JPS5822094Y2 - boundary detection device - Google Patents

boundary detection device

Info

Publication number
JPS5822094Y2
JPS5822094Y2 JP3452977U JP3452977U JPS5822094Y2 JP S5822094 Y2 JPS5822094 Y2 JP S5822094Y2 JP 3452977 U JP3452977 U JP 3452977U JP 3452977 U JP3452977 U JP 3452977U JP S5822094 Y2 JPS5822094 Y2 JP S5822094Y2
Authority
JP
Japan
Prior art keywords
light
receiving
transparent material
optical axis
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3452977U
Other languages
Japanese (ja)
Other versions
JPS53129396U (en
Inventor
高橋丈児
三宅民生
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to JP3452977U priority Critical patent/JPS5822094Y2/en
Publication of JPS53129396U publication Critical patent/JPS53129396U/ja
Application granted granted Critical
Publication of JPS5822094Y2 publication Critical patent/JPS5822094Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【考案の詳細な説明】 この考案は層状に分離した異種液体の境界を検出する境
界検出装置に関する。
[Detailed Description of the Invention] This invention relates to a boundary detection device for detecting boundaries between different liquids separated into layers.

例えば臨床検査等で血液を分析にかげる場合、その前処
理において、血液から血清を分取することが行われる。
For example, when blood is submitted for analysis in a clinical test or the like, serum is separated from the blood in pretreatment.

この血清分取が効率的に行なわれなければせっかく処理
能力が高い自動検査装置があっても試料の提供が滞り、
その本来の処理能力を十分に活かすことができない。
If this serum separation is not carried out efficiently, there will be a delay in sample provision, even if automatic testing equipment with high throughput is available.
Its original processing power cannot be fully utilized.

このため血清分取の自動化、効率化については、従来か
ら種々の改良がなされてきた。
For this reason, various improvements have been made to automate and increase the efficiency of serum collection.

その光学的検出方法の一例として試験管内の血清と血餅
の境界を外部から光を当てることにより検出しながら血
清吸上ノズル下端をその検出境界すれすれ1で下降させ
た後、血清だけを吸い上げるようにしたものが従来から
あった。
An example of an optical detection method is to detect the boundary between serum and blood clot in a test tube by shining light from outside, and then lower the lower end of the serum suction nozzle just past the detection boundary, and then suck up only the serum. There has always been something that has been done.

しかし、このような装置にあっては試験管が完全に透明
なものでなげればならず、渣た試験管に記した文字や貼
着したラベル、傷等によって血清と血餅の境界が正確に
検出できなくなる等の不都合があった。
However, with this type of device, the test tube must be completely transparent, and the boundary between serum and blood clot cannot be accurately determined by writing on the test tube, pasted labels, scratches, etc. There were some inconveniences such as the inability to detect the

更には検体によっては血清と血餅の境界が明確に分離さ
れずに濁りを生じている場合があるため、このような検
体を上記光学的方法により測定した場合には真の境界面
より大分上方位置で境界が検出され、血清の吸上量が少
くなくなるため、個々の検体により試料の提供量が極端
にばらつくなどの欠点があった。
Furthermore, depending on the specimen, the boundary between serum and blood clot may not be clearly separated, resulting in turbidity, so when such a specimen is measured using the optical method described above, the boundary between serum and blood clot may be far above the true interface. Boundaries are detected at different positions, which reduces the amount of serum absorbed, resulting in drawbacks such as extreme variation in the amount of sample provided depending on the individual specimen.

この考案は以上のような問題点に鑑みなされたもので、
一端に投光器および受光器が設けられる投受光軸を構威
し、この投受光軸の先端を試料容器内に挿入して層状分
離した異種液体の分離境界面に向けて直交して接近させ
、この投受光軸の挿入深度を上記受光器の受光量に基い
て制御するようにし、これによって試料容器を透明物質
で構成することもなく、キズや汚れ、あるいはそこに記
された文字や貼着されたラベル等の影響を受けることが
なく、シかも上記投受光軸の先端部を透明物質によって
構成し、かつこの透明物質の先端面を上記投受光軸と直
交する面に対し所定角度傾斜した平面とし、この透明物
質の先端面により上記投受光軸からの透過光を屈折させ
てこの透過光を上記境界面に対して斜めに照射すること
により、その測定精度を従来のものより大幅に向上させ
るようにした境界検出装置を提供するものである。
This idea was created in view of the problems mentioned above.
A light emitting/receiving axis is provided with a light emitter and a light receiver at one end, and the tip of the light emitting/receiving axis is inserted into the sample container and approached orthogonally toward the separation interface of the different liquids separated into layers. The insertion depth of the transmitting and receiving light axes is controlled based on the amount of light received by the light receiver, and as a result, the sample container does not need to be made of transparent material, and it is free from scratches, dirt, letters written on it, etc. The tip of the transmitting/receiving optical axis is made of a transparent material, and the tip surface of the transparent material is a plane inclined at a predetermined angle with respect to a plane orthogonal to the transmitting/receiving optical axis. By refracting the transmitted light from the transmitting/receiving optical axis using the tip surface of this transparent material and irradiating this transmitted light obliquely to the boundary surface, the measurement accuracy is greatly improved compared to conventional methods. The present invention provides a boundary detection device as described above.

以下この考案を血清分取装置に適用した場合についてそ
の実施例を図面を用いて詳細に説明する。
Hereinafter, an example in which this invention is applied to a serum fractionation device will be described in detail with reference to the drawings.

第1図において、投受光軸1は多数の光学ファイバを結
束してなる投光用オプチカルファイバ2と、この投光用
オプチカルファイバ2と同様に構成された受光用オプチ
カルファイバ3とを各光学ファイバを接着剤によりラン
ダムに一つに結束して構成したもので、それぞれに光、
l:1.、l、2の進行経路を形成している。
In FIG. 1, a light emitting/receiving axis 1 connects each optical fiber to a light emitting optical fiber 2 formed by bundling a large number of optical fibers, and a light receiving optical fiber 3 configured similarly to the light emitting optical fiber 2. are randomly tied together with adhesive, each with a light,
l:1. , l, forms a traveling path of 2.

このように形成された投受光軸1は、その基端側で投光
用オプチカルファイバ2と受光用オプチカルファイバ3
が分離されており、かつ前者の基端面には投光器4が設
けられ、この投光器4からの光t、lが入光するように
なっており、捷た後者の基端面にはここから出光する透
過光t2を受光して光電変換する受光素子5の受光面が
対向させである。
The light emitting/receiving axis 1 thus formed has a light emitting optical fiber 2 and a light receiving optical fiber 3 at its base end.
are separated, and a projector 4 is provided on the proximal end surface of the former, and the lights t and l from this projector 4 enter, and the light exits from here to the proximal end surface of the latter, which has been split. The light-receiving surfaces of the light-receiving element 5 that receives the transmitted light t2 and photoelectrically converts it are opposed to each other.

また上記投受光軸1の先端部には第2図に拡大して示す
ように、ガラス、プラスチック等の透明物質9が一体に
装着されている。
Further, as shown in an enlarged view in FIG. 2, a transparent material 9 such as glass or plastic is integrally attached to the tip of the transmitting/receiving optical axis 1.

そして、この透明物質9の先端面9aは上記投受光軸1
と直交する面に対して所定角度傾斜した平面に形成され
ている。
The front end surface 9a of this transparent material 9 is connected to the above-mentioned light emitting/receiving axis 1.
The plane is inclined at a predetermined angle with respect to a plane orthogonal to the plane.

したがっ て投光器4からの透過光tlは上記投光用オ
プチカルファイバ2の内部を反射しながら伝達してその
先端の透明物質9の先端面9aに対応した角度で屈折し
て出光される結果、この光tlは上記境界面に対し斜め
に照射される。
Therefore, the transmitted light tl from the light projector 4 is transmitted while being reflected inside the light projecting optical fiber 2, and is refracted at an angle corresponding to the tip surface 9a of the transparent material 9 at the tip and is emitted. The light tl is irradiated obliquely to the boundary surface.

そしてこの照射による反射光(光t2)は上記透明物質
9を介して上記受光用オプチカルファイバ3に入光され
、その内部を反射しながら伝達して、その基端面から出
光されることになるが、上記透明物質9の先端面9aと
境界面が充分遠い場合光7.1の光軸はその先端面9a
で曲げられているのでその反射光は受光用オプチカルフ
ァイバ3の先端面にほとんど当らず、したがって受光素
子5への入光量は極めて小である。
The reflected light (light t2) resulting from this irradiation enters the light-receiving optical fiber 3 through the transparent substance 9, is transmitted while being reflected inside, and is emitted from its base end surface. , when the front end surface 9a of the transparent material 9 and the boundary surface are sufficiently far apart, the optical axis of the light 7.1 is located at the front end surface 9a.
Since the light receiving optical fiber 3 is bent, the reflected light hardly hits the tip end face of the light receiving optical fiber 3, and therefore the amount of light incident on the light receiving element 5 is extremely small.

そして上記先端面9aと境界面との距離が極めて接近し
た時には上記光軸のずれによる受光量の減少の影響を受
けなくなるため、受光素子5への入光量は急速に増大す
る。
When the distance between the tip end surface 9a and the boundary surface becomes extremely close, the amount of light incident on the light receiving element 5 rapidly increases because it is no longer affected by the decrease in the amount of light received due to the deviation of the optical axis.

更に10は上記投受光軸1およびこの先端に設けられた
透明物質9の外周を被覆するテフロン樹脂等の表面滑性
を有する円筒状の滑性部材であって、との滑性部材10
によって投受光軸1の検体浸漬による汚れの付着を防止
するようにしている。
Furthermore, reference numeral 10 denotes a cylindrical slippery member having a surface smoothness such as Teflon resin, which covers the outer periphery of the transmitting/receiving optical axis 1 and the transparent material 9 provided at its tip.
This prevents the transmitting/receiving optical axis 1 from getting dirty due to immersion in the specimen.

第3図は上記投受光軸1を血清吸上ノズル11とともに
試験管6内に挿入するようにした状態を示す。
FIG. 3 shows a state where the above-mentioned light emitting/receiving axis 1 is inserted into a test tube 6 together with a serum suction nozzle 11.

同図において上記投受光軸1は血清吸上ノズル11を支
持しているホルダ12に取付けられ、その先端部が上記
吸上ノズル11の先端よりやや下方に突出するように位
置決めされている。
In the figure, the projection/reception optical axis 1 is attached to a holder 12 supporting a serum suction nozzle 11, and positioned so that its tip protrudes slightly below the tip of the suction nozzle 11.

上記ホルダ12は移動装置(図示略)に連結され、これ
により上記吸上ノズル7を投受光軸1とともに試験管6
内に挿入し、筐たそこから引き上げることができるよう
になっている。
The holder 12 is connected to a moving device (not shown), which moves the suction nozzle 7 together with the test tube 6 along with the light emitting/receiving axis 1.
It is designed so that it can be inserted inside the case and pulled out from there.

また13は上記受光素子5の受光量を測定する光量測定
回路、14はこの測定回路13の出力側に接続された弁
別回路であり、この弁別回路14は上記投受光軸1によ
る受光量Lxを基準値Lsと比較し、弁別信号、すなわ
ち投受光軸1の先端部が試験管6内の血清7と血餅8の
境界面に接近すると、受光量Lxが上記基準値Lsに達
することによる弁別信号が発せられるように構成されて
いる。
Further, 13 is a light amount measurement circuit for measuring the amount of light received by the light receiving element 5, and 14 is a discrimination circuit connected to the output side of this measurement circuit 13. When compared with the reference value Ls, the discrimination signal, that is, when the tip of the light emitting/receiving axis 1 approaches the interface between the serum 7 and the blood clot 8 in the test tube 6, the amount of received light Lx reaches the reference value Ls. The signal is configured to be emitted.

この弁別信号は制御回路15に送られ、ここで上記移動
装置および上記吸上ノズル11の各動作を制御するよう
になっている。
This discrimination signal is sent to a control circuit 15, which controls each operation of the moving device and the suction nozzle 11.

すなわち血清7と血餅8が分離された状態で入っている
試験管6が上記投受光軸1および吸上ノズル11の直下
に位置させられた後、これら投受光軸1を吸上ノズル1
1とともに所定速度で下降させるが、弁別信号が制御回
路15に入力されるとここで下降動作を停止させて吸上
動作を行うべく制御するようにしている。
That is, after the test tube 6 containing the serum 7 and the blood clot 8 in a separated state is positioned directly below the transmitting/receiving optical axis 1 and the suction nozzle 11, the transmitting/receiving optical axis 1 is connected to the suction nozzle 1.
1 and is lowered at a predetermined speed, but when a discrimination signal is input to the control circuit 15, the lowering operation is stopped and the suction operation is performed.

次に上記の如く構成された境界検出装置の特性を第4図
a、bを用いて説明する。
Next, the characteristics of the boundary detection device configured as described above will be explained using FIGS. 4a and 4b.

なお同図aは本考案装置と比較するために第5図に示す
如く、投受光軸1の先端に試験管6内の血清7と血餅8
との境界面に対向してその先端面16aが平行に形成さ
れた透明物質16を装着してなる境界検出装置の特性を
示すものである。
For comparison with the device of the present invention, FIG.
This figure shows the characteristics of a boundary detection device that is equipped with a transparent material 16 whose front end surface 16a is parallel to the boundary surface of the substrate.

すなわち、同第4図a、bは上記各境界検出装置を用い
て、3種の異なる検体A、B、Cの比較測定を行った結
果を示すグラフであって、横軸は境界面1での距離を縦
軸は受光量を示すものである。
That is, FIGS. 4a and 4b are graphs showing the results of comparative measurements of three different specimens A, B, and C using each of the boundary detection devices described above, and the horizontal axis is the boundary surface 1. The vertical axis indicates the amount of light received.

また血清と血餅の境界面はA<B<Cの順に明確に分離
されている。
Furthermore, the interface between serum and blood clot is clearly separated in the order of A<B<C.

この場合同図aにあっては境界面に対して光t1が垂直
に照射されるため、境界面と投受光軸1の先端部の距離
が遠い場合でも受光される光量が比較的多く、その結果
特性曲線は緩やかなものとなる。
In this case, in Figure a, the light t1 is irradiated perpendicularly to the boundary surface, so even if the distance between the boundary surface and the tip of the transmitting/receiving optical axis 1 is long, the amount of light received is relatively large. As a result, the characteristic curve becomes gentle.

したがって移動装置により投受光軸1の先端が移動して
停止位置、すなわち基準Lsに受光量Lxが達した時投
受光軸1は停止するが、この停止位置と真の境界面との
離間距離は境界面が明確な順、すなわち検体C(B(A
順となり、かつその離間距離d□、d2.d3間の差が
図面からも明らかなように極めて犬であり、各検体によ
って血清吸引量のばらつきが顕著となる。
Therefore, when the tip of the light emitting/receiving axis 1 is moved by the moving device and the amount of received light Lx reaches the stop position, that is, the reference Ls, the light emitting/receiving axis 1 stops, but the distance between this stop position and the true boundary surface is The order in which the boundary surface is clear, that is, specimen C(B(A
order, and their separation distances d□, d2. As is clear from the drawings, the difference between d3 and d3 is extremely different, and the amount of serum aspirated varies significantly depending on each specimen.

これに対し、同図すにあっては境界面に対して光t1が
斜めに照射されるため、境界面と投受光軸1の先端部の
距離が遠い場合は受光量は極めて少くなく、距離が充分
接近したときに投受光軸1に受光される光量かはしめて
増大する結果、その特性曲線は急激に立上がる。
On the other hand, in the figure, the light t1 is irradiated obliquely to the boundary surface, so if the distance between the boundary surface and the tip of the transmitting/receiving optical axis 1 is far, the amount of light received will not be extremely small; When the light beams are sufficiently close to each other, the amount of light received by the light emitting/receiving axis 1 increases significantly, and as a result, its characteristic curve rises rapidly.

したがって投受光軸1の停止位置と真の境界面とは上記
と同様に検体C(B(A順となるが、その離間距離d1
.d2.d3間の差は僅少なものとなるため、各検体間
の血清吸引量のばらつきは極めて小さなものとなる。
Therefore, the stopping position of the transmitting/receiving optical axis 1 and the true boundary surface are the same as above, the specimen C (B (A order), but the separation distance d1
.. d2. Since the difference between d3 is small, the variation in the amount of serum aspirated between each specimen is extremely small.

なお本実施例においては試料容器中に挿入される投受光
軸がオプチカルファイバで構成されているため細径化で
き、従来の投受光器を一対使用していたものよりも大幅
に装置を小型化でき、しかもその軸形状を測定対象物に
対応して変形させることができる。
In this example, the transmitting and receiving light axes inserted into the sample container are made of optical fibers, so the diameter can be reduced, making the device much smaller than the conventional system that uses a pair of transmitting and receiving devices. Moreover, the shape of the shaft can be changed according to the object to be measured.

第6図はこの考案の他の実施例を示すものである。FIG. 6 shows another embodiment of this invention.

なお本実施例の要部以外は上記第1の実施例と同一であ
るからその記号の説明および図面を省略する。
It should be noted that other parts of this embodiment are the same as those of the first embodiment, so explanations of symbols and drawings thereof will be omitted.

同図において、投受光軸20は円筒状をなし、かつその
先端部には上述実施例と同様に先端面を投受光軸20と
直交する面に対し所定角度傾斜した平面としてなるガラ
ス、プラスチック等の透明物質9が一体に装着されてい
る。
In the figure, the projection/reception optical axis 20 has a cylindrical shape, and the tip thereof is made of glass, plastic, etc. whose tip end surface is a plane inclined at a predetermined angle with respect to the plane perpendicular to the projection/reception optical axis 20, as in the above-described embodiment. A transparent material 9 is integrally attached.

また上記投受光軸200基端側には一対の集光レンズ2
1,22が配置されているとともに、この集光レンズ上
部には上記投受光軸20の軸線に対し、45°傾げたハ
ーフミラ−23が配置されている。
In addition, a pair of condensing lenses 2 is provided on the base end side of the light emitting and receiving optical axis 200.
1 and 22 are arranged, and a half mirror 23 tilted by 45 degrees with respect to the axis of the projection/reception optical axis 20 is arranged above the condenser lens.

24は上記−・−フミラー23の上部において上記投受
光軸20の延長軸上に設けられた投光器、すなわち光源
であって、この光源24からの光t1は・・−フミラー
23を透過し、かつ一対のレンズ21,22によって上
記投受光軸20内をビーム状の光路を形成し、かつ上記
透明物質9の先端面9aで屈折して出光される結果この
光t1は上記境界面に対し斜めに照射される。
Reference numeral 24 denotes a light projector, that is, a light source, provided above the mirror 23 and on the extension axis of the light emitting/receiving axis 20, and the light t1 from the light source 24 passes through the mirror 23, and A beam-like optical path is formed within the projection/reception optical axis 20 by the pair of lenses 21 and 22, and as a result of being refracted and emitted by the tip surface 9a of the transparent material 9, this light t1 is obliquely directed to the boundary surface. irradiated.

更に25は上記・・−フミラー23と対向して投受光軸
の軸方向と直交して配置された受光素子である。
Furthermore, the reference numeral 25 denotes a light-receiving element that is disposed opposite to the mirror 23 and perpendicular to the axial direction of the projection/reception optical axis.

したがって上記照射による反射光は上記透明物質9及び
レンズ21,22を介して・・−フミン−230面に当
たり、ここで45°屈折して受光素子25に受光される
のである。
Therefore, the reflected light from the irradiation passes through the transparent material 9 and the lenses 21 and 22 and hits the .

このように構成された投受光軸20を用いて境界検出装
置を構成すれば、第1の実施例と同様に第4図すに記載
された検出特性を得ることができる。
If a boundary detection device is constructed using the light emitting/receiving axis 20 constructed in this manner, the detection characteristics shown in FIG. 4 can be obtained as in the first embodiment.

第7図は上記第6図における変形例を示すもので透明物
質30を丸棒状に長く形成したものである。
FIG. 7 shows a modification of FIG. 6, in which the transparent material 30 is formed into a long round rod shape.

そしてこの透明物質30の先端面は、上述実施例と同様
に投光軸と直交する面に対し所定角度傾斜した平面に形
成されている。
The front end surface of the transparent material 30 is formed into a plane that is inclined at a predetermined angle with respect to the plane perpendicular to the light projection axis, as in the above-described embodiment.

この実施例では透明物質30のみを検体内に浸漬すれば
よいので検体の微量化に併って検出部分を細径化でき、
しかも構造が簡単となる。
In this embodiment, only the transparent substance 30 needs to be immersed into the specimen, so the diameter of the detection part can be made smaller as the amount of specimen is reduced.
Moreover, the structure becomes simple.

以上各実施例について説明した如くこの考案に係る境界
検出装置にあっては、一端に投光器および受光器が設け
られる投受光軸を構成し、この投受光軸の先端を試料容
器内に挿入して層状分離した異種液体の分離境界面に向
けて直交して接近させ、この投受光軸の挿入深度を上記
受光器の受光量に基いて制御するようにしたものである
から、従来の光学的検出方法に比して試験管等の試料容
器のキズや汚れ、あるいはそこに記された文字や貼着さ
れたラベル等の影響を受けないことはもちろん、試料容
器そのものを不透明のもので構成することができ、しか
も試料容器中に挿入する部分は試料の微量化に併い細径
化できるので少量の試料でも有効に検出ができる。
As described above for each of the embodiments, in the boundary detection device according to the present invention, a light emitting and receiving axis is provided with a light emitter and a light receiver at one end, and the tip of this light emitting and receiving axis is inserted into a sample container. The device approaches orthogonally toward the separation interface of different liquids separated into layers, and the insertion depth of the emitting and receiving optical axes is controlled based on the amount of light received by the receiver, so conventional optical detection is not possible. Compared to other methods, it is not affected by scratches or dirt on sample containers such as test tubes, or by letters written on them or labels pasted on them, and the sample container itself must be made of opaque material. Moreover, since the diameter of the part inserted into the sample container can be made smaller as the amount of sample is reduced, even a small amount of sample can be detected effectively.

更には上記投受光軸の先端部は透明物質によって構成さ
れ、かつこの透明物質の先端面が上記投受光軸と直交す
る面に対し所定角度傾斜した平面に形成されており、こ
の透明物質の先端面により上記投受光軸からの透過光を
屈折させてこの透過光を上記境界面に対して斜めに照射
するよう構成しであるため、例えば血清などのように検
体によっては血清と血餅の境界が明確に分離されずに濁
つているような場合でも第4図すに示すような検出特性
が得られるため、真の境界面に対して最も接近した距離
で検出が行われるとともに、各検体によるばらつきが極
めて小さくなり測定精度を大幅に向上できるなど種々の
利点を有する。
Further, the tip of the light emitting/receiving axis is made of a transparent material, and the tip surface of the transparent material is formed into a plane inclined at a predetermined angle with respect to a plane perpendicular to the light emitting/receiving axis. The surface refracts the transmitted light from the projection/reception optical axis and irradiates the transmitted light obliquely to the boundary surface. Therefore, depending on the specimen, such as serum, the boundary between serum and blood clot may occur. The detection characteristics shown in Figure 4 can be obtained even when the samples are not clearly separated and are cloudy, so detection is performed at the closest distance to the true interface, and the detection characteristics of each sample are It has various advantages, such as extremely small variations and greatly improved measurement accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案に係る境界検出装置を示す側面略図、
第2図は投受光軸の先端の部分拡大断面図、第3図はこ
の考案に係る境界検出装置の移動部分を示す側面略図、
第4図a、bは境界検出装置の検出特性を示すグラフ、
第5図は本考案と比較するための境界検出装置の投受光
軸先端の部分拡大断面図、第6図はこの考案の他の実施
例を示す側断面略図、第7図ばこの考案の更に他の実施
例を示す側断面略図である。 1.20・・・・・・投受光軸、4,24・・・・・・
投光器、5.25・・・・・・受光器、9,30・・・
・・・透明物質、9a 、30a・・・・・・先端面、
7・・・・・・血清、8・・・・・・血餅、15・・・
・・・制御回路。
FIG. 1 is a schematic side view showing a boundary detection device according to this invention;
FIG. 2 is a partially enlarged sectional view of the tip of the transmitting and receiving optical axis, and FIG. 3 is a schematic side view showing the moving part of the boundary detection device according to this invention.
FIGS. 4a and 4b are graphs showing the detection characteristics of the boundary detection device,
Fig. 5 is a partially enlarged sectional view of the tip of the transmitting and receiving optical axis of a boundary detection device for comparison with the present invention, Fig. 6 is a schematic side sectional view showing another embodiment of this invention, and Fig. 7 is a further modification of the present invention. It is a side cross-sectional schematic diagram which shows another Example. 1.20...Emission/reception optical axis, 4,24...
Emitter, 5.25...Receiver, 9,30...
...transparent substance, 9a, 30a...tip surface,
7...Serum, 8...Blood clot, 15...
...Control circuit.

Claims (1)

【実用新案登録請求の範囲】 1一端に投光器および受光器が設けられる投受光軸を構
成し、この投受光器の先端の試料容器内に挿入して層状
分離した異種液体の分離境界面に向けて直交して接近さ
せ、この投受光軸の挿入深度を上記受光器の受光量に基
いて制御するように構成するとともに、上記投受光軸の
先端部を透明物質によって構成し、かつこの透明物質の
先端面を上記投受光軸と直交する面に対し所定角度傾斜
した平面とし、この透明物質の先端面により上記投受光
軸からの透過光を屈折させて上記境界面に対して斜めに
照射するように構成したことを特徴とする境界検出装置
。 2 上記投受光軸は一端に投光器が設けられるオプチカ
ルファイバと、一端に受光器が設けられるオプチカルフ
ァイバを一つに結束して構成されていることを特徴とす
る実用新案登録請求の範囲第1項記載の境界検出装置。 3 上記投受光軸は円筒状をなし、その先端部に上記透
明物質を装着するとともに、上記投光器および受光器は
ノ・−フ□ラーを介して光学的に相互分岐され、かつ上
記投光器からの光はレンズを介して投受光軸内にビーム
状の光路を形成していることを特徴とする実用新案登録
請求の範囲第1項記載の境界検出装置。 4 上記投受光軸および透明物質の外周は表面滑性を有
する滑性部材で被覆されていることを特徴とする実用新
案登録請求の範囲第2項記載の境界検出装置。
[Scope of Claim for Utility Model Registration] 1. A light emitting/receiving axis having a light emitter and a light receiver provided at one end thereof, which is inserted into a sample container at the tip of the light emitter/receiver and directed toward the separation interface of different liquids separated into layers. The insertion depth of the light emitting and receiving light axes is controlled based on the amount of light received by the light receiver, and the tip of the light emitting and receiving axes is made of a transparent material, and the transparent material The front end surface of the transparent material is a plane inclined at a predetermined angle with respect to a plane perpendicular to the projection/reception optical axis, and the transmitted light from the projection/reception optical axis is refracted by the front end surface of the transparent material and irradiated obliquely to the boundary surface. A boundary detection device characterized by being configured as follows. 2. Utility model registration claim 1, characterized in that the above-mentioned light emitting and receiving axis is constituted by bundling together an optical fiber having a light emitter at one end and an optical fiber having a light receiver at one end. The boundary detection device described. 3 The transmitting/receiving optical axis has a cylindrical shape, and the transparent material is attached to the tip thereof, and the emitter and receiver are optically branched from each other via a no-fler, and the light from the emitter is 2. The boundary detection device according to claim 1, wherein the light forms a beam-like optical path within the projection/reception optical axis via a lens. 4. The boundary detection device according to claim 2, wherein the projection/reception optical axis and the outer periphery of the transparent material are covered with a slippery member having surface smoothness.
JP3452977U 1977-03-22 1977-03-22 boundary detection device Expired JPS5822094Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3452977U JPS5822094Y2 (en) 1977-03-22 1977-03-22 boundary detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3452977U JPS5822094Y2 (en) 1977-03-22 1977-03-22 boundary detection device

Publications (2)

Publication Number Publication Date
JPS53129396U JPS53129396U (en) 1978-10-14
JPS5822094Y2 true JPS5822094Y2 (en) 1983-05-11

Family

ID=28892069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3452977U Expired JPS5822094Y2 (en) 1977-03-22 1977-03-22 boundary detection device

Country Status (1)

Country Link
JP (1) JPS5822094Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59637A (en) * 1982-06-25 1984-01-05 Fujita Gakuen Apparatus for dispensing upper layer liquid

Also Published As

Publication number Publication date
JPS53129396U (en) 1978-10-14

Similar Documents

Publication Publication Date Title
US4683579A (en) Method and apparatus for measuring blood constituent counts
EP0250671B1 (en) Quantitative dispenser for a liquid
US5919706A (en) Method for sucking/determining liquid and pipetting device driven and controlled according to method
US4880971A (en) Fiber optic liquid level sensor
US3412254A (en) Apparatus for counting particles suspended in transparent fluids
US2945958A (en) Light collector
EP0494846B1 (en) Test tube for biological analyses, provided with a device for checking efficiency and position, for photometric readings
US3415997A (en) Radiation sensitive ampoule testing apparatus and method
JP2003527592A (en) Method and apparatus for measuring liquid level in a liquid sample container
JP7449046B2 (en) Method for analyzing liquid handling system and chip condition
US3361025A (en) Method and apparatus of detecting flaws in transparent bodies
JPS5822094Y2 (en) boundary detection device
FI96451C (en) refractometer
JP4102135B2 (en) Liquid handling equipment
JP3370746B2 (en) Device for measuring the amount of sample in a transparent container
JP2548383B2 (en) Method and apparatus for detecting bubbles in liquid sample
JP4563600B2 (en) Light scattering measurement probe
JP4092312B2 (en) Interface detection device and method, volume measuring device
US5177564A (en) Apparatus for measuring thickness of plate-shaped article
JPS6315121A (en) Liquid quantitative take-out apparatus
JPH0814943A (en) Displacement-amount detection apparatus
JPH1164231A (en) Method and apparatus for detecting bubble streak of glass tube
CA2073344C (en) Fluorescence assay apparatus
JPH03259730A (en) Optical fiber sensor
JPH0214466B2 (en)