JPS58219926A - Laser irradiating apparatus - Google Patents
Laser irradiating apparatusInfo
- Publication number
- JPS58219926A JPS58219926A JP10210582A JP10210582A JPS58219926A JP S58219926 A JPS58219926 A JP S58219926A JP 10210582 A JP10210582 A JP 10210582A JP 10210582 A JP10210582 A JP 10210582A JP S58219926 A JPS58219926 A JP S58219926A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- cell
- freon
- state
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
本発明は光化学反応を利用した物質の分離、特に同位体
の分離のためにレーザー光を照射するレーザ照射装置に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a laser irradiation device that irradiates laser light for the separation of substances using photochemical reactions, particularly for the separation of isotopes.
従来、レーザー光を利用した光化学反応により物質を選
別する場合、特に同位体を分離する場合、第1図に示す
ようなレーザ照射装置が用いられている。この装置はレ
ーザー光(4)をレンズ(2)で集光径照射セル(3)
中の気体試料に照射して、その極めてエネルギー密度の
高くなった領域において、光化学反応を起こさせるよう
に構成されている。BACKGROUND ART Conventionally, a laser irradiation device as shown in FIG. 1 has been used to select substances by photochemical reactions using laser light, particularly to separate isotopes. This device focuses a laser beam (4) using a lens (2) into a diameter irradiation cell (3).
It is configured to irradiate a gaseous sample inside and cause a photochemical reaction to occur in a region of extremely high energy density.
例エバソノ反応を、2.2−dichloro−1,1
,1−trifluoroethane (CFICH
CJI ;フレオン123(商品名)とすると、フレオ
ン123(商品名)中のH原子が0原子と置きかわりフ
レオン123− Dとなる。このときのフレオン123
− Dとフレオン123(商品名)とについて赤外光ス
ペクトルをとると、明らかにその吸収ピークの位置に同
位体効果に基づいた差異が生ずる。そこでフレオン12
3− Dの吸収ピークに相等しい波長のレーザー光を照
射すると、フレオン123− Dはフレオン123 (
商品名)に比べ光子を多量に吸収し、その結果他の化学
種に分解する。この現象は、赤外光多光子吸収解離とし
てすでに知られている。この時の反応は、H,Marl
in#ら(Jounal of Chemical P
hyslcs、 vol、 72. No、 1(L
(1980)P、516 )により、次のようになると
説明されている。Example Evasono reaction is 2,2-dichloro-1,1
,1-trifluoroethane (CFICH
CJI; When Freon 123 (trade name) is used, the H atom in Freon 123 (trade name) is replaced with 0 atom, resulting in Freon 123-D. Freon 123 at this time
When infrared spectra are taken for -D and Freon 123 (trade name), there is clearly a difference in the position of their absorption peaks based on isotopic effects. So freon 12
When irradiated with laser light of a wavelength equal to the absorption peak of 3-D, Freon 123-D becomes Freon 123 (
It absorbs a large amount of photons compared to (trade name), and as a result breaks down into other chemical species. This phenomenon is already known as infrared multiphoton absorption dissociation. The reaction at this time is H, Marl
in # et al. (Journal of Chemical P
hyslcs, vol, 72. No. 1 (L
(1980) P, 516), it is explained as follows.
CF、CD−一=→CF、 = CFD ・・
・・・■C2+OF、CHCj、−−→CF、6CJ、
4−HCj ・−・・−■C14−CF、CCJ、十
M−cF、CCL、+M ・−−−−■この結果、
重水素を含む化学物はcr、=crnおよびDCJ−と
Kなる。しかし、ここでの主要な反応は■であるためD
CAの量はCF、 = CFDに比べわずかである。CF, CD-1=→CF, =CFD...
... ■C2+OF, CHCj, --→CF, 6CJ,
4-HCj ・−・・− ■C14-CF, CCJ, 10M-cF, CCL, +M ・−−−■ This result,
Chemicals containing deuterium are cr, = crn and DCJ- and K. However, since the main reaction here is ■, D
The amount of CA is small compared to CF, = CFD.
it、CF、CHC^については、上記反応において生
成されるラジカルにより次の反応をするとされている。It, CF, and CHC^ are said to undergo the following reaction with the radicals generated in the above reaction.
cpa6cJt+CF、CHCJ、→cr、ccz、
−4−cr、ccncz・・・■CFs CHC’ 十
M−Crt = CFH+ M +07曲・■イ直ν
CF、CDCj、 −) CF、CHCJ−、4CF、
CIX’l、−1−OF、CHCj、−@C烏CHCJ
、 +M−→OF’、−CFH十M+2(:t 、、
、、、[相]m直ν
この結果、Cへ=CFHが生成され、重水素の濃縮係数
を減することになる。ただし、この反応の割合は極めて
少なく、適当な系を選択することによυ〜1200とい
う濃縮係数が得られている。cpa6cJt+CF, CHCJ, → cr, ccz,
-4-cr, ccncz...■CFs CHC' 10M-Crt = CFH+ M +07 songs・■I straight ν CF, CDCj, -) CF, CHCJ-, 4CF,
CIX'l, -1-OF, CHCj, -@CkarasuCHCJ
, +M-→OF', -CFH1M+2(:t ,,
, , [Phase] mdirect ν As a result, =CFH to C is generated, which reduces the deuterium enrichment coefficient. However, the rate of this reaction is extremely small, and by selecting an appropriate system, an enrichment factor of υ~1200 has been obtained.
先に述べた様に■の反応が主要な初期段階でおるが、そ
の生成物はともに高度なラジカル状態である。化学結合
がレーザー光により切断された直後には、2個のラジカ
ル唸非常に短い時間2つの生成物の不対電子スピンが互
いに逆向きである一重項状態あるいは同じ向きである三
重現状態の対を形成する。−重環状態のラジカル対は互
に反応して再結合しやすいが、三重現状態は再結合でき
ず対を解消する。よって2ジカルが一重項状態に多く存
在するならば、反応の収率が減少することになる。これ
は、反応系に与えられたレーザー光のエネルギーのロス
となり経済的かつ効率的に好ましくない。As mentioned above, reaction (2) is the main initial step, and both of its products are in a highly radical state. Immediately after a chemical bond is broken by laser light, two radicals form.For a very short time, the unpaired electron spins of the two products are in a singlet state with opposite orientations, or in a triplet state with the same orientation. form. - Radical pairs in the double ring state tend to react with each other and recombine, but in the triple state they cannot recombine and the pair is dissolved. Therefore, if many 2 radicals exist in the singlet state, the yield of the reaction will decrease. This results in a loss of energy of the laser beam given to the reaction system, which is unfavorable from an economical and efficient standpoint.
本発明の目的性、かかる欠点を解消し、反応生成物の収
率な向上させたレーザー照射装置を提供するととKある
。It is an object of the present invention to provide a laser irradiation device that eliminates these drawbacks and improves the yield of reaction products.
本発明はレーザー反応容器を磁場中に設置したレー・ザ
ー照射装置である。The present invention is a laser irradiation device in which a laser reaction vessel is placed in a magnetic field.
本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described based on the drawings.
#I2図は本発明のレーザー照射装置で、(5)Fl、
レーザー発振器、(6)はレンズ、(7)は照射用セル
、(8)は電磁石、(9)はレーず一光を示す。照射セ
ル(7)内にフレオン123 (商品名)およびフレオ
ン123−Dの混合物を適当な圧力で注入し、このセル
(7)の外部をと)囲んだ電磁石(8)を働かせた状態
でレーザー発振器(5)からパルス的に発振された赤外
レーザー光(9)を照射セル(7)中の気体試料に照射
する。照射セル(7)内では、赤外光多光子吸収によシ
前述の■〜[相]までの反応が行なわれるが、先に説明
した様に反応の結果、形成されたラジカル対の状態に祉
−重項および三重現状態が存在し、−重項および三重現
状態は互いに不対電子スビ/の変化によりその状態を変
換する。そこで、−重項から三重現状態へのラジカル対
の移行を、セル(7)外に設置した電磁石(8)により
形成された磁界が促進させるため、反応のにおいてCF
、CDCLの生成を促進し、さらに反応■、■において
もCF、CDからCF、=CFDへの生成を促進する。#I2 figure is the laser irradiation device of the present invention, (5) Fl,
A laser oscillator, (6) a lens, (7) an irradiation cell, (8) an electromagnet, and (9) a laser beam. A mixture of Freon 123 (trade name) and Freon 123-D is injected into the irradiation cell (7) at an appropriate pressure, and the electromagnet (8) surrounding the outside of the cell (7) is activated to irradiate the laser beam. A gas sample in an irradiation cell (7) is irradiated with infrared laser light (9) pulsed from an oscillator (5). In the irradiation cell (7), the reactions from (1) to [phase] mentioned above are carried out by multiphoton absorption of infrared light, but as explained earlier, as a result of the reaction, the state of the radical pair formed is There are doublet and triplet current states, and the doublet and triplet states mutually transform their states by changes in unpaired electron beams. Therefore, since the magnetic field formed by the electromagnet (8) installed outside the cell (7) promotes the transition of radical pairs from the - doublet state to the triplet state, CF
, promotes the production of CDCL, and also promotes the production of CF and CD to CF and =CFD in reactions ① and ②.
このようにして構成された本発明のレーザー照射装置は
、単位レーザー光照射ibの所望の反応生成物収量を増
加させる、すなわち上記反応の場合、重水素の回収量を
増加させるという効果がある。同様のことが他の水素同
位元素であるトリチウムを、フレオン123(商品名)
中のH原子と入れ変えた場合にも、さらには他のフレオ
/123(商品名)に変わる作業物質を用いた場合にも
いえる。The laser irradiation device of the present invention configured in this manner has the effect of increasing the yield of the desired reaction product per unit laser beam irradiation ib, that is, increasing the amount of deuterium recovered in the above reaction. The same goes for tritium, another hydrogen isotope, Freon 123 (trade name)
This also applies when replacing the H atom inside, or even when using another working substance instead of Freo/123 (trade name).
第゛1図は従来のレーザー照射装置を示す説明図、第2
図は本発明によるレーザー照射装置の説明図である。
1・・・・・・・レーザー発振器。
2・・・・・・・し ン ズ。
3・・・・・・・照射用セル。
4・・・・・・・レーザー光。
5・・・・・・・レーザー発振器。
6・・・・・・・し ン ズ
7・・・・・・・照射用セル。
8・・・・・・・電磁石。
9・・・・・・・レーザー光。Figure 1 is an explanatory diagram showing a conventional laser irradiation device, Figure 2
The figure is an explanatory diagram of a laser irradiation device according to the present invention. 1... Laser oscillator. 2......shins. 3...Irradiation cell. 4...Laser light. 5...Laser oscillator. 6... Cell 7... Irradiation cell. 8・・・・・・Electromagnet. 9...Laser light.
Claims (1)
分離系の反応容器を磁界中に設置してなることを特徴と
するレーザー照射装置。A laser irradiation device characterized in that a reaction vessel of an isotope separation system that causes a photochemical reaction using laser light is installed in a magnetic field.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10210582A JPS58219926A (en) | 1982-06-16 | 1982-06-16 | Laser irradiating apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10210582A JPS58219926A (en) | 1982-06-16 | 1982-06-16 | Laser irradiating apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58219926A true JPS58219926A (en) | 1983-12-21 |
Family
ID=14318514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10210582A Pending JPS58219926A (en) | 1982-06-16 | 1982-06-16 | Laser irradiating apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58219926A (en) |
-
1982
- 1982-06-16 JP JP10210582A patent/JPS58219926A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Makide et al. | Tritium separation by CO2 laser multiphoton dissociation of trifluoromethane | |
EP0067036B1 (en) | Method of separating zirconium isotopes | |
Plane et al. | A kinetic study of the reactions of Fe (a 5 D) and Fe+(a 6 D) with N 2 O over the temperature range 294–850 K | |
Penionzhkevich | Reactions involving loosely bound cluster nuclei: Heavy ions and new technologies | |
Callear et al. | Cross-sections for deactivation of Hg (6 3 P 0) | |
GB1526512A (en) | Isotope separation | |
Arai et al. | Practical separation of silicon isotopes by IRMPD of Si 2 F 6 | |
JPS58219926A (en) | Laser irradiating apparatus | |
Maddock et al. | Annealing of radiolytic damage in some nitrates. Part 1.—Lead nitrate | |
US4411755A (en) | Laser-assisted isotope separation of tritium | |
Danen | Pulsed infrared laser-induced organic chemical reactions | |
US4220510A (en) | Method for separating isotopes in the liquid phase at cryogenic temperature | |
WO1995003261A1 (en) | Treating unsaturated hydrocarbons | |
JPH01194932A (en) | Separation of hydrogen isotope | |
Karlov et al. | Macroscopic kinetics of thermochemical processes on laser heating: current state and prospects | |
Maienschein et al. | Tritium removal from contaminated water via infrared laser multiple-photon dissociation | |
JPS618118A (en) | Separation of isotope by laser and working substance | |
Odorico | QCD predictions for associated production of jets in p¯ p→ W±X | |
JPH02258027A (en) | Isotope separating reactor by laser beam | |
JPS618119A (en) | Separation of isotope by laser and working substance | |
JPS60132629A (en) | Concentration of carbon 13 by laser | |
JP2804815B2 (en) | Method for enriching carbon 13 | |
Herman et al. | Advances in Laser Isotope Separation | |
Bond | Laser Isotope Enrichment for Medical and Industrial Applications | |
RU2214013C2 (en) | Method for decontaminating radioactive wastes |