給ポンプ25で吐出された石炭スラリは、
他の系統の外圧用シリンダに供給される。減圧用シリン
ダ7a内の石炭液化生成物溶液が所定圧力まで減圧され
ると、切換弁22aが閉じられ減圧行程が終る。
Then, when the switch -jT22a is switched to the second position, a depressurization stroke is carried out, that is, the pressure medium cylinder 9
As the pressure medium is discharged from the cylinder chamber a through the flow rate adjustment mechanism 19a, the dissolved gas in the coal liquefaction product solution in the pressure reducing cylinder 7a expands. In the power recovery device of the present invention, during this pressure reduction, the pressure medium discharged from the cylinder 9a is transferred to the hydraulic motor 2 via the switching valve 22a.
6, and the energy at the time of pressure reduction is recovered. That is, by driving the hydraulic motor 26 with a pressure medium,
The power is recovered to drive the coal slurry supply pump 25 connected to the hydraulic motor 26 via the electric motor M2. The coal slurry discharged by this supply pump 25 is
Supplied to external pressure cylinders in other systems. When the coal liquefied product solution in the pressure reducing cylinder 7a is reduced to a predetermined pressure, the switching valve 22a is closed and the pressure reducing process ends.

次に、減圧液排出弁16aを開くと共に、切換弁22a
を第1位置に切換えると、昇圧用シリンダ13aにポン
プ25から供給される石灰スラリによって、そのプラン
ジャ14aが図の右方へ復動するだめ、昇圧側圧力媒体
用シリンダllaの圧力媒体が流出し、流量調節機構1
9aを経て減圧側圧力媒体用シリンダ9aに供給される
。このためプランジャ10aが復動してプランジャ8a
が図の右方へ押圧され、減圧用シリンダ7a内の減圧さ
れた石炭液化生成物溶液が減圧液排出弁163を経て低
圧側気液分離塔6に移送される。その後、切換弁22a
を中立位置に切換えると共に、切換弁17aを第2位置
に切換え、残りの移送を終え、一旦中立位置に戻した後
、減圧液排出弁163を閉じることにより排液行程が終
る。次いで、切換弁17aを再度第2位置に切換えるこ
とによシ圧力媒体供給ポンプ290作用によりアキュム
レータに貯えられた高圧の圧力媒体(あるいは二者択一
的にポンプ29から供給される高圧の圧力媒体)が第2
位置に切換えられた切換弁17aを介して減圧側圧力媒
体用シリンダ9aに流入し、プランジャ10aを右方へ
押圧し、減圧用シリンダ7a内の石灰液化生成物溶液が
再び高圧側気液分離塔5からの石炭液化生成物溶液と同
圧にまで昇圧される。次いで、切換弁17aを中立位置
に戻すことにより外圧行程を終り、次の給液行程に移る
という動作サイクルを繰返す。
Next, the pressure reducing liquid discharge valve 16a is opened, and the switching valve 22a is opened.
When the pump is switched to the first position, the lime slurry supplied from the pump 25 to the pressurizing cylinder 13a causes the plunger 14a to move back to the right in the figure, causing the pressure medium in the pressurizing side pressure medium cylinder lla to flow out. , flow rate adjustment mechanism 1
It is supplied to the decompression side pressure medium cylinder 9a via 9a. Therefore, the plunger 10a moves back and the plunger 8a
is pushed to the right in the figure, and the depressurized coal liquefaction product solution in the decompression cylinder 7a is transferred to the low pressure side gas-liquid separation tower 6 via the decompression liquid discharge valve 163. After that, the switching valve 22a
is switched to the neutral position, the switching valve 17a is switched to the second position, the remaining transfer is completed, and after returning to the neutral position, the depressurized liquid discharge valve 163 is closed, thereby completing the liquid draining process. Next, by switching the switching valve 17a to the second position again, the high-pressure pressure medium stored in the accumulator by the action of the pressure-medium supply pump 290 (or alternatively, the high-pressure pressure medium supplied from the pump 29) is removed. ) is the second
The lime liquefaction product solution in the pressure reduction cylinder 7a flows into the pressure medium cylinder 9a on the pressure reduction side through the switching valve 17a, which has been switched to the position, and presses the plunger 10a to the right. The pressure is increased to the same pressure as the coal liquefaction product solution from 5. Next, the switching valve 17a is returned to the neutral position to end the external pressure stroke and proceed to the next liquid supply stroke, thereby repeating the operation cycle.

各減圧用シリンダ7a、7b、7cの系統毎に前記動作
を繰返すが、外圧側シリンダ13に接続された低圧液供
給用逆止弁24a〜24Cおよび昇圧液排出用逆止弁2
3a〜23Cは、昇圧側圧ノJ媒体用シリンダlla、
1lb111C(7)プランジャ12a、12b、12
Cの動きに追従して自動的に開閉すると共に、第3図の
タイムチャートに示されるように、外圧用シリンダ13
a、13b、13Cへの石炭スラリの供給および該外圧
用シリンダからの排出は順次、連続的に行なわれ、石炭
液化生成物溶液の減圧時に減圧側圧力媒体用シリンダ9
から排出される圧力媒体は、昇圧用シリング130石灰
スラリに影響を及ぼさないだめ、石炭スラリ供給ライン
へ外圧用シリンダ13から吐出されるスラリ量はほぼ一
定となシ、流量変動を防止することができる。なお、可
変容量形ポンプ2は高圧側気液分離塔5の液面レベルを
検出するセンサ34からの信号によりその吐出量を制御
され、石灰液化プラントに必要な石炭スラリの量を確保
する。
The above operation is repeated for each system of the pressure reducing cylinders 7a, 7b, 7c.
3a to 23C are boost side pressure J medium cylinders lla;
1lb111C (7) Plunger 12a, 12b, 12
The external pressure cylinder 13 automatically opens and closes following the movement of C, and as shown in the time chart of FIG.
The supply of coal slurry to a, 13b, and 13C and the discharge from the external pressure cylinder are performed sequentially and continuously, and when the coal liquefaction product solution is depressurized, the pressure medium cylinder 9 on the decompression side
The pressure medium discharged from the pressurizing cylinder 130 must not affect the lime slurry, so the amount of slurry discharged from the external pressure cylinder 13 to the coal slurry supply line is almost constant, and fluctuations in flow rate can be prevented. can. The discharge amount of the variable displacement pump 2 is controlled by a signal from a sensor 34 that detects the liquid level of the high-pressure side gas-liquid separation tower 5, thereby ensuring the amount of coal slurry necessary for the lime liquefaction plant.

また、高圧液減圧時のエネルギを液圧モータ26で回収
すると共に、圧力エネルギをその捷ま圧力媒体を介して
圧力エネルギとしてプロセスに直接帰還させるようにし
ているためエネルギ友換ロスも少なく、動力回収効率を
著しく高めることかできる。
In addition, the energy at the time of depressurizing the high-pressure liquid is recovered by the hydraulic motor 26, and the pressure energy is directly returned to the process as pressure energy via the crushed pressure medium, so there is little energy conversion loss and power Recovery efficiency can be significantly increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した石炭液化プラントの系抗図゛
、第2図は本発明に係る動力回収装置の肋    に作
サイクルを示す指圧線図、第3図は第1図における動力
回収装置の弁の開閉のタイムチャートである。 5〜高圧側気液分離塔、6〜低圧側気液分離塔、7〜減
圧用シリンダ、9〜減圧側圧力媒体用シリンダ、11〜
列圧側圧力媒体用シリンダ、13〜昇圧用シリンダ、1
5a、15b、15C〜高圧液供給弁、16a、16b
、16C〜減圧液排出弁、17a、17b、17C,2
2a、22b。 22C−t7J換弁、23a、23b、23C〜昇圧液
排出用逆止弁、24a、24b、24C〜低圧液供給用
逆止弁、25〜低圧液洪給ポンプ、26〜液圧モータ、
35〜緊急用減圧弁。 特 許 出 願 人  株式会社神戸製鋼所代 即 人
 弁理士  青白 葆 ほか1名第2図 客積− 第3図 手続補正書(自発) 1、事件の表示 昭和57年特許願第 107341   号2、発明の
名称 動力回収装置 3補正をする者 事件との関係 特許出願人 代表者     高  橋  孝  吉4、代理人 7、補正の内容 ■、)明細書中、次の箇所を訂正する、(1)第3頁1
5行「油圧モーフ」を薇圧モータ」と訂正する。 (2)第7頁11〜13行[給液・・・・・・(D−、
A)Jを次の通り訂正する。 「給腋行稈(状態A−状態B)、減圧行程(B−。 C)、排液行程(C−、D) 、昇圧行程(D −A)
 J(3)第8頁6行「第1位置」の前に「図の上方の
」を挿入子る。 (4)第8頁15行「第1位置」の前に「図の下方の」
を挿入する。 (5)第9頁5行「第2位置」の前に「図の上方の」を
1宙人する。 (6)第10頁1行「閉じられ」を仲立位装置に戻され
」と訂正する。 (7)第10頁3行「第1位置」の前に「図の下方の」
を挿入する、 (8)第10頁14行「第2位置」の前に「図の下方の
」を挿入する。 (9)第10頁17行「第2位置」の前に「図の下方の
」を挿入する。 00第12頁4行「可変容祉形」を「可変吐出形」と訂
正する。 2、)図面第1図を別紙の通り訂正する。 以上 1・−□
Fig. 1 is a system diagram of a coal liquefaction plant to which the present invention is applied, Fig. 2 is a finger pressure diagram showing the operating cycle of the power recovery device according to the present invention, and Fig. 3 is a power recovery diagram in Fig. 1. It is a time chart of opening and closing of the valve of the device. 5-High pressure side gas-liquid separation tower, 6-Low pressure side gas-liquid separation tower, 7-Cylinder for pressure reduction, 9-Cylinder for pressure medium on pressure reduction side, 11-
Column pressure side pressure medium cylinder, 13 - Pressure increase cylinder, 1
5a, 15b, 15C ~ High pressure liquid supply valve, 16a, 16b
, 16C~Reducing liquid discharge valve, 17a, 17b, 17C, 2
2a, 22b. 22C-t7J exchange valve, 23a, 23b, 23C ~ check valve for pressurized liquid discharge, 24a, 24b, 24C ~ check valve for low pressure liquid supply, 25 ~ low pressure liquid flood pump, 26 ~ hydraulic motor,
35 ~ Emergency pressure reducing valve. Patent Applicant Kobe Steel Co., Ltd. Immediately Patent Attorney Aobai Bo and 1 other person Figure 2 Client information - Figure 3 Procedural amendment (voluntary) 1. Indication of the case Patent Application No. 107341 of 1988 2. Name of the invention Power recovery device 3 Relationship with the case of the person making the amendment Patent applicant representative Takayoshi Takahashi 4, agent 7 Contents of the amendment ■,) The following parts in the specification are corrected, (1) Page 3 1
Correct ``hydraulic morph'' in line 5 to ``pressure motor''. (2) Page 7, lines 11-13 [Liquid supply...(D-,
A) Correct J as follows. "Axillary culm supply (state A - state B), decompression stroke (B-.C), drainage stroke (C-, D), pressure increase stroke (D - A)
J(3) Insert "above the figure" before "first position" on page 8, line 6. (4) Page 8, line 15, before “1st position”, “below the figure”
Insert. (5) On page 9, line 5, before ``2nd position'', add ``above the figure'' by 1 alien. (6) On page 10, line 1, ``Closed'' should be corrected to ``Return to the intermediary device.'' (7) On page 10, line 3, before “1st position”, “below the figure”
(8) Insert ``below the figure'' in front of ``2nd position'' on page 10, line 14. (9) Insert "lower in the figure" before "second position" on page 10, line 17. 00 Page 12, line 4, "variable displacement type" is corrected to "variable discharge type". 2.) Correct Figure 1 of the drawing as shown in the attached sheet. Above 1・-□

Claims (1)

【特許請求の範囲】[Claims] (1)溶解ガスおよび固形物粒子を含有する高圧液を供
給する高圧液供給弁と、前記高圧液を減圧した減圧液を
排出する減圧液排出弁とを備えた複数本の減圧用プラン
ジャ形シリンダを高圧液供給源および減圧液受容部にそ
れぞれ並列に配すると共に、低圧液を供給する低圧液供
給用逆止弁と前記抵圧液を昇圧した昇圧液を排出する外
圧液排出用逆止弁とを備えた複数本の外圧用プランジャ
形シリンダを低圧液供給源および外圧液受容部にそれぞ
れ並列に配し、前記減圧用プランジャ形シリンダと昇圧
用プランジャ形シリンダを同数とし、さらに、前記減圧
用シリンダのプランジャに連結されたプランジャおよび
圧力媒体流出入室を有する圧力媒体流出入機構の前記圧
力媒体流出入室を圧力媒体供給源に接続すると共に、該
圧力媒体流出入室を、外圧用シリンダのプランジャに連
結されたプランジャおよび圧力媒体流出入室を有する圧
力媒体流出入機構の圧力媒体流出入室と液圧モータとに
切換弁を介して接続し高圧液体を減圧する際の回収エネ
ルギを直接そのプロセスにおける高圧液体供給源として
帰還させることを特徴とする動力回収装置。
(1) A plurality of plunger-type cylinders for pressure reduction, each equipped with a high-pressure liquid supply valve that supplies high-pressure liquid containing dissolved gas and solid particles, and a reduced-pressure liquid discharge valve that discharges the reduced-pressure liquid obtained by reducing the pressure of the high-pressure liquid. are arranged in parallel with the high-pressure liquid supply source and the reduced-pressure liquid receiving part, respectively, and a low-pressure liquid supply check valve that supplies low-pressure liquid and an external-pressure liquid discharge check valve that discharges the pressurized liquid that has increased the pressure of the resistive liquid. A plurality of plunger-type cylinders for external pressure are arranged in parallel in each of the low-pressure liquid supply source and the external pressure liquid receiving part, and the number of plunger-type cylinders for pressure reduction and the plunger-type cylinders for pressure increase are the same, and A pressure medium inflow and outflow chamber of a pressure medium inflow and outflow mechanism having a plunger connected to a plunger of a cylinder and a pressure medium inflow and outflow chamber is connected to a pressure medium supply source, and the pressure medium inflow and outflow chamber is connected to a plunger of an external pressure cylinder. The pressure medium inflow and outflow chamber of a pressure medium inflow and outflow mechanism having a plunger and a pressure medium inflow and outflow chamber is connected via a switching valve to a hydraulic motor, and the recovered energy when depressurizing high pressure liquid is directly used to supply high pressure liquid in the process. A power recovery device characterized by returning power as a power source.
JP57107341A 1982-06-21 1982-06-21 Power recovery device Pending JPS58222986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57107341A JPS58222986A (en) 1982-06-21 1982-06-21 Power recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57107341A JPS58222986A (en) 1982-06-21 1982-06-21 Power recovery device

Publications (1)

Publication Number Publication Date
JPS58222986A true JPS58222986A (en) 1983-12-24

Family

ID=14456591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57107341A Pending JPS58222986A (en) 1982-06-21 1982-06-21 Power recovery device

Country Status (1)

Country Link
JP (1) JPS58222986A (en)

Similar Documents

Publication Publication Date Title
US6973780B2 (en) Controller for a hydraulic press and method for the operation thereof
US20110108484A1 (en) Method of improving performance of a reverse osmosis system for seawater desalination, and modified reverse osmosis system obtained thereby
US4756830A (en) Pumping apparatus
NO333362B1 (en) System and method for pumping multiphase fluids
JP2003504189A (en) Water desalination method and apparatus
CN1733615A (en) Energy-saving reverse osmosis desalting process and device for seawater/brackish water
CN203043847U (en) Energy recycling device for seawater desalination reverse osmosis system
JPS58222986A (en) Power recovery device
CN108506178B (en) Energy recovery device combined with temperature difference driving and composite system thereof
JPS5852689B2 (en) Method and apparatus for supplying and depressurizing high-pressure fluids
CN103230745B (en) Differential pressure booster-type energy recovery device based on reverse osmosis system
EP1141549A1 (en) Device for converting energy being stored in compressed air into mechanical work
US20120160336A1 (en) Devices and Methods for Varying the Geometry and Volume of Fluid Circuits
JPS5912180A (en) Power retrieving device
CN104747545B (en) Reverse osmosis system pressurizing and energy recycling device and pressurizing and energy recycling method
JPS58220979A (en) Collective device of power
JPS5920574A (en) Power recovery device
US1765627A (en) Hydraulic press and the like
JPS60238132A (en) Power recovery apparatus
JPS5920508A (en) Power recovery device
JPS5922818A (en) Transport apparatus for liquid containing solid particle
JPS5912181A (en) Power retrieving device
CN102562723B (en) Automatic differential pressure pump
CN213270494U (en) Hydraulic driving system of balance-weight-free hydraulic pumping unit
JPS5929778A (en) Power recovery device