JPS58221034A - Damping force adjusting device in hydraulic buffer - Google Patents

Damping force adjusting device in hydraulic buffer

Info

Publication number
JPS58221034A
JPS58221034A JP10338782A JP10338782A JPS58221034A JP S58221034 A JPS58221034 A JP S58221034A JP 10338782 A JP10338782 A JP 10338782A JP 10338782 A JP10338782 A JP 10338782A JP S58221034 A JPS58221034 A JP S58221034A
Authority
JP
Japan
Prior art keywords
magnetic fluid
damping force
electromagnet
oil
shock absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10338782A
Other languages
Japanese (ja)
Other versions
JPS6244136B2 (en
Inventor
Katsuhiko Nakajima
中嶋 克彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
Original Assignee
Showa Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Seisakusho Co Ltd filed Critical Showa Seisakusho Co Ltd
Priority to JP10338782A priority Critical patent/JPS58221034A/en
Publication of JPS58221034A publication Critical patent/JPS58221034A/en
Publication of JPS6244136B2 publication Critical patent/JPS6244136B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • F16F9/535Magnetorheological [MR] fluid dampers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To adjust the damping force of a buffer by utilizing a magnetic fluid and an electromagnet. CONSTITUTION:A magnetic fluid is mixed in an oil flow of a hydraulic buffer, and an electromagnet 12 is fixed to the outer periphery of a portion where the magnetic fluid passes a control portion thereof. The viscosity of the passing magnetic fluid is changed depanding upon the amount of a current applied to an exciting coil of the electromagnet 12 so as to change the speed of the running magnetic fluid.

Description

【発明の詳細な説明】 本発明は、ピストンの伸縮動作に伴って、その流速に抵
抗を与えて減衰力を発生させる油圧緩衝器において、減
衰力の大きさを外部から任意に調整し得る減衰力調整装
置を備えた油圧緩衝器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a hydraulic shock absorber that generates a damping force by applying resistance to the flow velocity as the piston expands and contracts, and the damping force can be arbitrarily adjusted from the outside. The present invention relates to a hydraulic shock absorber with a force adjustment device.

従来、この種の油圧緩衝器において、減衰力の大きさを
任意に調整する九めKは減衰弁を設けて外部から調節す
るようにしているが複雑な機構と多数の部品を使用しな
ければならなかった。
Conventionally, in this type of hydraulic shock absorber, the damping force can be arbitrarily adjusted by installing a damping valve and adjusting it from the outside, but this cannot be done without using a complicated mechanism and a large number of parts. did not become.

本発明は、このような従来の問題点を基本的に変えて簡
単で、しかも確実に作用する機構を提供せんとするもの
である。以下本発明の一実施例を図面により詳細に説明
する。
The present invention aims to fundamentally solve these conventional problems and provide a mechanism that is simple and works reliably. An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本発明減衰力調整装置の一実施例を示す断面図
で、−例として作動油を一方向に循環させつつ、同時に
その流動に抵抗を与えて減衰力を発生させるものである
。図に示すように、作動シリンダ1とこれを取囲む外筒
2を固定すると共に上下端を閉塞して作動シリンダ1と
外筒2との間に油溜室Aを形成させる。作動シリンダ1
内にはピストン3を摺動自在に挿入して上部室Bと下部
室Cとに区画する一方ゼストン3と連結するピストンロ
ッド4の上端をロッドガイド5を介してオイルシール6
より上方に突出せしめる。更に作動シリンダ1の圧縮側
末端には油溜室Aから下部室Cへと向って開く吸入弁7
を、またピストン3には、その圧縮行程時においてのみ
下部室Cから上部室Bへと向って開く不還弁8を設け、
作動シリンダ1の伸長側末端のロッドガイド5には上部
室Bの油がロッドガイド5に取付けたブツシュ9とピス
トンロッド5との隔間10 (制御部)より流出せしめ
て減衰力を作動させ、油溜室Aの上部に導く油孔11を
設ける。一方、との隔間10と相対する外筒2の外周に
電磁石12を取付けると共に油圧緩衝器の油中に磁性流
体を混合せしめたものである。
FIG. 1 is a sectional view showing one embodiment of the damping force adjusting device of the present invention, in which hydraulic oil is circulated in one direction and at the same time resistance is applied to the flow to generate damping force. As shown in the figure, an operating cylinder 1 and an outer cylinder 2 surrounding it are fixed and the upper and lower ends are closed to form an oil reservoir chamber A between the operating cylinder 1 and the outer cylinder 2. Working cylinder 1
A piston 3 is slidably inserted into the interior to divide it into an upper chamber B and a lower chamber C. The upper end of a piston rod 4 connected to the piston 3 is connected to an oil seal 6 via a rod guide 5.
Make it protrude further upwards. Furthermore, at the compression side end of the working cylinder 1, there is a suction valve 7 that opens from the oil reservoir chamber A to the lower chamber C.
In addition, the piston 3 is provided with a non-return valve 8 that opens from the lower chamber C to the upper chamber B only during the compression stroke,
The oil in the upper chamber B flows out of the rod guide 5 at the extension side end of the operating cylinder 1 through the gap 10 (control section) between the bush 9 attached to the rod guide 5 and the piston rod 5 to operate a damping force. An oil hole 11 leading to the upper part of the oil reservoir chamber A is provided. On the other hand, an electromagnet 12 is attached to the outer periphery of the outer cylinder 2 facing the gap 10 between the two, and a magnetic fluid is mixed in the oil of the hydraulic shock absorber.

なお、電磁石は、第2図Aに12′と示すように外筒2
の内側に設けても作用効果の上で差異はない。
The electromagnet is connected to the outer cylinder 2 as shown at 12' in Fig. 2A.
There is no difference in function and effect even if it is installed inside the .

次に、その動作を説明する。Next, its operation will be explained.

ピストン3の伸長行程時には吸入弁7を介して油溜室A
内の作動油を下部Cに吸込みつつ上部室B内の作動油を
隔間10 (制御部)−油孔11を介して油溜室Aに排
出し、又逆に圧縮行程時においてはピストン3の不還弁
8を介して下部室C内の作動油を上部室B内へと流動さ
せると同時に、この上部室Bからピストンロッド4の進
入体積分に相当する量の作動油を隔間10(制御部)−
通孔11を介して油溜室Aに還流し、このようにしてピ
ストン3の伸縮両行程時に常に隔間10を介して作動油
を一方向に循環させて減衰力を発生させる。この時、電
磁石12の励磁コイルに流す電流を調整するととKより
磁力が変化する。そして隔間lO内を通る磁性流体を直
接磁化さるから油の粘性が変化し、そのため減衰力を変
化させることができる。即ち励磁電流の大小によって減
衰力が調整できる。
During the extension stroke of the piston 3, the oil sump chamber A is
While the hydraulic oil in the upper chamber B is sucked into the lower part C, the hydraulic oil in the upper chamber B is discharged to the oil reservoir chamber A through the interval 10 (control part) and the oil hole 11. At the same time, the hydraulic oil in the lower chamber C is made to flow into the upper chamber B through the non-return valve 8 of (control unit) -
The hydraulic oil is returned to the oil reservoir chamber A through the through hole 11, and in this way, the hydraulic oil is always circulated in one direction through the gap 10 during both the expansion and contraction strokes of the piston 3, thereby generating a damping force. At this time, when the current flowing through the excitation coil of the electromagnet 12 is adjusted, the magnetic force changes due to K. Since the magnetic fluid passing within the interval lO is directly magnetized, the viscosity of the oil changes, and therefore the damping force can be changed. That is, the damping force can be adjusted by changing the magnitude of the excitation current.

第2図は本発明の他の実施例を示す要部断面図で、上記
実施例では油圧緩衝器の池内に磁性材料を混合せしめた
ものを使用したが、本発明では磁性材料を部分的に使用
したものである。即ち、隔間(制御部)10に空所13
を設け、その空所13に磁性流体を収納した可撓性膜体
14をピストンロッド4に摺動自在に挿入したもので、
そのほかは第1図と同じである。
FIG. 2 is a sectional view of the main part showing another embodiment of the present invention. In the above embodiment, a magnetic material was mixed in the reservoir of the hydraulic shock absorber, but in the present invention, the magnetic material is partially mixed. This is what I used. That is, there is a space 13 in the interval (control section) 10.
A flexible membrane body 14 containing a magnetic fluid is slidably inserted into the piston rod 4 in the cavity 13.
Other details are the same as in Figure 1.

このようにして電磁石12の励磁コイルに流す電流を調
節すると可撓性膜体14内の磁性流体は電流の大小によ
って磁化され、第3図に示すように、ピストンロッド4
側に突出するように引っ張られる。したがって、その隔
間10を流れる油の量が変わるので減衰力が調整できる
。その上、隔間10の大小によるバラツキに関係なしに
調整ができる利点がある。なお、本発明は第4図に示す
ようにピストンに4M!磁石17′を設けることにより
適用できるし、また、テトムパルブでも実施が可能であ
る。
When the current flowing through the excitation coil of the electromagnet 12 is adjusted in this way, the magnetic fluid within the flexible membrane 14 is magnetized depending on the magnitude of the current, and as shown in FIG.
It is pulled to the side so that it sticks out. Therefore, since the amount of oil flowing through the gap 10 changes, the damping force can be adjusted. Moreover, there is an advantage that adjustment can be made regardless of variations in the size of the interval 10. In addition, as shown in FIG. 4, the present invention has a piston of 4M! This can be applied by providing a magnet 17', and can also be implemented with a tetom valve.

以上詳細に説明したように、本発明によれば極めて簡単
な構成で確実に減衰力を調整できる外、隔間の大小によ
ってバラツキが発生するのを防止する等の効果がある。
As described in detail above, according to the present invention, the damping force can be reliably adjusted with an extremely simple configuration, and it is also effective in preventing variations due to the size of the spacing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明減衰力調整装置の一実施例を示す断面図
、第2図は本発明の他の実施例を示す要部断面図、第2
図Aは更に他の実施例を示す第2図と同様な図、第3図
は同じくその動作説明図、第4図は本発明をピストンに
適用した例を示す図である。 1・・・作動シリンダ、2・・・外筒、3・・・ピスト
ン、4・・・ピストンロッド、5・・・ロッドガイド、
6・・・オイルシール、7・・・吸入弁、8・・・不還
弁、9・・・ブツシュ、10・・・隔間、11・・・油
孔、12.12’・・・電磁石、13・・・空所、14
・・・磁性流体を収納した可撓性膜体特許出願人 株式
会社 昭 和 製 作 所第2図 第3図 第 2図A 第4図
FIG. 1 is a cross-sectional view showing one embodiment of the damping force adjusting device of the present invention, FIG. 2 is a cross-sectional view of main parts showing another embodiment of the present invention, and FIG.
FIG. A is a diagram similar to FIG. 2 showing another embodiment, FIG. 3 is an explanatory diagram of its operation, and FIG. 4 is a diagram showing an example in which the present invention is applied to a piston. DESCRIPTION OF SYMBOLS 1... Operating cylinder, 2... Outer cylinder, 3... Piston, 4... Piston rod, 5... Rod guide,
6... Oil seal, 7... Suction valve, 8... Non-return valve, 9... Bush, 10... Interval, 11... Oil hole, 12.12'... Electromagnet , 13... Blank space, 14
... Flexible membrane containing magnetic fluid Patent applicant Showa Seisakusho Co., Ltd. Figure 2 Figure 3 Figure 2 A Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)  油圧緩衝器の油流中に磁性流体を混入し、磁
性流体が制御部を通過する部分の外周に電磁石を取付け
、その励磁コイルに加える電流の大小によって通過中の
磁性流体の粘性を変え、磁性流体の流速を変えるととギ
特徴とする油圧緩衝器における減衰力調整装置。
(1) A magnetic fluid is mixed into the oil flow of a hydraulic shock absorber, an electromagnet is attached to the outer periphery of the part where the magnetic fluid passes through the control section, and the viscosity of the magnetic fluid passing through is controlled by the magnitude of the current applied to the excitation coil. A damping force adjustment device for a hydraulic shock absorber, which is characterized by changing the flow velocity of magnetic fluid.
(2)油圧緩衝器の油流が制御部を通過する部分に空所
を設けて磁性流体を収納する可撓性膜体を収容し、その
外周に電磁石を取付け、その励磁コイルに加える電流の
大小によって磁性流体の粘性を変え、油の流速を変える
ととを特徴とする油圧緩衝器における減衰力調整装置。
(2) A space is provided in the part where the oil flow of the hydraulic shock absorber passes through the control part to house a flexible membrane body that houses the magnetic fluid, and an electromagnet is attached to the outer periphery of the space, and the current applied to the excitation coil is A damping force adjustment device for a hydraulic shock absorber, characterized by changing the viscosity of magnetic fluid depending on its size and changing the flow speed of oil.
JP10338782A 1982-06-16 1982-06-16 Damping force adjusting device in hydraulic buffer Granted JPS58221034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10338782A JPS58221034A (en) 1982-06-16 1982-06-16 Damping force adjusting device in hydraulic buffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10338782A JPS58221034A (en) 1982-06-16 1982-06-16 Damping force adjusting device in hydraulic buffer

Publications (2)

Publication Number Publication Date
JPS58221034A true JPS58221034A (en) 1983-12-22
JPS6244136B2 JPS6244136B2 (en) 1987-09-18

Family

ID=14352662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10338782A Granted JPS58221034A (en) 1982-06-16 1982-06-16 Damping force adjusting device in hydraulic buffer

Country Status (1)

Country Link
JP (1) JPS58221034A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5014829A (en) * 1989-04-18 1991-05-14 Hare Sr Nicholas S Electro-rheological shock absorber
US5103779A (en) * 1989-04-18 1992-04-14 Hare Sr Nicholas S Electro-rheological valve control mechanism
US5158109A (en) * 1989-04-18 1992-10-27 Hare Sr Nicholas S Electro-rheological valve
US5277281A (en) * 1992-06-18 1994-01-11 Lord Corporation Magnetorheological fluid dampers
EP0644987A1 (en) * 1992-06-18 1995-03-29 Lord Corporation Magnetorheological fluid devices
US6019201A (en) * 1996-07-30 2000-02-01 Board Of Regents Of The University And Community College System Of Nevada Magneto-rheological fluid damper
US6471018B1 (en) 1998-11-20 2002-10-29 Board Of Regents Of The University And Community College System On Behalf Of The University Of Nevada-Reno, The University Of Reno Magneto-rheological fluid device
US6655511B1 (en) 2002-10-08 2003-12-02 Delphi Technologies, Inc. Magnetorheological piston having a core
WO2017047718A1 (en) * 2015-09-15 2017-03-23 本田技研工業株式会社 Bearing member, and vibration damping device using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652602A (en) * 1979-10-01 1981-05-11 Matsushita Electric Ind Co Ltd Controlling apparatus for viscous-load

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652602A (en) * 1979-10-01 1981-05-11 Matsushita Electric Ind Co Ltd Controlling apparatus for viscous-load

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5014829A (en) * 1989-04-18 1991-05-14 Hare Sr Nicholas S Electro-rheological shock absorber
US5103779A (en) * 1989-04-18 1992-04-14 Hare Sr Nicholas S Electro-rheological valve control mechanism
US5158109A (en) * 1989-04-18 1992-10-27 Hare Sr Nicholas S Electro-rheological valve
EP1016805A3 (en) * 1992-06-18 2000-11-02 Lord Corporation Magnetorheological fluid devices
EP0644987A1 (en) * 1992-06-18 1995-03-29 Lord Corporation Magnetorheological fluid devices
EP0644987A4 (en) * 1992-06-18 1997-12-17 Lord Corp Magnetorheological fluid devices.
EP1016805A2 (en) * 1992-06-18 2000-07-05 Lord Corporation Magnetorheological fluid devices
US5277281A (en) * 1992-06-18 1994-01-11 Lord Corporation Magnetorheological fluid dampers
US6019201A (en) * 1996-07-30 2000-02-01 Board Of Regents Of The University And Community College System Of Nevada Magneto-rheological fluid damper
US6471018B1 (en) 1998-11-20 2002-10-29 Board Of Regents Of The University And Community College System On Behalf Of The University Of Nevada-Reno, The University Of Reno Magneto-rheological fluid device
US6655511B1 (en) 2002-10-08 2003-12-02 Delphi Technologies, Inc. Magnetorheological piston having a core
WO2017047718A1 (en) * 2015-09-15 2017-03-23 本田技研工業株式会社 Bearing member, and vibration damping device using same
CN108026969A (en) * 2015-09-15 2018-05-11 本田技研工业株式会社 Bearing components and use its arrangement for damping oscillations
JPWO2017047718A1 (en) * 2015-09-15 2018-05-24 本田技研工業株式会社 Bearing member and vibration damping device using the same
US10634208B2 (en) 2015-09-15 2020-04-28 Honda Motors Co., Ltd. Bearing member, and vibration damping device using same
CN108026969B (en) * 2015-09-15 2020-09-01 本田技研工业株式会社 Bearing member and vibration damping device using same

Also Published As

Publication number Publication date
JPS6244136B2 (en) 1987-09-18

Similar Documents

Publication Publication Date Title
CA2211474C (en) Pressure intensifier for fluids, particularly for hydraulic liquids
US7278522B2 (en) Controllable motion damper
US5078240A (en) Adjustable vibration damper with valve body in piston having directional flow control
KR970062391A (en) Hydraulic shock absorber
KR940011814A (en) Damping Force Control Hydraulic Shock Absorber
JPS58221034A (en) Damping force adjusting device in hydraulic buffer
KR910000404A (en) Hydraulic Damper with Adjustable Damping Force
KR900009325A (en) Hydraulic Shock Absorber with Adjustable Damping Force
EP0346040A3 (en) Adjustable damper means for shock absorber
JPH1172133A (en) Adjustable vibration damper for power vehicle
JPS6467410A (en) Reciprocating damper
JPS6052439U (en) Damping force adjustable hydraulic shock absorber
WO2023279748A1 (en) Hybrid damping mode-based high-output-force vibration isolation mount
ATE398249T1 (en) REGULATED OSCILLATING DAMPER
JPS5865306A (en) Pneumatic cylinder with end-position shock absorber
JPS6218776B2 (en)
JPS596446A (en) Device for regulating damping-force in hydraulic buffer
JPH023065B2 (en)
KR19980043226U (en) Hydraulic and Pneumatic Dampers
JPS6138344U (en) Variable damping force hydraulic shock absorber
JPS6014628A (en) Adjustable hydraulic type shock absorber
JPS599331A (en) Shock absorber
JPH0314593Y2 (en)
JPS5921317Y2 (en) hydraulic shock absorber
JPS6144087A (en) Damping-force variable type front fork