JPS58220903A - Turbine movable blade made of ti-alloy - Google Patents

Turbine movable blade made of ti-alloy

Info

Publication number
JPS58220903A
JPS58220903A JP10395382A JP10395382A JPS58220903A JP S58220903 A JPS58220903 A JP S58220903A JP 10395382 A JP10395382 A JP 10395382A JP 10395382 A JP10395382 A JP 10395382A JP S58220903 A JPS58220903 A JP S58220903A
Authority
JP
Japan
Prior art keywords
rotor blade
movable blade
alloy
titanium alloy
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10395382A
Other languages
Japanese (ja)
Inventor
Shinichi Suzue
鈴江 慎一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP10395382A priority Critical patent/JPS58220903A/en
Publication of JPS58220903A publication Critical patent/JPS58220903A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/10Anti- vibration means

Abstract

PURPOSE:To prevent reduction of the intrinsic vibration frequency of a movable blade made of Ti-alloy by increasing the thickness of the movable blade which is made of Ti-alloy and used for low-pessure step by 5% than that of the blade which is made of 12Cr-steel and possesses an ordinary profile. CONSTITUTION:The section shown by the dotted line denotes the section of a movable blade 2 made of Ti-alloy, and the belly-side shape 4 is formed thicker by A corresponding to nearly 5% of the average thickness of the vane, in comparison with the section of the movable blade 1 which is shown by the solid line and made of 12Cr-steel.

Description

【発明の詳細な説明】 本発明はチタン合金製タービン動翼(−関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a titanium alloy turbine rotor blade.

従来から蒸気タービンの単機容量の増大化(二対処する
ため低圧最終段落(以下、最終段落という)チタン合金
製動翼を用いる必要性が認められてきたが、近年その前
の段落(以下、直前段落という)にもチタン合金製の動
翼を用いようとの傾向が出ている。これは、チタン合金
の三大特性である比強度(引張強さ/密度)の高さと耐
腐食性の高さのうち、後者に着目し、蒸気タービンの段
落の中で、いわゆるウィルソン線近傍の状態になって最
も腐食性の高い直前段落1ニチタン合金製の動翼を使用
し、動翼の事故を軽減しようとするものである。ちなみ
に、蒸気タービンの動翼の事故の統計によれば、直前段
落の動翼の比率が最も高く、その原因の多くは、応力腐
食割れ(SCC)などその環境因子によるものとされて
いる。
It has long been recognized that it is necessary to use titanium alloy rotor blades in the low-pressure final stage (hereinafter referred to as the final stage) in order to cope with the increase in the single machine capacity of steam turbines. There is also a trend toward using titanium alloy rotor blades.This is due to the three major properties of titanium alloys: high specific strength (tensile strength/density) and high corrosion resistance. Focusing on the latter, we used rotor blades made of titanium alloy in the first stage of the steam turbine, which is in the vicinity of the so-called Wilson line and is the most corrosive, to reduce rotor blade accidents. By the way, according to the statistics of steam turbine rotor blade accidents, the ratio of rotor blades in the previous paragraph is the highest, and many of the causes are due to environmental factors such as stress corrosion cracking (SCC). It is considered a thing.

チタン合金を動翼(=採用する場合、最も一般的な手法
は、従来の12Cr鋼製の動翼と同一幾何形状のチタン
合金製の動翼:二使用する方法である(同一形状置換)
。これは、設計や制作の経済性、従来翼との交換の容易
性から非常に有利な方法であるが、次の様なチタン合金
の特性に裏付けられている。
When using titanium alloy rotor blades, the most common method is to use a conventional 12Cr steel rotor blade and a titanium alloy rotor blade with the same geometry (identical shape replacement).
. This is a very advantageous method in terms of economic efficiency in design and production, and ease of replacement with conventional blades, and is supported by the following properties of titanium alloy.

一般に、蒸気タービンにおける動翼の固有振動数fは、
ヤング率をE1比重量をrとすると、/= K JT7
r (ここ+:、Kは比例定数)で与えられる。ここで
、チタン合金(代表として、Ti−6A/−4Jをとる
)と12Cr鋼のWを比ヘルド、となる。これは、チタ
ン合金製の動翼を12Cr鋼製の動翼と同一幾何形状に
製作すれば、材料物性の相異;二もかかわらず、はぼ同
一の振動特性を示すということである。
Generally, the natural frequency f of the rotor blades in a steam turbine is
If Young's modulus is E1 and specific weight is r, then /= K JT7
It is given by r (where +:, K is a proportionality constant). Here, the ratio of W of titanium alloy (take Ti-6A/-4J as a representative) and 12Cr steel is given by Held. This means that if a titanium alloy rotor blade is manufactured to have the same geometrical shape as a 12Cr steel rotor blade, it will exhibit nearly the same vibration characteristics despite the difference in material properties.

しかし、上記からも明らかな様に、わずか約5チである
がチタン合金製の動翼の固有撮動数が低下する傾向があ
ろうこれは、種々の実験からも確認されている事実であ
る。
However, as is clear from the above, the specific motion number of titanium alloy rotor blades tends to decrease, although it is only about 5 inches.This is a fact confirmed by various experiments. .

しかるに、族タービンの動翼の設計において、前記の動
翼の固有振動数fと、タービンの回転数Nとその整数倍
の値とを出来る限り離して設計することが、肝要であり
、これがその振動設計の基本であることは同業者のよく
知る所である。従って、前記の約5チの振動数の低下が
無視出来る場合はよいが、無視しえない時も多い。特に
低圧段落の最終段落や直前段落に用いられる動興蓄二関
して言えば、動翼にかかる遠心力が非常に苛酷で、舅長
も長いため振動に関するトラブルを起こしやすく、なお
かつ前述の如く環境も悪いので、前記の約5%の固有振
動の低下が無視出来ないことが多い。
However, in designing the rotor blades of a group turbine, it is important to design the rotor blades' natural frequency f and the turbine rotational speed N and its integral multiple as far as possible, and this is It is well known to those in the industry that this is the basis of vibration design. Therefore, there are cases where the above-mentioned drop in frequency of about 5 inches can be ignored, but there are many cases where it cannot be ignored. In particular, regarding the moving blades used in the final stage and immediately preceding stage of the low-pressure stage, the centrifugal force exerted on the moving blades is extremely severe, and the long tail length tends to cause vibration-related troubles. is also bad, so the reduction in natural vibration of about 5% mentioned above cannot be ignored in many cases.

本発明は以上の如き問題を解決するだめのものであり、
従来からのチタン合金による単なる同一形状置換でなく
、経済的な方法で前述の振動数の低下を修正したチタン
合金製タービン動翼を提供せんとするものである。
The present invention is intended to solve the above problems,
It is an object of the present invention to provide a titanium alloy turbine rotor blade that corrects the above-mentioned decrease in frequency in an economical manner, rather than simply replacing the conventional titanium alloy with the same shape.

以下、本発明の一実施例を第1図を参照・しながら説明
する。
An embodiment of the present invention will be described below with reference to FIG.

同一形状置換(1用いるチタン合金製の動翼の振動特性
を従来の12Cr鋼裂の動翼と同一1=するには、チタ
ン合金製の動翼の固有振動数を約5チ上昇させればよい
訳である。
Same shape replacement (1) In order to make the vibration characteristics of the titanium alloy rotor blade the same as the conventional 12Cr steel cracked rotor blade, the natural frequency of the titanium alloy rotor blade should be raised by about 5 cm. That's a good explanation.

最終段落、および直前段落に用いられる動翼のような比
較的長い動翼の固有振動数fは、次の式%式% f−=に−h  (ここに、K:比例常数、 b :羽
根の平均厚さ) 従って、fを約5チ上昇させるには、hを約5チ増加す
ればよい。しかし、周知の如く、当該動翼は一般に第1
図に示すようなプロフィールヲ有し、その長さく半径)
方向にも断面は一様とは限らない。
The natural frequency f of a relatively long rotor blade, such as the rotor blade used in the final stage and the immediately preceding stage, is determined by the following formula: %f-=-h (where K: proportionality constant, b: blade Therefore, to increase f by about 5 inches, h needs to be increased by about 5 inches. However, as is well known, the rotor blade is generally
It has a profile as shown in the figure, its length and radius)
The cross section is not necessarily uniform in direction either.

第1図は横軸X、縦軸yによって表わされる動翼プロフ
ィールを示しでいる。図に示す実線の動翼断面は、従来
の12C「鋼製の動翼lのものである。
FIG. 1 shows the rotor blade profile represented by the horizontal axis X and the vertical axis y. The rotor blade cross section indicated by the solid line in the figure is that of a conventional 12C steel rotor blade.

点線で示す断面は、本発明(二よるチタン合金製の動翼
2の断面を示すものである。こ゛の場合、背側形状3は
両者とも同一であり、腹側形状4は、本発明による動翼
2が一律にy方向にAだけ厚く製作されている。第2図
に示すように、Aと動翼の固有振動数の増加率は、はぼ
正比例の関係があり、この種の動翼についても上記の式
が成立することが認められる訳で弗る。
The cross section shown by the dotted line shows the cross section of the rotor blade 2 made of titanium alloy according to the present invention (2). In this case, the dorsal side shape 3 is the same for both, and the ventral side shape 4 is the same according to the present invention. The rotor blade 2 is made uniformly thick by A in the y direction.As shown in Figure 2, A and the rate of increase in the natural frequency of the rotor blade are approximately directly proportional to each other. We can now conclude that the above formula holds true for wings as well.

従って本発明のチタン合金製タービン動翼の加工は容易
な丙のとなる。即ち、第1図の背側形状3を加工する場
合は、12Cr鋼製の動R1を加工する際用いた総形フ
ライスで全く同様に加工し、腹側形状4を加工する時は
、12Cr8!li1製の動翼1を加工する際用いた総
形フライスをy方向にA(羽根平均厚みの約5係に当る
。)だけオフセットして加工すればよい訳である。この
点を除けば、両者の加工に何の異なる点も現れない。
Therefore, processing of the titanium alloy turbine rotor blade of the present invention is easy. That is, when processing the dorsal side shape 3 in Fig. 1, it is processed in exactly the same way with the general milling cutter used when machining the dynamic R1 made of 12Cr steel, and when processing the ventral side shape 4, the 12Cr8! In other words, it is sufficient to use the general milling cutter used when processing the rotor blade 1 made of li1 by offsetting it in the y direction by A (corresponding to about the fifth factor of the blade average thickness). Other than this point, there is no difference in the processing of the two.

以上述べたように本発明による同−形状置換用チタン合
金製タービン動翼は従来の12crfi製の動翼と全く
同一の振動特性を有し、尚かつその加工法も極めて経済
的である。
As described above, the same-shape replacement titanium alloy turbine rotor blade of the present invention has exactly the same vibration characteristics as the conventional 12CRFI rotor blade, and its processing method is also extremely economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるチタン合金製タービン動翼のプロ
フィールを示す説明図、第2図は、カッタのオフセット
加工量と動翼の固有振動数変化社の関係を示す線図であ
る。
FIG. 1 is an explanatory diagram showing the profile of a titanium alloy turbine rotor blade according to the present invention, and FIG. 2 is a diagram showing the relationship between the cutter offset processing amount and the natural frequency change of the rotor blade.

Claims (1)

【特許請求の範囲】[Claims] 蒸気タービンの低圧段落1:使用し、特にその最終段落
あるいはその前の段落の止め羽根を含めた羽根に使用さ
れるものであって、通常プロフィールを持つ12Cr鋼
等の羽根C=対し、羽根の厚さが大略5チ増大している
ことを特徴とするチタン合金製タービン動翼。
Low-pressure stage 1 of a steam turbine: Used for the blades, especially the last stage or the preceding stage, including the stop blades, as opposed to the blades C=, such as 12Cr steel, which usually have a profile. A titanium alloy turbine rotor blade characterized by an increase in thickness of approximately 5 inches.
JP10395382A 1982-06-18 1982-06-18 Turbine movable blade made of ti-alloy Pending JPS58220903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10395382A JPS58220903A (en) 1982-06-18 1982-06-18 Turbine movable blade made of ti-alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10395382A JPS58220903A (en) 1982-06-18 1982-06-18 Turbine movable blade made of ti-alloy

Publications (1)

Publication Number Publication Date
JPS58220903A true JPS58220903A (en) 1983-12-22

Family

ID=14367774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10395382A Pending JPS58220903A (en) 1982-06-18 1982-06-18 Turbine movable blade made of ti-alloy

Country Status (1)

Country Link
JP (1) JPS58220903A (en)

Similar Documents

Publication Publication Date Title
CN100351495C (en) Turbine blade pocket shroud
US5354178A (en) Light weight steam turbine blade
JP4584102B2 (en) Turbine rotor, inverted Christmas tree type turbine blade, low pressure steam turbine and steam turbine power plant using the same
JPS63306208A (en) Turbine blade
GB2064667A (en) Turbofan rotor blades
US8689442B2 (en) Method for the fabrication of integrally bladed rotors
EP1973716B1 (en) Method for the milling machining of components
EP3473431B1 (en) Turbomachine and blade and rotor for a turbomachine
USRE29920E (en) High temperature alloys
DE3444810C2 (en) Blade for a gas turbine engine
GB2280226A (en) Mounting blades on rotor disk by asymmetric axial dovetails
DE102009003523A1 (en) Steam turbine blade for low pressure section
US5531569A (en) Bucket to wheel dovetail design for turbine rotors
EP0425889B1 (en) Rotor blade of axial-flow machines
EP3710680B1 (en) Gas turbine blade and method for producing such blade
US6435834B1 (en) Bucket and wheel dovetail connection for turbine rotors
US1829179A (en) Method of making turbine blades
US6435833B1 (en) Bucket and wheel dovetail connection for turbine rotors
CA1053482A (en) Nickel-base superalloy cast article
JPH09157780A (en) High corrosion resistant cobalt base alloy
JPS58220903A (en) Turbine movable blade made of ti-alloy
US1771023A (en) Turbine blade and method of producing same
US1762352A (en) Turbine blade
JPS61149504A (en) Turbine rotor structure in pneumatic machine
CN114340818A (en) Combined additive and subtractive manufacturing of bladed rotors