JPS58221205A - Production device of hard alloy - Google Patents

Production device of hard alloy

Info

Publication number
JPS58221205A
JPS58221205A JP10516382A JP10516382A JPS58221205A JP S58221205 A JPS58221205 A JP S58221205A JP 10516382 A JP10516382 A JP 10516382A JP 10516382 A JP10516382 A JP 10516382A JP S58221205 A JPS58221205 A JP S58221205A
Authority
JP
Japan
Prior art keywords
current
cylindrical body
heat
carrying
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10516382A
Other languages
Japanese (ja)
Other versions
JPH0221517B2 (en
Inventor
Kiyoshi Inoue
潔 井上
Makoto Onoe
誠 尾上
Yoshio Takahashi
良夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP10516382A priority Critical patent/JPS58221205A/en
Publication of JPS58221205A publication Critical patent/JPS58221205A/en
Publication of JPH0221517B2 publication Critical patent/JPH0221517B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0004Devices wherein the heating current flows through the material to be heated

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide a titled device which improves electric power efficiency and yields various hard alloys such as hard crystals having prescribed performances by enclosing a cylindrical body which has heat resistance and thermal conductivity and is to be inserted therein with powder of a raw material mixture with a heat insulating material and a reinforcing material, and providing a pair of electrodes at both ends of the cylindrical body. CONSTITUTION:A green compact mixture 4 for a hard alloy is packed in a cylindrical body 1 having heat resistance and thermal conductivity. A heat insulating material 5A and a reinforcing material 5B having heat resistance are provided coaxially to the body 1. A pair of electrodes 2, 3 and conducting plates 6, 7 are provided at the top and bottom of the cylindrical body (furnace body) 1 so as not to contact with the material 5B. Heating current is flowed concentrically among the plate 6-the electrode 2-the body 1-the electrode 3-the plate 7 so that the mixture 4 is subjected to a heating and synthesizing treatment. When the synthesis of the hard alloy of the composite body advances and a liquid phase state is generated, the condition of conducting electricity is controlled according to the intended alloy. This device is adaptable for synthesizing and producing abrasive grains of an SiC-B4C alloy.

Description

【発明の詳細な説明】 本発明は、例えば耐摩材や砥粒等として使用することか
できる高硬度材や耐熱材等の硬質合金の焼成又は合成焼
結装置、又は製造装置に係るもので、合成焼結体が2種
以上の例えば、炭化硼素と炭化珪素とを組合せ九両者の
複又は複合炭化物乃至は共晶体、さらKは窒化物や硼素
化物、硅素化物#+を同時に含有する複合体(llI!
i′l溶体を含む)の硬質合金の製造装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for firing or synthesizing hard alloys such as high-hardness materials and heat-resistant materials that can be used as wear-resistant materials, abrasive grains, etc., or manufacturing apparatus. The synthetic sintered body is a combination of two or more types, for example, a combination of boron carbide and silicon carbide, a composite or composite carbide or eutectic of both, and K is a composite containing nitride, boride, or silicide #+ at the same time. (llI!
This invention relates to an apparatus for producing hard alloys (including i'l solution).

W 、 T i 、 ’I” a 、 B 、 S i
 、 M o 、 N l) 、 Hf 。
W, T i, 'I' a, B, S i
, Mo, Nl), Hf.

Zr、V尋の遷移金属の各種炭化物及び窒化物が或はさ
らにrfl iとBとの化合物の如き硼素化物又は硅素
化物が高硬度材及び耐熱材等の硬質合金であることは良
く知られており、例えばその粒子は各種耐摩材や、工具
チップ、或いは砥粒等の高硬度粒子どして広く用いられ
ている。
It is well known that various carbides and nitrides of transition metals such as Zr and V, and also borides and silicides such as compounds of rfl i and B, are hard alloys such as high-hardness materials and heat-resistant materials. For example, the particles are widely used in various wear-resistant materials, tool chips, and high-hardness particles such as abrasive grains.

上記の如き主として、金属炭化物と金属窒化物或いは金
属硼素化物や硼素化物とからの適宜2種以上の選択組合
せにより、特に好ましくは高硬度材と高靭性材との組合
せによシ複又は複合炭化物乃至窒化物、好ましくは例え
ば2種の炭化物の組合せから成る共晶体や固溶体の如き
複合体又は複合多結晶体の硬質合金を合成した合成体を
成形、粉、砕、篩分は等して使用することが好ましいも
のである。
A composite or composite carbide as described above is produced mainly by appropriately selecting a combination of two or more of metal carbides and metal nitrides or metal borides and borides, particularly preferably by combining a high hardness material and a high toughness material. A composite obtained by synthesizing a hard alloy of a nitride, preferably a composite such as a eutectic or solid solution made of a combination of two types of carbides, or a composite polycrystal, is used after being molded, pulverized, crushed, and sieved in the same manner. It is preferable to do so.

上記複合体又は複合多結晶体の硬質合金を構成する組合
せを、例示すると、以下の通りである。
Examples of combinations constituting the hard alloy of the composite or composite polycrystalline body are as follows.

なお下記の組合せのものは、前者に記載したものが、高
硬度材、そして後者が高強度又は靭性付与材であるが、
組合せによって変化することが当然である。
In addition, in the following combinations, the former is a high hardness material, and the latter is a high strength or toughness imparting material.
Naturally, it changes depending on the combination.

■炭化硼素(例えば、B 4 C,又はB13C2)−
炭化チタン(例えば、TiC)、■炭化硼素−窒化5i
C)、■硼化チタン(例えば、’1” i 82 )−
炭化珪素、■硼化チタンー炭化タングステン、■硼化チ
タンー炭化チタン、■炭化モリブデン(例えば、MO2
C)−炭化チタン、■炭化タングステンW2O−炭化タ
ングステンWC,[相]窒化チタンー炭化チタン、■炭
化ジルコニウム(例えば、ZrC)−炭化タングステン
、 上記の例示は、高硬度の金属炭化物(炭化硼素)や金属
硼素化物(硼素化チタン)と、該高硬度拐と同程度以下
の硬度を有すると共に強度(引張り又は曲げ強さ、靭性
)の大きい金属炭化物や窒化物との固溶体や共晶体等の
複合体又は複合多結晶体から成る硬質合金を造ることに
よシ、上記組合せ体の夫々の欠点を補うことにより高硬
度で高強度の有用な高硬度材、耐熱材を得ることかで色
る。
■Boron carbide (e.g. B 4 C, or B13C2) -
Titanium carbide (e.g. TiC), ■Boron carbide-nitride 5i
C), ■Titanium boride (e.g. '1'' i 82 )-
Silicon carbide, ■Titanium boride-tungsten carbide, ■Titanium boride-titanium carbide, ■Molybdenum carbide (e.g., MO2
C) - titanium carbide, ■ tungsten carbide W2O - tungsten carbide WC, [phase] titanium nitride - titanium carbide, ■ zirconium carbide (e.g. ZrC) - tungsten carbide, The above examples include high hardness metal carbide (boron carbide) and A composite such as a solid solution or eutectic of a metal boride (titanium boronide) and a metal carbide or nitride that has a hardness comparable to or lower than that of the high hardness metal and has high strength (tensile or bending strength, toughness). Alternatively, by producing a hard alloy made of a composite polycrystalline body, it is possible to obtain a useful high-hardness material or heat-resistant material with high hardness and high strength by compensating for each of the drawbacks of the above-mentioned combinations.

上記共晶体等の複合多結晶体としては、例えば上5− 記■のB4C−8ICの組合せ(なお、例えば、上記B
4Cは、炭化硼素の例として記したもので、例えばB1
11C2外の炭化硼素化合物を含有していることを許容
するもので、このことは、他の炭化物、窒化物及び硼化
物の場合も同様である。)に於て、共晶状態となる組成
(約35wt%8iC−55wt%B4C)  の前後
が一般的に望ましいが、成る程度の亜共晶及び逆に過共
晶状態であるものも有用であって、上記B4C−8iC
の組合せの場合には、後に例示説明するように、B4C
マトリックス中に、SiCがや\細長い、短糸状、短棒
状、片又は条片状、ホイスカ状等として、分布して、混
合介在するから、介在f9icが高硬度のマトリックス
B4Cを、一種の繊維強化した状態となっており、従っ
て両者の混合含有割合の範囲は10〜7Qwt%S i
C−残部B4Cと言うような組成であっても良いが、一
般的には炭化物等の組合せによるが共ム乃至過共晶、例
えば25〜60%8iC−残部B4Cと首う範囲が良い
ようである。
Examples of composite polycrystals such as the above-mentioned eutectic include the combination of B4C-8IC described in 5.
4C is written as an example of boron carbide, for example B1
It is allowed to contain boron carbide compounds other than 11C2, and the same applies to other carbides, nitrides, and borides. ), it is generally desirable to have a composition around a eutectic state (approximately 35 wt% 8iC-55 wt% B4C), but it is also useful to have a hypoeutectic state or, conversely, a hypereutectic state. So, the above B4C-8iC
In the case of the combination, B4C
Since SiC is distributed and mixed in the matrix in the form of elongated, short threads, short rods, pieces or strips, whiskers, etc., the intervening f9ic strengthens the high hardness matrix B4C as a kind of fiber reinforcement. Therefore, the mixed content range of both is 10 to 7Qwt%S i
It may have a composition such as C-remainder B4C, but in general, depending on the combination of carbides etc., a eutectic or hypereutectic composition, for example 25 to 60% 8iC-remainder B4C, seems to be a good range. be.

また、介在乃至は含有不純物であるが、上記共晶 6− 体等の複合体又は複合多結晶体を、後に述べる装置によ
って一部に液相が存在するような高温度の加熱状態とし
て合成焼結等製造する際に、B4Cと8iCとの共晶体
化を阻害し九F)、B4CとSiCの一方又は両方を分
解または化合等して実質上の変化(例えば、硬度や密度
の低下)をさせないもの、或いは合成製造の出発原料と
して、例えばB15i1及びCの各単体の混合物を用い
る場合には、該混合物の加熱合成焼結過程に於て、B−
?8 tと化合したF)、B4C及びSiCの合成生成
を格別に阻害するものでなければ良い。
In addition, although it is an intervening or contained impurity, a composite body such as the above-mentioned eutectic body or a composite polycrystalline body is synthesized and sintered by heating it at a high temperature such that a liquid phase exists in a part using an apparatus described later. When producing SiC, it inhibits the formation of a eutectic between B4C and 8iC (9F), and decomposes or combines one or both of B4C and SiC, resulting in substantial changes (for example, a decrease in hardness or density). For example, when using a mixture of B15i1 and C as a starting material for synthetic production, B-
? It is sufficient that it does not particularly inhibit the synthesis of F), B4C and SiC combined with 8t.

例えば、各種の金属(希土類金属を含む)が相当程度(
例えば約10W【5前後)混入していても成る物は炭化
物を造り、″または固溶し、また炭化物やB及び81と
化合等しないものは、製造された共晶体勢の複合体又は
複合多結晶体中や、その端す等に多くの場合偏在または
偏析等するに止まるから、上記の如き不純物である以上
混入介在は何等支障がなく、共晶体勢の複合体の製造量
が減する丈であし、前記焼成合成した複合体又は複合多
結晶体等の硬質合金を破砕して使用する場合には、不純
物の成る程度の混入介在があった方が、破砕が円滑にな
る等好都合な場合もある。また不純物金属、合金によっ
ては複合体又は複合多結晶体等の硬質合金中に分布して
含有され、成形体の靭性や弾性を増すことがあるから、
成形体として使用する等の目的、用途等によっては、数
wt%乃至10W1%程度の金属を、不純物として含有
させる場合がある。
For example, various metals (including rare earth metals) are present to a considerable extent (
For example, substances containing about 10W (around 5) form carbides, or form solid solutions, and substances that do not combine with carbides, B, and 81 are manufactured eutectic composites or composite polyesters. In most cases, they are unevenly distributed or segregated in the crystal or at its edges, so as long as the impurities mentioned above are mixed in, there is no problem, and the production amount of eutectic composites can be reduced. When using the hard alloy such as the composite material or composite polycrystalline material synthesized by sintering, it may be advantageous if there is some inclusion of impurities in order to make the crushing process smoother. Also, some impurity metals and alloys may be distributed and contained in hard alloys such as composites or composite polycrystals, increasing the toughness and elasticity of the compact.
Depending on the purpose, use, etc., such as use as a molded body, several wt% to about 10W1% of metal may be contained as an impurity.

しかしながら、本発明に於ける製造に於ては、上記の如
き不純物金属、合金は、複合多結晶体の成形体の結合剤
となっている成形体の製造を目的、対象とするものでは
ない。
However, in the production according to the present invention, the above-mentioned impurity metals and alloys are not used for the purpose of producing a molded body that serves as a binder for a composite polycrystalline body.

次に上述の如き金属炭化物等の共晶体勢である複合体又
は複合多結晶体等の硬質合金の製造方法について説明す
ると、まずその原料組成には、次の(1)〜・(3)の
3通9、及びその組合せによシ実施可能である。なお、
下船の場合は、共晶体勢の複合体又は複合多結晶体が、
211類の金属炭化物の組合せから構成される場合の例
である。
Next, we will explain the manufacturing method of hard alloys such as composites or composite polycrystals in the eutectic state such as metal carbides as mentioned above. First, the raw material composition includes the following (1) to (3). It is possible to implement by sending three letters9 or a combination thereof. In addition,
In the case of disembarkation, the eutectic composite or composite polycrystalline
This is an example of a case where the material is composed of a combination of metal carbides of Class 211.

(1)2種類の金属炭化物 例えば、上述B4C−8iCの場合は、炭化硼素と炭化
珪素の各粉末(混合のため) (2)2種類の金属と炭素 例えば、上述13 a C−8i Cの場合は、(金g
)硼素(B)と、金属珪素(8i)と、炭素の各粉末(
混合のため)で、この場合炭素とt、、 −c tよ通
常カーボンとか、グラファイト尋を呼称されているもの
であれば、格別種類を問わず、例えば、カーボンブラッ
クのようなものでも良い。また、例えば、上記’17i
Bg−TiCの場合は、金属チタン(Ti )と硼素(
B)と炭素の各粉末の如くである。
(1) Two types of metal carbides For example, in the case of the above-mentioned B4C-8iC, each powder of boron carbide and silicon carbide (for mixing) (2) Two types of metals and carbon For example, in the case of the above-mentioned 13a C-8iC In the case, (gold
) Each powder of boron (B), metallic silicon (8i), and carbon (
(for mixing), and in this case, carbon and t, -ct may be of any type, such as carbon black, as long as it is commonly called carbon or graphite. Also, for example, the above '17i
In the case of Bg-TiC, metallic titanium (Ti) and boron (
B) and carbon powder.

(3)1種又は2種類の金属酸化物又は金属水素化物さ
らには金属と炭素、及び必要に応じて触媒物、 例えば、上述B 4 Q −8i Cの場合は、酸化硼
素(B20g )と、酸化珪素(Si(h)と、上記(
2)と同様な炭素、そして好ましくは、分解、反応を促
進する窒化硼素(BN)の各粉末(混9− 合のため)、また、例えば、上記TiBz −TiCの
場合は、水素化チタン(TiH)と硼素(B)と炭素の
各粉末の如くである。
(3) one or two types of metal oxide or metal hydride, further metal and carbon, and optionally a catalyst, for example, in the case of the above-mentioned B4Q-8iC, boron oxide (B20g); Silicon oxide (Si(h)) and the above (
Carbon similar to 2), and preferably each powder of boron nitride (BN) that promotes decomposition and reaction (for mixing), and, for example, in the case of the above TiBz-TiC, titanium hydride ( TiH), boron (B), and carbon powders.

上記各原料は、加熱合成に当って良く混合することが必
要で、特に、上記(1)の金属炭化物を原料とする場合
は良く混合するために、また加熱合成焼結される複合多
結晶体の結晶サイズを数μm〜数10μmまたはそれ以
下の微結晶とするために、数μmダ前後以下の微粉末を
使用することが好ましいが、上記(2)及び(3)の金
属、金属酸化物、金属水素化物、炭素等の場合には、酸
化物の分解や、炭素化合物化の反応工程等を経るためか
、例えば約10μmi前後の粉末であっても良い。しか
し金属化合物、例えば金属酸化物を粉末サイズや価格等
の点から使用する場合には、発生酸素を除去する水素ガ
ス雰囲気等の還元性の状態とすることが必要な場合もあ
る。
It is necessary to mix each of the above raw materials well during heat synthesis, especially when the metal carbide mentioned in (1) above is used as a raw material, and to mix well, and to form a composite polycrystalline material to be heat synthesized and sintered. In order to obtain microcrystals with a crystal size of several μm to several tens of μm or less, it is preferable to use fine powder of around several μm or less, but the metals and metal oxides of (2) and (3) above are preferred. In the case of metal hydrides, carbon, etc., it may be a powder of about 10 μm in size, for example, probably because it undergoes a reaction process such as decomposition of the oxide and formation of a carbon compound. However, when using a metal compound, such as a metal oxide, due to powder size, cost, etc., it may be necessary to create a reducing state such as a hydrogen gas atmosphere to remove generated oxygen.

上記(1)乃至(3)及びその組合せによる粉末混合物
を得るに当っては、硬度の高い方の金属炭化物、金属鎖
化物、又は金属硼化物等が不純物等を除去し= 10− た合成物中に重要百分比で少くとも20%、通常30%
以上で最大90%程度が生成含有され、従って他方の靭
性の大きい又は増大に寄与する金属炭化物、金属窒化物
、又は金属硼化物が、合成物中に30〜90%、好まし
くは40〜75%程度が分布して生成含有されゐように
組成を選定することが好ましい。
In obtaining the powder mixtures according to the above (1) to (3) and combinations thereof, the metal carbide, metal chain, or metal boride, etc. having higher hardness is a composite material from which impurities have been removed = 10- at least 20%, usually 30%
The metal carbide, metal nitride, or metal boride, which accounts for a maximum of about 90% of the above and therefore contributes to increasing or increasing the toughness of the other, is 30 to 90%, preferably 40 to 75%, in the composite. It is preferable to select the composition so that the amount of formation and inclusion is distributed.

そして、充分に混合処理した混合粉を、軽く圧粉成形す
るか、グラファイトその他の耐熱容器中へ詰め固め、之
を炉中加熱、通電加熱、その他適宜の加熱手段により、
酸化物等の分解、炭化、窒化、硼素化、そして2種以上
の炭化物等の固溶又は共晶体等の複合体又は複合多結晶
体としての硬質合金が合成等生成される温度(一部が溶
融するか液相が存在する温度又は加熱条件)に加熱し、
供給熱量、温度、加熱時間、電気抵抗、その信性状変化
等を何等かの手段で検出することにより上記複合体又は
複合多結晶体等の硬質合金の合成の進行、さらには合成
の完了状態を検知して加熱を停止し、結晶成長防止等の
ために好ましくは高速乃至は急冷を行ない、或いは冷却
速度の制御や冷却中に振動を付与する等して結晶成長の
制御を行ない、合成物、即ち異種炭化物等の共晶体等か
ら成る複合体又は複合多結晶体の高耐熱、高硬度で、か
つ高強度の焼結体を得るのである。
Then, the thoroughly mixed powder is lightly compacted or compacted into a graphite or other heat-resistant container, and heated in a furnace, electrically heated, or by other appropriate heating means.
Temperatures at which hard alloys are synthesized, such as decomposition of oxides, carbonization, nitridation, boronization, solid solution of two or more carbides, composites such as eutectics, or composite polycrystals (some of them are heated to a temperature or heating conditions at which it melts or a liquid phase exists),
By detecting the amount of heat supplied, temperature, heating time, electrical resistance, changes in its reliability, etc., by some means, it is possible to check the progress of synthesis of the hard alloy such as the above-mentioned composite or composite polycrystal, and also the completion state of the synthesis. Upon detection, the heating is stopped, and in order to prevent crystal growth, preferably high-speed or rapid cooling is performed, or crystal growth is controlled by controlling the cooling rate or applying vibration during cooling. That is, a sintered body of a composite or a composite polycrystalline body consisting of a eutectic such as a different type of carbide or the like is obtained, which has high heat resistance, high hardness, and high strength.

例えば、前述B4CSiC混合物の場合には、両者共晶
体合成温度が約2070℃前後であるから、上記混合圧
粉体を2000℃以上約4070〜a100°0に、し
かし前記混合圧粉体全体が溶融して易流動状態となる前
の、共晶体合成部分が溶融状態を保つ状態に、その量に
もよるが通常約lB1.10分前後加熱保持して混合圧
粉体全体の共晶体合成処理を行なう訳であるが、その合
成雰囲気には格別制限はない。前記圧粉状態の混合粉が
そのま\裸の露出した状態で炉中等で加熱される場合、
特に混合粉の一部以上が金属酸化物等の場合には、真空
炉とかアヤゴン等の不活性、乃至は酸素除去のために還
元性雰囲気とすることもあるが、混合圧粉体が例えば金
[TiとB1及び炭素から成る場合で、TiBg及びT
icの外にTiNを適宜の少量複合させたい場合には、
′jj1索(N2)含有ガス、例えばアンモニアガス介
在雰囲気とL7て、窒化用m素を供給すると共に分解生
成酸素を食う水素ガス介在の還元性雰囲気とすれば良い
が、例えば不敬なTlO2を造る酸素(02)は、直接
々触して介在させないようにすることが望ましい。しか
し7、後に説明する本発明装置の通電加熱容器中に圧粉
状態の混合粉を挿脱して加熱する製造する場合には、上
記加熱容器の外に熱遮蔽耐熱材、或いはさらに補強材等
によって、混合粉が多重に包覆されたりするから、その
外側の雰囲気は通常空気中であっても良い。
For example, in the case of the above-mentioned B4CSiC mixture, the eutectic synthesis temperature for both is around 2070°C, so the temperature of the mixed green compact is 2000°C or above and about 4070 to 100°0, but the entire mixed green compact is molten. Before it becomes a free-flowing state, the eutectic synthesis portion is heated and held for about 10 minutes, depending on the amount, to perform eutectic synthesis treatment on the entire mixed powder compact. However, there are no particular restrictions on the synthesis atmosphere. When the mixed powder in the compacted powder state is heated as it is in a bare exposed state in a furnace or the like,
In particular, if a part or more of the mixed powder is metal oxide, etc., an inert or reducing atmosphere such as a vacuum furnace or Ayagon may be used to remove oxygen. [In the case of Ti, B1 and carbon, TiBg and T
If you want to composite a small amount of TiN outside of the IC,
'jj1 It is sufficient to create a reducing atmosphere with a hydrogen gas intervening atmosphere containing a gas containing N2 (N2), for example, ammonia gas, and supplying the m element for nitriding and eating up the decomposed oxygen, but for example, it is possible to create an unholy TlO2. It is desirable that oxygen (02) is not interposed by direct contact. However, 7. When manufacturing by inserting and removing the mixed powder in a powder state into the energized heating container of the apparatus of the present invention to be heated, which will be explained later, a heat-shielding heat-resistant material or a reinforcing material is provided outside the heating container. Since the mixed powder is wrapped in multiple layers, the atmosphere outside the powder may normally be air.

図面第1図は、本発明の通電加熱炉方式により複合体又
は複合多結晶体等の硬質合金を加熱合成する原理的装置
の構成を示す正断面図で、1はグラファイトや炭化珪素
等よ構成る円筒状の通電発熱体(炉体)、2.3は上下
等の対向方向から炉体1に挿設された一対の通電電極で
、その間に軽く圧粉成形された混合圧粉体4が挿設され
てお如、この混合圧粉体4は後述するように炉体1の内
周13− 壁及び通電々極2,3の各先端面等と必ずしも接触して
いる必要はない。5は炉体l外周に同軸に設けられた断
熱用耐熱材や補強材、6.7は上下の一対の通電板、6
A、7人は水冷等の冷却手段が付設され九通電板6の保
持及び送シ制御ヘッドと通電板7の保持台、8は電極2
に必要に応じて制御された加圧、さらには送り込みを与
える送りスピンドル、9は通電加熱用電源、また下部通
電板7及び保持台7人は、図示しないベッド上に載置さ
れているものとする。また10は、加熱温度測定用の温
度検知器である。
Figure 1 is a front sectional view showing the basic structure of an apparatus for heating and synthesizing hard alloys such as composites or composite polycrystals using the energized heating furnace method of the present invention. A cylindrical current-carrying heating element (furnace body) 2.3 is a pair of current-carrying electrodes inserted into the furnace body 1 from opposite directions, such as the top and bottom, between which a lightly compacted powder mixture 4 is inserted. When inserted, the mixed powder compact 4 does not necessarily need to be in contact with the inner circumference 13-wall of the furnace body 1 and the tip surfaces of the current-carrying electrodes 2, 3, etc., as will be described later. 5 is a heat-insulating heat-resistant material and reinforcing material provided coaxially around the outer periphery of the furnace body, 6.7 is a pair of upper and lower current-carrying plates, 6
A, 7 people are equipped with cooling means such as water cooling, 9 are the holding and feeding control head of the current-carrying plate 6, and a holding stand for the current-carrying plate 7, 8 is the electrode 2
A feed spindle that applies controlled pressure and feed as necessary, 9 a power supply for energizing heating, and a lower energizing plate 7 and a holding table 7 placed on a bed (not shown). do. Further, 10 is a temperature detector for measuring heating temperature.

通電加熱用電源9としては、格別特殊なものは要しない
ようで、直流及び交流又はその何れか一方を使用し得る
が、例えば4I公111841−12.885号公報外
に記載の如き周波数約200〜2QOOOHzの交流分
を直流に適宜の割合(約に〜5誓)で重畳した電圧数1
0V前後以下の比較的低電圧、大電流の所謂通電又は放
電焼結用電源を用いれば好適である。
It seems that no special power source is required as the power source 9 for energizing heating, and direct current and/or alternating current may be used, but for example, a power source with a frequency of about 200 as described in 4I Publication No. 111841-12.885 and elsewhere. The voltage number 1 is obtained by superimposing an AC component of ~2QOOOOHz on a DC at an appropriate ratio (approximately ~5%)
It is preferable to use a so-called energization or discharge sintering power source with a relatively low voltage of around 0 V or less and a large current.

通電々流は、通電板6−電極2−炉体1−電極314− −通電板7間を流れ、電極2.3、及び特に発熱体1を
加熱し、混合圧粉体4を加熱する。加熱昇温に当っては
、爆発破砕等が生じないように加熱昇温速度を適宜制御
し、また混合圧粉体の炭化等各種反応や拡散及び共晶反
応等の所定の温度に達した時は、当該所定温度を維持す
るように、温度検知器10の検知温度により電源9を制
御する。即ち、混合圧粉体4の組成にもよるが、多くの
炭化物や硼化物合成反応は、発熱反応である所から、上
記のように温度検出による通電制御が必要となるのであ
る。そして所定時間の加熱処理や検知器lOによる検知
温度の変化の状態等より共晶体等の複合体又は複合多結
晶体の合成状態を検知乃至は判別して、混合圧粉体4を
電極2.3及び炉体1と共に1従って好しくけ耐熱及び
補強材5は除去等して、冷却水に挿入し、即ち通常は急
速冷却をする。
The current flows between the current-carrying plate 6 - the electrode 2 - the furnace body 1 - the electrode 314 - and the current-carrying plate 7, heating the electrode 2.3 and especially the heating element 1, and heating the mixed compact 4. When heating and increasing the temperature, the rate of heating and increasing the temperature should be appropriately controlled to prevent explosions and fractures, etc., and when the predetermined temperature is reached for various reactions such as carbonization of the mixed green compact, diffusion and eutectic reactions, etc. controls the power supply 9 based on the temperature detected by the temperature detector 10 so as to maintain the predetermined temperature. That is, although it depends on the composition of the mixed powder compact 4, many carbide and boride synthesis reactions are exothermic reactions, and thus require energization control based on temperature detection as described above. Then, the synthesis state of a composite such as a eutectic or a composite polycrystal is detected or determined based on the heat treatment for a predetermined time and the change in temperature detected by the detector IO, and the mixed compact 4 is transferred to the electrode 2. 3 and the furnace body 1, so the heat-resistant and reinforcing material 5 is preferably removed, etc., and inserted into cooling water, ie, usually rapidly cooled.

しかして、上記通電加熱に於て、混合粉4の温度が高く
なると、該混合圧粉体4の電気伝導度も増し、混合圧粉
体4自体も通電加熱されるようになるが、マグネシャ等
のセラミック系耐熱材及びグラファイト外の耐熱補強材
5にも分流する電流が多く、加熱電力効率が悪く、大き
な消費電力の割9に少量の混合圧粉体4しか合成処理出
来ないと言う問題がある。
However, when the temperature of the mixed powder 4 rises during the electrical heating, the electrical conductivity of the mixed powder compact 4 also increases, and the mixed powder compact 4 itself comes to be electrically heated, but magnesia etc. There is a problem that a large amount of current is diverted to the ceramic heat-resistant material and the heat-resistant reinforcing material 5 other than graphite, and the heating power efficiency is poor, and only a small amount of mixed compact 4 can be synthesized considering the large power consumption. be.

第2図は、そのような欠点を除去した本発明通電加熱合
成用の製造装置の好ましい一実施例の正断面図で、前述
第1図のものと同−物又は同一作用物には同一符号が付
されている。
FIG. 2 is a front cross-sectional view of a preferred embodiment of the production apparatus for electrical heating synthesis of the present invention, which eliminates such drawbacks, and the same components or the same agents as those in FIG. 1 are designated by the same reference numerals. is attached.

発熱体としてのグラファイト等の炉体1は、発熱効率を
増すために薄肉に構成され、かつ、一部の上部1人を後
述するように再使用可能なように、上部IAと下部IB
とに2分離自在な状態に同軸一体に構成される。混合圧
粉体4は好ましくは図示の如く上下に夫々空所aを有す
るように炉体1の軸方向中間部に充填保持される。この
ような充填をするには炉体IA、IBを同軸に揃えた状
態で、下部空所aにl*幽する部分に詰物を嵌設してお
いて混合粉を充填し、上方から加圧パンチを嵌合加圧し
て混合圧粉体4を圧縮成形し、後上記の下部詰物や上部
パンチを引き抜けば良く、必要ならば混合圧粉体4に圧
粉成形形状保持の混ぜ物をすることがある。5Bは補強
材乃至は後記耐熱材5Aの保持材で、通常グラファイト
等であつて、下部通電板7上に雲母等の耐熱絶縁物11
を介して載置される。5人はマグネシャ(MgO)等の
熱及び電気絶縁用の通常セラミック系耐熱材で、粉末状
物が、炉体1の外側と前記補強材5Bとの間の隙間に同
軸状に断熱及び絶縁用に詰物として加圧充填されたもの
である。また前述第1図の場合との相違点は、上下の一
対の電極2.3間に炉体1が挟着された状態に構成され
ており、上下各電極2.3及び上部通電板6は周りの補
強材5Bと接触しないように構成されているが、若し接
触する場合には上記雲母等絶縁物を介設させておくこと
が必要である。
The furnace body 1, which is made of graphite or the like as a heating element, has a thin wall structure to increase heat generation efficiency, and has an upper part IA and a lower part IB so that a part of the upper part can be reused as described later.
The two are coaxially integrated and can be separated freely. The mixed powder compact 4 is preferably filled and held in the axially intermediate portion of the furnace body 1 so as to have spaces a at the top and bottom, respectively, as shown in the figure. To perform this type of filling, align the furnace bodies IA and IB coaxially, fit a filler into the lower cavity a, fill it with the mixed powder, and apply pressure from above. The punches are fitted and pressurized to compress and mold the mixed green compact 4, and then the lower filler and upper punch mentioned above can be pulled out, and if necessary, a mixture is added to the mixed green compact 4 to maintain the compacted shape. Sometimes. 5B is a reinforcing material or a holding material for the heat-resistant material 5A described later, which is usually made of graphite or the like, and a heat-resistant insulating material 11 such as mica is placed on the lower current-carrying plate 7.
It is placed through. Five people use a ceramic heat-resistant material such as magnesia (MgO) for heat and electrical insulation, and a powdered material is coaxially placed in the gap between the outside of the furnace body 1 and the reinforcing material 5B for insulation and heat insulation. It is pressurized and filled as a filling. Also, the difference from the case shown in FIG. Although it is constructed so that it does not come into contact with the surrounding reinforcing material 5B, if it does come into contact with it, it is necessary to interpose an insulating material such as the mica.

図示の装置で、加熱電流は通電板6−電極2−炉体1−
電極3−通電板7間に集中して流れ、炉体1の通電加熱
温度上昇により耐熱材5人の電気抵抗が著しく低下して
も、通電板6、電極2、又は 17− 炉体1から耐熱材5Aを介して、補強材5B、及び通電
板7へと流れる電流が絶縁物11によって阻止される所
から、第1図のような補強材5への通電を許容するもの
に比較して、少くとも50%程度以上、通常容易に数1
0倍以上電力効率が良くなり、小さな容量の電源で多く
の量の混合圧粉体4を加熱合成処理できる利点がある。
In the illustrated device, the heating current is applied to the current-carrying plate 6 - electrode 2 - furnace body 1 -
The flow concentrates between the electrode 3 and the current-carrying plate 7, and even if the electrical resistance of the five heat-resistant materials decreases significantly due to the rise in the energization heating temperature of the furnace body 1, the current flows from the current-carrying plate 6, electrode 2, or 17- to the furnace body 1. Compared to the case where current is allowed to flow to the reinforcing material 5 as shown in FIG. , at least about 50% or more, usually easily several 1
There is an advantage that the power efficiency is improved by a factor of 0 or more, and a large amount of mixed green compact 4 can be heated and synthesized with a small capacity power source.

勿論、この場合も、通電板6、電極2、及び炉体1から
、耐電材5Aを介して電極3及び通電板7に流れる電流
は防止できない。
Of course, in this case as well, the current flowing from the current-carrying plate 6, the electrode 2, and the furnace body 1 to the electrode 3 and the current-carrying plate 7 via the electrically-resistant material 5A cannot be prevented.

上記装置に於て混合圧粉体4が一部に於て溶融又は液相
が存在する所定の温度に加熱され、共晶体等の複合体等
の硬質合金の合成製造が進むと、該合成の進行による液
相状態の発生、或いはまた一部溶融乃至は軟化した状態
で共晶体の合成に伴う混合圧粉体4の収縮が起り、混合
圧粉体4の上方部分が炉体1内周壁から剥離して破線4
Aで示すように、瓶上部のような形状となって、上部が
揺れ動いて炉体1内壁と接離を繰り返すような状態とな
υ、このため通電板6.7間の抵抗、従って18− 通電電圧変動として上記共晶合成の進行に伴う液相状態
の発生が検知される。従ってこの状態を成る程度保って
合成を終了する。
In the above-mentioned apparatus, the mixed powder compact 4 is heated to a predetermined temperature at which a part of it melts or has a liquid phase, and as the synthesis and production of hard alloys such as composites such as eutectics progresses, the synthesis process progresses. The mixed powder compact 4 shrinks due to the generation of a liquid phase state due to the progress, or the synthesis of the eutectic in a partially melted or softened state, and the upper part of the mixed powder compact 4 is separated from the inner circumferential wall of the furnace body 1. Peel off and dashed line 4
As shown in A, the shape is like the top of a bottle, and the top swings and repeatedly comes into contact with and separates from the inner wall of the furnace body 1. Therefore, the resistance between the current-carrying plates 6 and 7, and therefore 18- The occurrence of a liquid phase state accompanying the progress of the eutectic synthesis is detected as a variation in the applied voltage. Therefore, the synthesis is completed while maintaining this state to some extent.

合成材料tこよって種々相違するが、上述B4C−8i
Cの場合には、上記液相状態が発生した状態で、さらに
加熱電力を増し加熱昇温させると、混合圧粉体4の溶融
が進み、電極3上に落下等して激しい粒成長を起し、合
成製造物が脆くなってしまうから、か\る事態は避けな
ければならない。
The synthetic material t varies depending on the material, but the above-mentioned B4C-8i
In the case of C, when the heating power is further increased and the temperature is raised in the state where the liquid phase state has occurred, the mixed powder compact 4 melts and falls onto the electrode 3, causing intense grain growth. However, such a situation must be avoided since the synthetic product will become brittle.

そして上記の如くすると、下部炉体IBには合成物が完
全に溶着するために、合成物の取如出しのため下部炉体
IBは破壊されることKなるが、上部炉体IAに合成物
が溶着しないで取り出すことができ、該上部炉体1人を
次の混合圧粉体4の合成製造に際しての炉体1の一部、
例えば下部炉体IBとして再使用に供することができる
。然るに過剰加熱を行なうと電極3にも合成製造物が溶
着し、繰り返し使用を困離とする。
Then, as described above, since the composite is completely welded to the lower furnace body IB, the lower furnace body IB has to be destroyed in order to take out the composite, but the composite is welded to the upper furnace body IA. can be taken out without welding, and the upper furnace body 1 can be used as a part of the furnace body 1 during the next synthesis production of the mixed powder compact 4.
For example, it can be reused as the lower furnace body IB. However, if excessive heating is performed, the synthetic product will also be welded to the electrode 3, making repeated use difficult.

なお、耐熱材5Aは、合成物を取シ出す際に補強材5B
及び炉体1から掻き落すことになるが、再使用が可能で
あり、通常に水冷等の冷却に当り素早く炉体1から掻き
落されるか、そのま\水中冷却等されることになる。混
合圧粉体4は、前述の如く、炉体1内に空所aを形成す
ることなく、第1図の場合のように、はソー評語めるか
、上部の空所aのみを形成して通電加熱するようにして
も良いが、電力効率の低下が避けられないことと、混合
圧粉体4に電極2又は電極2−炉体1−混合圧粉体4−
電極3の経路で可成りの加熱電流が流れるような状態で
あると、混合圧粉体4内の内部発熱加熱により、軸方向
の中心部の温度上昇が起シ易く、過加熱によシ結晶成長
を生ずることがあるから注意が肝要である。また、上記
第2図に於て、耐熱材5Aのはソ全部又は炉体1の外周
壁と接する側の筒状体部(即ち、耐熱材5人の一部)を
、混合圧粉体4と同−又は異組成の混合粉を一杯又は軸
方向の中間部分の一部に耐熱材5Aに替えて充填し、炉
体1の内外の両側で同時に同−又は異種の共晶体等の複
合体等硬質合金を合成することもできる。何れにしても
上述第2図の装置は高温加熱又は高温焼成合成用の製造
装置として極めて効率が良く有用なものである。しかし
ながら加熱又は焼成に当シ、成る程度以上の加圧保持を
必要とするものには、炉体1部分の耐圧が低い所から好
適なものではない。そして、上記の如く加熱合成に際し
混合圧粉体4に対する加圧が必要でない場合には炉体1
及び補強材5Bは軸方向と直角方向の耐圧性を多く必要
としないから、炉体1及び補強材5Bは一体の円筒状体
である必要はなく、例えば、板材を組合せ接着又は組み
立てる等して、断面が三角、四角、又は多角形の筒状体
を構成して使用することができる。
In addition, the heat-resistant material 5A is used as the reinforcing material 5B when taking out the composite material.
Although it is scraped off from the furnace body 1, it can be reused, and it is usually quickly scraped off from the furnace body 1 during water cooling or the like, or it is directly cooled in water. As described above, the mixed powder compact 4 does not form the cavity a in the furnace body 1, but instead forms only the cavity a in the upper part, as in the case of FIG. However, it is also possible to heat the mixed powder by applying electricity to it, but a drop in power efficiency is unavoidable, and the mixed compact 4 is connected to the electrode 2 or the electrode 2 - the furnace body 1 - the mixed powder compact 4 -
If a considerable amount of heating current flows in the path of the electrode 3, the temperature at the center in the axial direction is likely to rise due to internal heat generation within the mixed powder compact 4, causing crystallization due to overheating. It is important to be careful as this may cause growth. In addition, in FIG. 2 above, the whole part of the heat-resistant material 5A or the cylindrical body part on the side in contact with the outer circumferential wall of the furnace body 1 (that is, a part of the five heat-resistant materials) is removed from the mixed compact 4. A mixed powder of the same or different composition is filled completely or in a part of the axially intermediate part in place of the heat-resistant material 5A, and a composite of the same or different types of eutectic etc. is simultaneously filled on both the inside and outside of the furnace body 1. Equihard alloys can also be synthesized. In any case, the apparatus shown in FIG. 2 is extremely efficient and useful as a manufacturing apparatus for high-temperature heating or high-temperature firing synthesis. However, it is not suitable for applications that require a certain level of pressure retention for heating or firing because the pressure resistance of the furnace body portion is low. As mentioned above, when pressurizing the mixed powder compact 4 is not necessary during heating synthesis, the furnace body 1
Since the reinforcing material 5B does not require much pressure resistance in the direction perpendicular to the axial direction, the furnace body 1 and the reinforcing material 5B do not need to be an integral cylindrical body. , a cylindrical body having a triangular, square, or polygonal cross section can be used.

また、第3図は、上記第2図の加熱合成用の製造装置に
於て、圧粉成形された混合圧粉体4の炉体1内に対する
異なる装填配置の状態を示す部分図で、混合圧粉体4は
、上記第2図の場合の上下空所aに代え、その外周と炉
体1内周壁との間に環状の隙間13を形成すると共に上
部空所を有するように小寸法に圧粉成形して、かつ絶縁
板12を介して電極3上に配置されている。なお、この
絶縁板21− 12は、例えば上記B4C−8iCの共晶体合成温度に
耐える絶縁物は実質上ない所から、通常合成途中で、焼
損するものであり、従ってこの絶縁板12は、無くても
良い。そして炉体1の周囲は前述第2図の場合とはソ同
様で、か\る構成によれば、加熱電流は、炉体1に集中
して流れて発熱するから加熱効率を高く保つことができ
る。
Further, FIG. 3 is a partial view showing different loading arrangements of the compacted mixed compact 4 into the furnace body 1 in the production apparatus for thermal synthesis shown in FIG. The powder compact 4 is made small in size so that an annular gap 13 is formed between its outer periphery and the inner circumferential wall of the furnace body 1, and an upper space is provided instead of the upper and lower spaces a in the case of FIG. 2. It is compacted and placed on the electrode 3 with an insulating plate 12 in between. Note that this insulating plate 21-12 usually burns out during synthesis because there is virtually no insulator that can withstand the eutectic synthesis temperature of B4C-8iC. It's okay. The surroundings of the furnace body 1 are similar to those shown in FIG. can.

次に本発明製造装置による複合多結晶体等の硬質合金、
特に砥粒としての合成製造例、及びその結果を実験例に
よシ説明する。
Next, hard alloys such as composite polycrystals produced by the manufacturing apparatus of the present invention,
In particular, examples of synthetic production as abrasive grains and their results will be explained using experimental examples.

(実験例1) 粒径約5μml以下の珪素、硼素及びグラファイトをモ
ル比で、約0.35 : 2.6 : 1の割合(重量
百分比約19.7%:I56.3%:24%の割合・・
・・・・約32%5iC−68%B4C)で充分混合し
たもの約2gを内径的15mmmの黒鉛型に入れ(第1
図)約250A/mlnの割合で加熱電流を増して行き
約2.25 KAとして2000℃以上の反応及び共晶
温度に約10分間加熱した後、黒鉛型の外側から水を掛
けて数分間で冷却した。生成物を粉砕し22− て硝酸と硫酸との混酸で処理して、遊離硼素や炭素等を
除去し、粒度約#170〜270の粒子を篩分けしてう
、ピンク試験を行なった。
(Experimental Example 1) Silicon, boron, and graphite with a particle size of about 5 μml or less were mixed in a molar ratio of about 0.35:2.6:1 (weight percentage of about 19.7%:I56.3%:24%). ratio··
...Approximately 2 g of a well-mixed mixture of approximately 32% 5iC - 68% B4C) was placed in a graphite mold with an inner diameter of 15 mm (first
Figure) After increasing the heating current at a rate of about 250 A/ml to about 2.25 KA and heating to a reaction and eutectic temperature of 2000°C or higher for about 10 minutes, water was poured from the outside of the graphite mold and the mixture was heated for several minutes. Cooled. The product was pulverized and treated with a mixed acid of nitric acid and sulfuric acid to remove free boron, carbon, etc., and particles with a particle size of about #170 to #270 were sieved and subjected to a pink test.

ラッピング試験は、8KD−11材と超硬5%Co=W
Cに対して各5分行つ′だ。
The lapping test was conducted using 8KD-11 material and carbide 5% Co=W.
Do this for 5 minutes each for C.

前者5KD−11材に対し、面粗度的1.5 μmRr
naxで、加工速度的9mg/min となり、同一面
粗度加工の公知のB4C砥粒によるものに対し約3倍ダ
イヤモンド砥粒によるものに対し約6倍であった。また
、後者超硬5%Co−WCに対し7、面粗度的1 μm
Rmaxで、加工速度的13 mg/m i nとなり
、ダイヤモンド砥粒による加工性能とはソ同等であった
Compared to the former 5KD-11 material, the surface roughness is 1.5 μmRr.
nax, the machining speed was 9 mg/min, which was about 3 times faster than that using known B4C abrasive grains for same-surface roughness processing, and about 6 times faster than that using diamond abrasive grains. In addition, for the latter carbide 5% Co-WC, the surface roughness is 7 μm and 1 μm in terms of surface roughness.
Rmax was 13 mg/min in terms of processing speed, which was equivalent to the processing performance with diamond abrasive grains.

(実験例2) 約2μmy1以下の炭化硼素粉末と炭化珪素粉末を重量
百分比で、■約50%炭化硼素−30%炭化珪素のもの
と、■約50%BaC−50%炭化珪素のものと2種類
を造り、夫々を良く混合して夫々的200gを前述第2
図の装置の混合圧粉体4のように詰め、該第2図の装置
構成で約20KWの電力を供給し、合成複合体の共晶温
度(約2070〜2100°0、但し、混合物41体の
温度は直接には計れない。)に約10分間加熱して、炭
化珪素と炭化硼素の共晶反応を生じさせ、約5分間で水
冷して粉砕した。
(Experimental Example 2) The weight percentages of boron carbide powder and silicon carbide powder of about 2 μmy or less are: ■ About 50% boron carbide - 30% silicon carbide, ■ About 50% BaC - 50% silicon carbide, and 2. Mix each type well and add 200g of each type to the above-mentioned second
The mixed green compact 4 of the apparatus shown in the figure is packed, and about 20 KW of power is supplied with the apparatus configuration shown in FIG. temperature cannot be measured directly) for about 10 minutes to cause a eutectic reaction between silicon carbide and boron carbide, and then cooled with water for about 5 minutes and pulverized.

第4図と第5図は、上述のようにして合成された炭化珪
素と炭化硼素との共晶体の破砕面の走査型電子顕微鏡に
よる反射電子組成像で、第4図は上記■の約70%炭化
硼素−30%炭化珪素の場合第5図は上記■の約50%
炭化硼素−50%炭化珪素の場合であり、夫々倍率は2
50倍で、各反射電子組成像中白色の片状、条片状、短
い棒状、または小片板状のものが炭化珪素であって、そ
の廻りの黒い部分は炭化硼素である。上記■及び■の如
き異なる組成によって異なる組織となっているが、何れ
の場合もマトリックス炭化硼素に対し、片状等の炭化珪
素が種々の方向を向いて分散して含有されていて、例え
ば、繊維強化型複合材に似た構成の組織となっておシ、
硬度は高いが熱的衝撃等に弱い炭化硼素の弱点を片状等
の炭化珪素の介在によ如補うことができることが判る。
Figures 4 and 5 are backscattered electron composition images taken by a scanning electron microscope of the fractured surface of the eutectic of silicon carbide and boron carbide synthesized as described above. % boron carbide - 30% silicon carbide Figure 5 shows approximately 50% of the above ■
This is the case of boron carbide - 50% silicon carbide, each with a magnification of 2
At 50x magnification, the white flakes, stripes, short rods, or platelets in each backscattered electron composition image are silicon carbide, and the black parts around them are boron carbide. The structure differs depending on the composition as shown in (1) and (2) above, but in both cases silicon carbide, such as flakes, is dispersed and oriented in various directions relative to the matrix boron carbide. For example, It has a structure similar to that of fiber-reinforced composite materials.
It can be seen that the weakness of boron carbide, which has high hardness but is weak against thermal shock, can be compensated for by the presence of silicon carbide in the form of flakes.

なお、上記第4図の共晶体(完全共晶組成よりも炭化硼
素の方が僅かに多い)のグイッヵース硬度は約4000
−4500HV、  第5図の共J&組成より炭化珪素
の量が相当多いもの\場合の硬度は約3.800−4,
000HVであった。
The Gwickers hardness of the eutectic shown in Figure 4 above (slightly more boron carbide than the complete eutectic composition) is approximately 4000.
-4500HV, the hardness is approximately 3.800-4,
It was 000HV.

第6図は、上記■の約50%BaC−50%SiC過共
晶体を粉砕して5KD−11材に対するう、ピンク試験
をしたときの加工面粗度(μmRmax)と研削速度(
mg/m i n ) との関係を、3種類の粒度(μ
m)につき示したもので、はソ同−粒度のダイヤモンド
砥粒による場合と比較して示した。
Figure 6 shows the machined surface roughness (μmRmax) and grinding speed (
The relationship between the particle size (mg/min) and the three types of particle sizes (μ
m) is shown in comparison with the case using diamond abrasive grains of the same grain size.

また、第7図は、上記第6図と同一の過共晶体砥粒(粒
度は一部違っている。)を使用して、炭化タングステン
系の超硬合金のG種(6%Co−WC)と、8種(10
%TiC−6%Co−WC)に対する加工面粗度研削速
度との関係を各粒度につき示し△ たもので、はソ同−粒度のダイヤモンド砥粒による場合
と比較して示した。
In addition, Fig. 7 shows the G type (6% Co-WC ) and 8 types (10
%TiC-6%Co-WC) and the grinding speed of the machined surface roughness for each grain size.

25− この第6図及第7図の結果によれば、本発明製造装置に
よって製造された硬質合金の高硬度材よ)成る砥粒が鉄
材及び超硬合金に対してもダイヤモンド砥粒と同等以上
の研削性能を有していることが判ゐ。
25- According to the results shown in FIGS. 6 and 7, the abrasive grains made of hard alloys produced by the manufacturing apparatus of the present invention are equivalent to diamond abrasive grains for iron materials and cemented carbide materials. It was found that the grinding performance exceeded the above.

(実験例3) 約−〇3250’l’iH(又は’I’i)粉と、約5
ttmSの硼素粉と黒鉛粉ともそル比で約1 : 1.
4 : 0.3の割合で充分に混合する。
(Experimental Example 3) Approximately -〇3250'l'iH (or 'I'i) powder and approx.
The ratio of boron powder and graphite powder of ttmS is approximately 1:1.
4: Mix thoroughly at a ratio of 0.3.

この混合粉を圧粉成形し、第2図の装置で約L200℃
まで加熱すると、チタン(Ti)と硼素(B)が先ず反
応を起し、この反応熱によってチタン(Ti)と炭素(
C)が反応を起し、硼素化チタン(例えばTiB2)と
炭化チタン(例えばTic)  との複合体(組成的に
は重量百分比で約58.7%TiBz −41,3%T
iC)が得られる。これを粉砕して砥粒としたときの切
削性能は炭化硼素とはソ等しかった0上記加熱雰囲気を
窒素含有ガス(例えばNHa)中とすると、窒化チタン
(TiN)も合成され複合する。
This mixed powder was compacted and heated to approximately L200°C using the apparatus shown in Figure 2.
When heated to
C) reacts, forming a composite of titanium boride (e.g. TiB2) and titanium carbide (e.g. Tic) (compositionally about 58.7% TiBz-41.3%T by weight percentage).
iC) is obtained. The cutting performance of this abrasive when crushed into abrasive grains was about the same as that of boron carbide. When the heating atmosphere is in a nitrogen-containing gas (for example, NHa), titanium nitride (TiN) is also synthesized and composited.

−26= (実験例4) 約10μmメのチタン、モリブデン、タングステンと黒
鉛の各粉末を、原子量比で約1:1:1:3の割合で混
合し、該混合粉を内径的15mm、4の通電加熱用カー
ボン型に詰め、上下をカーボン板で蓋をして、カーボン
型に約25 OA/m I nの割合で通電流を増大さ
せて約2.25KAとし、この状態を約3分保って焼成
合成を行なった。
-26= (Experiment Example 4) Titanium, molybdenum, tungsten, and graphite powders of about 10 μm were mixed in an atomic weight ratio of about 1:1:1:3, and the mixed powder was mixed with an inner diameter of 15 mm, 4 Filled in a carbon mold for electrical heating, the top and bottom were covered with carbon plates, and the current applied to the carbon mold was increased at a rate of approximately 25 OA/m I to approximately 2.25 KA, and this state was maintained for approximately 3 minutes. The calcination synthesis was performed while maintaining the temperature.

生成物は、炭化チタンベースの固溶体で、格子定数は約
4287であった。実験例1と同様にして8KD−11
に対する2ツピング試験を行なった所加工性能は、加工
面粗度的0.5μmRmaxで、ダイヤモンド砥粒と同
等であった。
The product was a titanium carbide-based solid solution with a lattice constant of approximately 4287. 8KD-11 in the same manner as Experimental Example 1
The machining performance was 0.5 μmRmax in terms of machined surface roughness, which was equivalent to diamond abrasive grains.

(実験例5) 約#60の炭化チタンと、約−#325の窒化チタンと
を重量比で、約3=1の割合で混合し、前述実験例2と
同様な条件下で焼成合成焼結し、同様なラッピング試験
を行なった所、加工面粗度的0.25μmRmaxで、
加工速度約Q、 4 mg/m I nの性能が得られ
た。
(Experimental Example 5) Titanium carbide of about #60 and titanium nitride of about -#325 were mixed at a weight ratio of about 3=1 and fired under the same conditions as in Experimental Example 2. However, when a similar lapping test was conducted, the machined surface roughness was 0.25μmRmax,
A processing speed of about Q and a performance of 4 mg/min were obtained.

(実験例6) 約10″μmメのチタンと約2μmyfのクロームと黒
鉛粉とを原子量比で約1:0.2:1.2の割合で混合
し、前述実験例2と同様な条件下で焼成合成焼結した。
(Experimental Example 6) Approximately 10"μm titanium, approximately 2μmyf chromium, and graphite powder were mixed in an atomic weight ratio of approximately 1:0.2:1.2 under the same conditions as in Experimental Example 2 above. It was synthesized and sintered.

焼結体は嵩密度約99%以上の炭化チタンベースの固溶
体で、その破砕面は約10μmd大の、大兄菱形をした
炭化チタンの結晶が、相互にはソ整揃密着結合した状態
となっていた。
The sintered body is a titanium carbide-based solid solution with a bulk density of approximately 99% or more, and its fractured surface is approximately 10 μm d in size, with large diamond-shaped titanium carbide crystals tightly bonded to each other in an aligned manner. Ta.

本発明の硬質合金の合成製造に使用する装置の構成によ
れば、電気抵抗加熱炉方式による加熱合成の場合の電力
効率を著しく高め、小容量の電源で多量の混合粉の加熱
合成が可能と々す、また製造された硬質合金も、硬度結
晶等所定の性能を有するものであるから、極めて有用な
ものである。
According to the configuration of the apparatus used for the synthesis and production of hard alloys of the present invention, the power efficiency in heating synthesis using an electric resistance heating furnace method is significantly increased, and it is possible to heat synthesis of a large amount of mixed powder with a small capacity power source. Moreover, the produced hard alloys are extremely useful because they have certain properties such as hardness and crystallinity.

そして、上記の如き本発明の装置によれば、例えば、 特開昭57−42578号公報に記載のMBg型硼素化
物およびM g B s型硼素化物(但し、前記Mは何
れも金属元素)の中から選んだ1種以上の硼素化物と硼
素化物もしくはニッケルリン合金の中から選んだ1種以
上の結合剤、さらに必要に応じ、MB型硼素化物添加剤
を基本組成とし、これに金属の炭化物、硅素化物、窒化
物、酸化物の中から選んだ少くとも1種の添加成分を配
合して成る硬質、耐熱性の焼結体の製造。
According to the apparatus of the present invention as described above, for example, the MBg type boride and the MgBs type boride (wherein M is a metal element) described in JP-A No. 57-42578 can be used. The basic composition is one or more borides selected from among them, one or more binders selected from borides or nickel-phosphorous alloys, and if necessary, an MB type boride additive, and a metal carbide. , silicide, nitride, and oxide.

特開昭57−42,578号公報に記載の1種以上の硼
素化金属、もしくはM2BB型硼素化金属と1種以上の
結合剤とを基本組成とし、これにMB型硼素化物の中か
ら選ばれた少くとも1種の添加成分を配合してなる硬質
耐熱性焼結体の製造。
The basic composition is one or more metal borides described in JP-A No. 57-42,578, or M2BB type metal borides and one or more binders, and a combination selected from MB type borides. Production of a hard heat-resistant sintered body containing at least one additive component.

或いはさらに炭化チタン系硬質合金、例えば、遷移金属
(Ti 、V、Cr 、ZrIMOIHf、’ral又
はW)を1種以上合有する炭化チタンベースの固溶体で
あって、該固溶体の嵩密度が少くとも80%以上であっ
て、かつ固溶体を構成する単位結晶の大きさが数10μ
m1以内であるものを、原料混合粉の圧粉体より焼結に
より製造する場合等にも適用できる。
Alternatively, a titanium carbide-based hard alloy, for example, a titanium carbide-based solid solution containing one or more transition metals (Ti, V, Cr, ZrIMOIHf, 'ral or W), wherein the solid solution has a bulk density of at least 80 % or more, and the size of the unit crystal constituting the solid solution is several tens of microns.
It can also be applied to the case where a powder having a diameter of less than m1 is produced by sintering from a green compact of raw material mixed powder.

そして、混合圧粉体に加圧が必要な場合には、予 29
− め充分高圧で圧粉成形したものを用いるとか、所定の耐
圧をするセラミック系等の容器に混合圧粉体を挿入して
炉体内に挿設するとか、或いはまた炉体内で上下電極間
で絶縁状態で加圧付与可能な構成、機構を用いるように
しても良い。
If it is necessary to pressurize the mixed compact, pre-pressure is applied.
− Use powder compacted at a sufficiently high pressure, or insert the mixed compact into a container made of ceramic or the like that can withstand a specified pressure and insert it into the furnace body, or alternatively, A structure or mechanism that can apply pressure in an insulated state may be used.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図は硬質合金を通電加熱炉方式によって製造す
る場合の本発明の原理的装置の構成を示す正断面図、第
2図は本発明通電加熱炉方式の好ましい装置の構成実施
例を示す正断面図、第3図は第2図装置の異なる使用状
態を示す部分の断面図、第4図及び第5図は本発明製造
装置によって合成製造された硬質合金の一実施例の破砕
面を走査型室顕微鏡により撮影した反射電子組成像の写
真図、第6図及び第7図は上記合成製造硬質合金を粉砕
し砥粒としてラッピング試験した時の研削特性曲線図で
ある。 30−
Figure 1 is a front sectional view showing the basic configuration of the apparatus of the present invention when producing hard metals using the electric heating furnace method, and Figure 2 shows an example of the configuration of a preferred apparatus using the electric heating furnace method of the present invention. 3 is a sectional view of a portion showing different usage states of the device shown in FIG. A photograph of a backscattered electron composition image taken with a scanning chamber microscope, and FIGS. 6 and 7 are grinding characteristic curve diagrams when the above-mentioned synthetically manufactured hard alloy was crushed and subjected to a lapping test as abrasive grains. 30-

Claims (9)

【特許請求の範囲】[Claims] (1)硬質合金製造の原料粉末の混−&物が内部に挿設
される耐熱導電性の筒状体と、該筒状体に同軸状に包囲
して設けられる耐熱性の断熱及び補強材と、前記筒状体
を軸方向に通電するように両端に接触して設けられた一
対の電極と、及び加熱通電電源とから成る硬質合金の製
造装置。
(1) A heat-resistant conductive cylindrical body into which a mixture of raw material powder for hard alloy production is inserted, and a heat-resistant heat insulating and reinforcing material coaxially surrounding the cylindrical body. A hard metal manufacturing apparatus comprising: a pair of electrodes provided in contact with both ends of the cylindrical body so as to energize the cylindrical body in the axial direction; and a heating power source.
(2)台上に載置され、加熱通電々源の−・方の端子に
接続される下部通電板と該通電板上に載置される下部通
電々極と、該通電前極上に硬質合金製造の原料粉末の混
合物が挿設される耐熱導電性で薄肉厚に構成された通電
加熱体としての筒状体とから酸部、さらに腋部状体頂部
に他方の上部通電々極を載置すると共に、前記筒状体と
同軸に、かつ所定の間隔を有せしめて、耐熱性補強筒を
前記下部通電板に絶縁載置して設け、前記筒状体と補強
筒間の筒状隙間に耐熱性で電気及び熱絶縁物を充填介設
させ、さらに前記加熱通電々源の他方の端子に接続され
た上部通電板を前記上部通電々極に対して通電接離及び
加圧自在に設けて成る硬質合金の製造装置。
(2) A lower current-carrying plate placed on a table and connected to the - terminal of the heating current-carrying source, a lower current-carrying electrode placed on the current-carrying plate, and a hard metal alloy on the current-carrying front electrode. A cylindrical body as a heat-resistant conductive thin-walled current-carrying heating body into which a mixture of raw material powder for manufacturing is inserted, an acid part, and the other upper current-carrying electrode is placed on the top of the armpit-shaped body. At the same time, a heat-resistant reinforcing tube is provided coaxially with the cylindrical body and at a predetermined interval, and is mounted insulated on the lower current-carrying plate, and a cylindrical gap between the cylindrical body and the reinforcing tube is provided. A heat-resistant electrical and thermal insulating material is filled and interposed, and an upper current-carrying plate connected to the other terminal of the heating current-carrying power source is provided so as to be able to conduct current to and separate from and press the upper current-carrying electrodes. Hard alloy manufacturing equipment consisting of:
(3)前記耐熱導電性の筒状体が炭素材である特許請求
の範囲第1項又は第2頂側れかに記載の硬質合金の製造
装置。
(3) The hard alloy manufacturing apparatus according to claim 1 or 2, wherein the heat-resistant conductive cylindrical body is a carbon material.
(4)前記一対の通電々極が炭素材である特許請求の範
囲第1項乃至第3項の何れかに記載の硬質合金の製造装
置。
(4) The hard alloy manufacturing apparatus according to any one of claims 1 to 3, wherein the pair of current-carrying electrodes is made of a carbon material.
(5)前記一対の通電板が炭素材である特許請求の範囲
第1項乃至第4項の何れかに記載の硬質合金の製造装置
(5) The hard alloy manufacturing apparatus according to any one of claims 1 to 4, wherein the pair of current-carrying plates are made of carbon material.
(6)前記補強材又は補強筒が炭素材である特許請求の
範囲第1項乃至第5項の何れかに記載の硬質合金の製造
装置。
(6) The hard alloy manufacturing apparatus according to any one of claims 1 to 5, wherein the reinforcing material or the reinforcing tube is a carbon material.
(7)  前記耐熱性の断熱材又は電気及び熱絶縁物が
マグネシャ(MgO)である特許請求の範囲第1項乃至
M6項の何れかに記載の硬質合金の製造装fil。
(7) The hard metal manufacturing equipment according to any one of claims 1 to M6, wherein the heat-resistant heat insulating material or electrical and thermal insulator is magnesia (MgO).
(8)前記補強材と下部通電板間の電気絶縁が衷母材板
の介設によるものである特1’l’M求の範囲第2項乃
至1g7項の何れかに記載の硬質合金の製造装置。
(8) The hard alloy according to any one of Items 2 to 1g7, wherein the electrical insulation between the reinforcing material and the lower current-carrying plate is provided by interposing a base material plate. Manufacturing equipment.
(9)前記耐熱導電性の筒状体に対する混バ物の挿設が
、前記混合物が混合圧粉体であって、前記筒状体の軸方
向中間部に係止された挿設である特許請求の範囲第1項
乃至に8項の何れかに記載の硬質合金の製造装置。
(9) A patent in which the mixture is inserted into the heat-resistant conductive cylindrical body, the mixture is a mixed green compact, and the mixture is inserted into the axially intermediate portion of the cylindrical body. A hard metal manufacturing apparatus according to any one of claims 1 to 8.
JP10516382A 1982-06-17 1982-06-17 Production device of hard alloy Granted JPS58221205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10516382A JPS58221205A (en) 1982-06-17 1982-06-17 Production device of hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10516382A JPS58221205A (en) 1982-06-17 1982-06-17 Production device of hard alloy

Publications (2)

Publication Number Publication Date
JPS58221205A true JPS58221205A (en) 1983-12-22
JPH0221517B2 JPH0221517B2 (en) 1990-05-15

Family

ID=14400021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10516382A Granted JPS58221205A (en) 1982-06-17 1982-06-17 Production device of hard alloy

Country Status (1)

Country Link
JP (1) JPS58221205A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424780B1 (en) * 2001-07-19 2004-03-30 손인진 Method for one step synthesis and densification of tungsten carbide hard metal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509172A (en) * 1973-05-30 1975-01-30
JPS54164941U (en) * 1978-05-12 1979-11-19
JPS571750A (en) * 1980-06-02 1982-01-06 Yamato Shiki Kk Pasting device for case

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509172A (en) * 1973-05-30 1975-01-30
JPS54164941U (en) * 1978-05-12 1979-11-19
JPS571750A (en) * 1980-06-02 1982-01-06 Yamato Shiki Kk Pasting device for case

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424780B1 (en) * 2001-07-19 2004-03-30 손인진 Method for one step synthesis and densification of tungsten carbide hard metal

Also Published As

Publication number Publication date
JPH0221517B2 (en) 1990-05-15

Similar Documents

Publication Publication Date Title
JP5013156B2 (en) High hardness diamond polycrystal and method for producing the same
US4241135A (en) Polycrystalline diamond body/silicon carbide substrate composite
US4231195A (en) Polycrystalline diamond body and process
US4171339A (en) Process for preparing a polycrystalline diamond body/silicon carbide substrate composite
US4933140A (en) Electrical heating of graphite grain employed in consolidation of objects
US4853178A (en) Electrical heating of graphite grain employed in consolidation of objects
EP0155066A1 (en) Hard diamond sintered body
US4124401A (en) Polycrystalline diamond body
US4495123A (en) Dense shaped articles consisting of polycrystalline hexagonal boron nitride and process for their manufacture by isostatic hot pressing
US5271749A (en) Synthesis of polycrystalline cubic boron nitride
US5382405A (en) Method of manufacturing a shaped article from a powdered precursor
US4168957A (en) Process for preparing a silicon-bonded polycrystalline diamond body
US6432150B1 (en) Diamond-containing stratified composite material and method of manufacturing the same
IE48038B1 (en) Polycrystalline diamond body/silicon carbide or silicon nitride substrate composite
JPH06277492A (en) Method for controlling particle size distribution in producing polycrystalline cubic boron nitride
US4173614A (en) Process for preparing a polycrystalline diamond body/silicon nitride substrate composite
US2254549A (en) Sintered metal composition
US4234661A (en) Polycrystalline diamond body/silicon nitride substrate composite
JP5896968B2 (en) Zirconium carbide ingot and method for producing powder
JPS58221205A (en) Production device of hard alloy
EP0731186A1 (en) Composite material and process for producing the same
JP7441441B2 (en) Sintered diamond electrode material
RU2184644C2 (en) Diamond-containing laminate composition material and method for making such material
JP4295491B2 (en) Copper-tungsten alloy and method for producing the same
JP3998872B2 (en) Cemented carbide manufacturing method