JPS58221116A - Detector for flow rate - Google Patents

Detector for flow rate

Info

Publication number
JPS58221116A
JPS58221116A JP10433282A JP10433282A JPS58221116A JP S58221116 A JPS58221116 A JP S58221116A JP 10433282 A JP10433282 A JP 10433282A JP 10433282 A JP10433282 A JP 10433282A JP S58221116 A JPS58221116 A JP S58221116A
Authority
JP
Japan
Prior art keywords
flow
pressure
orifices
flow rate
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10433282A
Other languages
Japanese (ja)
Other versions
JPS6335926B2 (en
Inventor
Kenichi Koga
賢一 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10433282A priority Critical patent/JPS58221116A/en
Publication of JPS58221116A publication Critical patent/JPS58221116A/en
Publication of JPS6335926B2 publication Critical patent/JPS6335926B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices

Abstract

PURPOSE:To enable the measurement of the flow rate of each flow passage with good accuracy, by determining the differential pressure between the pressure of the orifices disposed in the longitudinal direction of the flow passages with their axial center intersecting orthogonally with flow and the pressure on the upstream side of said orifices. CONSTITUTION:Orifices 10 are inserted in flow passages 7 with the axes thereof directed in the longitudinal sectional direction of said flow passages, and pressure detecting holes 11 open in the direction at right angles to the flow direction. Pressure conduit pipes 12 are connected respectively to the holes 11. The 2nd pressure conduit pipe 13 is provided on the upstream side of the orifices 10 of a duct 1, that is, in a placed where flow passages are not segmented by partition walls 6. The pipes 12 and the 2nd pipe 13 are conducted respectively to a differential pressure gage. Therefore, if the relations between the differential pressure and flow rate intrinsic to the orifices 10 are beforehand calibrated, the flow rates in the passages 7 are determined. The flow rates in the respective flow passages are thus measured with good accuracy.

Description

【発明の詳細な説明】 で流れる流体の流量を検出する装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting the flow rate of a fluid flowing in a fluid.

矩形ダクト内を流れる流体の流量を測定する゛ ものと
しては、第1図に示すようなものが提案され実用に供さ
れている。
As a device for measuring the flow rate of fluid flowing inside a rectangular duct, the device shown in FIG. 1 has been proposed and put into practical use.

第1図においてlは矩形ダクト,2はその側壁より下流
側に向けて突出させた長方形板状の一対の板で,同板2
の上流側と下流側の壁圧を取り出す導圧管3a・3bを
取り付けてなるものである。
In Fig. 1, l is a rectangular duct, 2 is a pair of rectangular plates protruding from the side wall of the duct toward the downstream side;
The pressure pipes 3a and 3b are installed to take out the wall pressure on the upstream and downstream sides of the pipe.

従って,導圧管3杜・3bから求められる圧力値から,
矩形ダクl− 1内を流れる流体の流量が極めて精度良
く求めることが可能であるが。
Therefore, from the pressure value obtained from impulse pipes 3 and 3b,
However, it is possible to determine the flow rate of the fluid flowing inside the rectangular duct l-1 with extremely high accuracy.

このような装置を適用し難い場合もある。There are cases where it is difficult to apply such a device.

たとえば、第2図に示すように,ボイラの燃焼炉4に取
り付けである複数の風箱5に送られる風量を測定するよ
うな場合である。
For example, as shown in FIG. 2, there is a case where the amount of air sent to a plurality of wind boxes 5 attached to a combustion furnace 4 of a boiler is measured.

通常空気は.一本の矩形ダクト1で送られて来て,風箱
5の少し手前で隔壁6によって区画される訳であるが.
バーナの性能向上の点から夫々の風箱5に送られる空気
量を正しく制御する必要がある。従って.隔壁6で区画
された断面矩形の流路7内の流量を第1図に示しだ装置
で測ろうとすると,隔壁6に2枚の板(第1図符号2)
を溶接してやらなければならないが。
Normal air is. It is sent through a single rectangular duct 1 and separated by a bulkhead 6 just before the wind box 5.
In order to improve the performance of the burner, it is necessary to correctly control the amount of air sent to each wind box 5. Therefore. When trying to measure the flow rate in a channel 7 with a rectangular cross section divided by a partition wall 6 using the device shown in Fig. 1, two plates (reference numeral 2 in Fig. 1)
I have to weld it.

現場的に狭い箇所であるがゆえに溶接歪の為精度が出な
かったり、取付角を正確に設定できず。
Due to the narrow location of the site, welding distortion may result in poor accuracy and the mounting angle cannot be set accurately.

精度が出ないことにもなっていた。It also resulted in a lack of accuracy.

本発明の流量検出装置は、断面矩形の流炉内を流れる流
体の流量を検出する装置であって。
The flow rate detection device of the present invention is a device for detecting the flow rate of a fluid flowing in a flow furnace having a rectangular cross section.

円筒状をなしその軸心が流れと直交して流路の長手方向
に配設されるオリフィスと、同オリフィスの表面に作用
する圧力を検出する第1の圧力検知手段と、上記流路内
オリフィス上流側の圧力を検出する第2紮圧力検知手段
とからなるものであるから1通常の断面矩形の流路内の
流量はもちろんのこと、第2図に示すような非常に狭く
、かつ平行して流路が多数ある場合などの各流路の流量
を精度良く測定することができる。
an orifice having a cylindrical shape and disposed in the longitudinal direction of the flow path with its axis perpendicular to the flow; a first pressure detection means for detecting pressure acting on the surface of the orifice; and an orifice in the flow path. Since it consists of a second ligature pressure detection means that detects the pressure on the upstream side, it is not only possible to detect the flow rate in a normal flow channel with a rectangular cross section, but also in a very narrow and parallel flow channel as shown in Figure 2. The flow rate of each flow path can be measured with high accuracy when there are many flow paths.

以下本発明を第3図および第4図に示す一実施例の装置
について説明する。
The present invention will now be described with reference to an embodiment of the apparatus shown in FIGS. 3 and 4.

10は円筒状をなすオリフィスであって、その表面に圧
力検出孔11が軸方向−列状に複数開口している。
Reference numeral 10 denotes a cylindrical orifice, on the surface of which a plurality of pressure detection holes 11 are opened in a row in the axial direction.

同圧力検出孔11は、オリスイス1oの内部に通じ、そ
の端面10aに開口1−9夫々に導圧管12が接続され
ている。
The pressure detection hole 11 communicates with the inside of the OriSwiss 1o, and a pressure guiding pipe 12 is connected to each of the openings 1-9 on the end surface 10a.

第4図には、第2図と同様にボイラの燃焼炉風箱に風を
送るダクト1の一部を示してあり。
Similar to FIG. 2, FIG. 4 shows a part of the duct 1 that sends air to the combustion furnace wind box of the boiler.

その流路は隔壁6によって区画されている。The flow path is divided by partition walls 6.

上記したオリフィス1oは、流路7の断面長手方向にそ
の軸を向けて挿入されていて、圧力検出孔11は流れ方
向と直角の向きに開口している。13は、ダクト1のオ
リフィス1o上流側、すなわち隔壁6で流路が区画され
ていない箇所に取り付けられた第2の導圧管である。
The orifice 1o described above is inserted with its axis facing the longitudinal direction of the cross section of the flow path 7, and the pressure detection hole 11 is opened in a direction perpendicular to the flow direction. Reference numeral 13 denotes a second pressure impulse pipe attached to the upstream side of the orifice 1o of the duct 1, that is, at a location where the flow path is not divided by the partition wall 6.

なお、オリフィス10に取り付けた導圧管12゜および
ダクト1に取り付けた第2の導圧管13は1図示しない
差圧計に夫々溝ひかれている。
Incidentally, the pressure impulse pipe 12° attached to the orifice 10 and the second pressure impulse pipe 13 attached to the duct 1 are each grooved by a differential pressure gauge (not shown).

従って、あらかじめ円筒状のオリフィス1G固有・の差
圧と流量(流速)との関係を校正1しておくことによっ
て夫々の流路7内流量が求められる訳である。
Therefore, the flow rate in each flow path 7 can be determined by calibrating the relationship between the differential pressure unique to the cylindrical orifice 1G and the flow rate (flow velocity) in advance.

第5図および第6図には、流れ方向に対する圧力検出孔
11の向きと得られる差圧の関係を示しである。第5図
に示すよ□うに、流れ方向に対する圧力検出孔11の傾
きを61円筒状をなすオリフィス10の圧力検出孔11
に作用する静圧をP、オリフィス10より十分離れた所
の圧力をPa 、流体の速度■とすると、差圧P −P
5 and 6 show the relationship between the orientation of the pressure detection hole 11 with respect to the flow direction and the resulting differential pressure. As shown in Fig. 5, the inclination of the pressure detection hole 11 with respect to the flow direction is 61.
If the static pressure acting on is P, the pressure at a location sufficiently far from the orifice 10 is Pa, and the velocity of the fluid is, then the differential pressure P - P
.

と、動圧pv2/2gの比は、第6図に示すように大き
く変化することになる。
Then, the ratio of the dynamic pressure pv2/2g changes greatly as shown in FIG.

従って、第4図に示した実施例のように、θ=90度に
すると差圧は感度良く取り出されていることになる。
Therefore, as in the embodiment shown in FIG. 4, when θ=90 degrees, the differential pressure can be extracted with good sensitivity.

このように本発明の一実施例の装置によれば。Thus, according to an apparatus according to an embodiment of the present invention.

隔壁6で仕切られたダクト1の流路7にオリフィスlO
を取り付ける工事は、ダクト1の壁に開けた開口部より
第3図に示すようなオリフィス10を挿入し固定すれば
良いだけであるので工事が容易である。
An orifice lO is installed in the flow path 7 of the duct 1 partitioned by the partition wall 6.
The installation work is easy because all that is required is to insert and fix an orifice 10 as shown in FIG. 3 through an opening made in the wall of the duct 1.

まだ、この実施例のように流路7が多数ある場合に、オ
リフィス10の上流側の静圧を1点だけ測定して夫々の
差圧を求めれば事足りるので、導圧管の本数が減少でき
る。
However, when there are a large number of flow paths 7 as in this embodiment, it is sufficient to measure the static pressure at only one point on the upstream side of the orifice 10 and find the differential pressure at each point, so the number of pressure guiding pipes can be reduced.

更に、従来のように板のオリフィスを使用する場合には
、どうしても導圧管が他の流路内を通らざるを得す不都
合であったが1本実施例では圧力はオリフィス10の内
部を通って伝達され、ダクト1外で導圧管12に接続さ
れる為に。
Furthermore, when using a plate orifice as in the past, there was an inconvenience that the pressure pipe had to pass through another flow path, but in this embodiment, the pressure is passed through the inside of the orifice 10. to be transmitted and connected to the impulse line 12 outside the duct 1.

余分なものが流路内に無く測定精度も向上する。There is no extra material in the flow path, which improves measurement accuracy.

なお、上記したように流れ方向に対する圧力検出孔11
の向きOにより、得られる差圧の感度は変化するので、
得られる差圧が大きすぎるような場合には、19を変更
して差圧と流量との関係を求めるようにすれば良く、計
測可能な範囲を拡大できる。
In addition, as described above, the pressure detection hole 11 in the flow direction
The sensitivity of the obtained differential pressure changes depending on the direction O, so
If the obtained differential pressure is too large, the relationship between the differential pressure and the flow rate may be determined by changing 19, thereby expanding the measurable range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装置の図、第2図は流路の−実施例を示
す図、第3図は本発明に用いるオリフィスの斜視図、第
4図は本発明の一実施例を示す装置の図、第5図は流れ
方向と圧力検出孔との関係を示す図、第6図は角度gと
差圧との関係を示すグラフである。 1:タリト、6:隔壁、7:流路、10ニオリフイス、
11:圧力検出孔、12:導圧管。 13:第2の導圧管。 萬l聞 篇2図 /
Fig. 1 is a diagram of a conventional device, Fig. 2 is a diagram showing an embodiment of a flow path, Fig. 3 is a perspective view of an orifice used in the present invention, and Fig. 4 is a diagram showing an embodiment of the device of the present invention. , FIG. 5 is a diagram showing the relationship between the flow direction and the pressure detection hole, and FIG. 6 is a graph showing the relationship between the angle g and the differential pressure. 1: Talito, 6: Partition, 7: Channel, 10 Niorifice,
11: Pressure detection hole, 12: Impulse tube. 13: Second impulse pipe. Manbun version 2/

Claims (1)

【特許請求の範囲】[Claims] 断面矩形の流路内を流れる流体の流量を検出する装置で
あって1円筒状をなしその軸心が流れと直交して流路の
長手方向に配設されるオリフィスと、同オリフィスの表
面に作用する圧力を検出する第1の圧力検知手段と、上
記流路内オリフィス上流側の圧力を検出する第2の圧力
検知手段とからなることを特徴とする流量検出装置。
This device detects the flow rate of fluid flowing in a flow channel with a rectangular cross section, and includes a cylindrical orifice whose axis is perpendicular to the flow and is arranged in the longitudinal direction of the flow channel, and an orifice on the surface of the orifice. A flow rate detection device comprising a first pressure detection means for detecting the applied pressure and a second pressure detection means for detecting the pressure upstream of the orifice in the flow path.
JP10433282A 1982-06-17 1982-06-17 Detector for flow rate Granted JPS58221116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10433282A JPS58221116A (en) 1982-06-17 1982-06-17 Detector for flow rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10433282A JPS58221116A (en) 1982-06-17 1982-06-17 Detector for flow rate

Publications (2)

Publication Number Publication Date
JPS58221116A true JPS58221116A (en) 1983-12-22
JPS6335926B2 JPS6335926B2 (en) 1988-07-18

Family

ID=14377977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10433282A Granted JPS58221116A (en) 1982-06-17 1982-06-17 Detector for flow rate

Country Status (1)

Country Link
JP (1) JPS58221116A (en)

Also Published As

Publication number Publication date
JPS6335926B2 (en) 1988-07-18

Similar Documents

Publication Publication Date Title
US4696194A (en) Fluid flow measurement
US4528847A (en) Flow metering device with recessed pressure taps
US3581565A (en) Flow-measuring device
US3685355A (en) Air monitoring system
US4343194A (en) Flow sensing apparatus
US6044716A (en) Fluid pressure detector and air flow rate measuring apparatus using same
MXPA04009470A (en) Averaging orifice primary flow element.
US3981193A (en) Fluid pressure sensing apparatus
US4592239A (en) Flowmeter
US4040293A (en) Fluid flow measuring device
JPS60155924A (en) Device for measuring volumetric flow rate of gas in flow path
US4559835A (en) Flow measuring traverse probe
US4372170A (en) Flow measuring apparatus
US4290315A (en) Apparatus for determining the differential pressure and the volumetric fluid flow in a conduit
JP7034480B2 (en) Fluid pressure detector
JPS58221116A (en) Detector for flow rate
JPH0512647B2 (en)
JPH09101186A (en) Pitot-tube type mass flowmeter
US5535634A (en) Enhanced Type S pitot tube with reduced and symmetric response to pitch
JPS58187812A (en) Flow rate detecting device
CA1051223A (en) Fluid flow measuring device
US5402687A (en) Parallel plate pitot
US4197740A (en) Fluid flow measuring apparatus
JP3252187B2 (en) Flowmeter
JPS622495Y2 (en)