JPS58219236A - Production of nylon powder - Google Patents

Production of nylon powder

Info

Publication number
JPS58219236A
JPS58219236A JP10219982A JP10219982A JPS58219236A JP S58219236 A JPS58219236 A JP S58219236A JP 10219982 A JP10219982 A JP 10219982A JP 10219982 A JP10219982 A JP 10219982A JP S58219236 A JPS58219236 A JP S58219236A
Authority
JP
Japan
Prior art keywords
nylon
solvent
manufacturing
tfe
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10219982A
Other languages
Japanese (ja)
Other versions
JPS6030692B2 (en
Inventor
Tsunetaka Yamamoto
山本 経孝
Toshiro Isotani
磯谷 俊郎
Hideto Takahashi
英人 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP10219982A priority Critical patent/JPS6030692B2/en
Publication of JPS58219236A publication Critical patent/JPS58219236A/en
Publication of JPS6030692B2 publication Critical patent/JPS6030692B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polyamides (AREA)

Abstract

PURPOSE:After nylon is dissolved in a specific solvent, a poor solvent is added thereto for reprecipitation to permit easy production of a nylon powder used as powder coating or adsorbent in no need of specific conditions and facilities. CONSTITUTION:Nylon such as nylon 6, 66, 610, 612, 6/66, 6/66/610, 6/66/612 is dissolved in 2,2,2-trifluoroethanol (abbreviated to TFE) or a solvent mainly consisting of the same, preferably a solvent containing less than 5wt% water, so that the concentration of the nylon becomes preferably 1-10%. The resultant solution is combined with a poor solvent which does not dissolve nylon at room temperature and is compatible with the TFE solution such as water, methanol or acetone, preferably under stirring in an amount of 1-3 times the weight of the solvent to effect precipitation of the nylon, thus producing a nylon powder. When nylon 11 or nylon 12 is employed, TFE containing phenol as a dissolution aid is recommended.

Description

【発明の詳細な説明】 本発明はナイロン粉末の製造方法、特に再沈殿法によっ
てナイロン粉末を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing nylon powder, particularly a method for producing nylon powder by a reprecipitation method.

ナイロン粉末は粉体塗料、吸着剤、化粧品基剤。Nylon powder is used in powder coatings, adsorbents, and cosmetic bases.

焼結成形品等の原料として工業的に大きな価値を有して
おり、その製造方法は種々提案されている。
It has great industrial value as a raw material for sintered molded products, etc., and various methods for producing it have been proposed.

代表的な製法は、ナイロンを適当な溶媒に溶解し、温度
による溶解度差を利用するか、又は溶媒と均一に混合す
る貧溶媒を加えてナイロン粉末を沈殿させる、いわゆる
再沈殿法である。
A typical manufacturing method is the so-called reprecipitation method, in which nylon is dissolved in a suitable solvent and nylon powder is precipitated by utilizing the solubility difference due to temperature or by adding a poor solvent that mixes uniformly with the solvent.

前者に関しては、ナイロンの溶媒としてエチレングリコ
ール等の多価アルコール(米国特許第2639278号
明細書)、ε−カプロラクタム水溶液(特公昭43−1
8616号公報)、ジメチルアセトアミド(特公昭48
−24812号公報)、含水低級アルコール(特公昭5
3−46218号公報)等が提案されているが、これら
はいずれもかなりの高温(例えば130℃以上)を必要
とし、中には高圧(例えば10kg/clIL2以上)
を必要とするものもあるなどの欠点がある。
Regarding the former, polyhydric alcohols such as ethylene glycol (U.S. Pat. No. 2,639,278), ε-caprolactam aqueous solution (Japanese Patent Publication No. 43-1) are used as solvents for nylon.
8616), dimethylacetamide (Special Publication No. 1973)
-24812), hydrous lower alcohol (Special Publication No. 5
3-46218), but all of these require considerably high temperatures (e.g., 130°C or higher), and some require high pressures (e.g., 10 kg/clIL2 or higher).
There are disadvantages such as some requiring

後者に関しては、ナイロンの溶媒として無機酸や有機酸
等の酸類(特公昭38−13520号公報ン等が   
□提案されており、高温は必ずしも必要でなく常温でも
十分であるが、特殊な材質の装置が必要であつたり、ナ
イロンが解重合され℃重合度が大幅に低下したりするな
どの欠点がある。
Regarding the latter, acids such as inorganic acids and organic acids (Japanese Patent Publication No. 38-13520, etc.) are used as solvents for nylon.
□It has been proposed that high temperatures are not necessarily necessary and room temperature is sufficient, but there are drawbacks such as the need for equipment made of special materials and the depolymerization of nylon, which significantly reduces the degree of polymerization in °C. .

本発明基らは再沈殿法における上記の如き欠点を改善す
るために鋭意検討した結果、ナイロンをある特定の溶媒
に溶解し、再沈殿用の貧溶媒を添加することによって粒
径lμ〜数百μのナイロン粉末を容易に得ることができ
ることを見出した。
The inventors of the present invention have made extensive studies to improve the above-mentioned drawbacks of the reprecipitation method, and have found that by dissolving nylon in a specific solvent and adding a poor solvent for reprecipitation, the particle size ranges from lμ to several hundred. It has been found that μ nylon powder can be easily obtained.

即ち、本発明は、ナイロンを2.2.2− )リフルオ
ロエタノール(以下TFgと略記する)又はTFEを主
成分とする溶媒に溶解させ、ナイロンを常温では溶解せ
ず且つTFEと実質的に完全な相溶性を有イる貧溶媒を
該ナイロン溶液に攪拌下に添加してナイロンを析出させ
ることを特徴とするナイロン粉末の製造法を提供せんと
するものである。
That is, the present invention dissolves nylon in a solvent mainly composed of 2.2.2-) refluoroethanol (hereinafter abbreviated as TFg) or TFE, and the nylon is not dissolved at room temperature and is substantially compatible with TFE. It is an object of the present invention to provide a method for producing nylon powder, which comprises adding a completely miscible poor solvent to the nylon solution under stirring to precipitate nylon.

以下、本発明を更に詳しく説明1′る。The present invention will be explained in more detail below.

本発明で使用されるナイロンとしては、例えばナイo 
ン6 、66、610 、612 、6/66、6/6
6/610゜6/66/612  蝉を挙げることがで
き、これらはいずれもTFE又はTFEを主成分とする
溶媒に溶解する。ナイロン11や12はTFEには溶解
しにくいが、フェノール、メタクレゾール等を1−10
wt%含有する’r F Eには溶解するので、これら
の溶解助剤を1〜10 wt%含有するTFEを使用す
ればナイロン11や12に対しても本発明の方法を適用
することができる。
The nylon used in the present invention includes, for example, nylon
6, 66, 610, 612, 6/66, 6/6
6/610゜6/66/612 Cicada can be mentioned, and both of these can be dissolved in TFE or a solvent mainly composed of TFE. Nylon 11 and 12 are difficult to dissolve in TFE, but phenol, metacresol, etc.
Since it dissolves in 'rFE containing 1 to 10 wt% of these solubilizers, the method of the present invention can also be applied to nylon 11 and 12 if TFE containing 1 to 10 wt% of these solubilizers is used. .

ナイロンとTFE又はTFEを主成分とする溶媒とから
成るナイロン溶液中のナイロン濃度は大幅に変え得るが
、濃度が高いと貧溶媒を添加した際にナイロンが塊状、
フィルム状或いは繊維状に析出したりしてナイロン粉末
が得られないので、0、1〜15 wt%、好ましくは
1〜10 wt%が実用的である。
The concentration of nylon in a nylon solution consisting of nylon and TFE or a TFE-based solvent can vary considerably, but if the concentration is high, the nylon will form lumps when a poor solvent is added.
Since nylon powder cannot be obtained due to precipitation in the form of a film or fibers, a practical amount is 0.1 to 15 wt%, preferably 1 to 10 wt%.

本発明ではナイロンの溶媒としてTFE又はTFEを主
成分とする溶媒を使用する。T F Eは水、メタノー
ル、アセトン等と完全な相溶性を有する含フツ素アルコ
ールであり、種々の金属に対する腐食性はほとんどない
。ナイロン6.66゜610 、612 、6/66、
6/66/6]0.6/66/612等の場合には、T
FE単独は勿論のこと、水、メタノール、アセトレ等の
貧溶媒を含有するTFEを使用することができるが、貧
溶媒含有量が多いとナイロンを溶解するのに長時間を必
要としたり、高温高圧を必要としたりするので、これら
の貧溶媒の含有量は20 wt%以下、好ましくは10
wt%以下、特に好ましくは5wt%以下が実用的であ
る。貧溶媒含有量が5 wt%以下であれば、TFEの
沸点(約74℃)近傍の温度で常圧下にナイロンを短時
間で溶解させることができる。なお、5wt%以下の場
合には勿論のこと、5 wt%以上の場合でも、TFE
の沸点以上の温度で比較的低い圧力、例えば4 kij
/an”以下でナイロンを溶解させることもできる。ナ
イロン11’P12等の場合には、TFE単独には溶解
しに(いので、フェノール、メタクレゾール等の溶解助
剤を1〜10 wt%含有するTFEを使用するのが好
ましい。従って、対象とするナイロンの種類に応じ”(
TFE又はTFEを主成分とする溶媒を適宜選択する。
In the present invention, TFE or a solvent containing TFE as a main component is used as a solvent for nylon. TFE is a fluorine-containing alcohol that is completely compatible with water, methanol, acetone, etc., and has almost no corrosivity to various metals. Nylon 6.66°610, 612, 6/66,
6/66/6]0.6/66/612 etc., T
It is possible to use not only FE alone, but also TFE containing a poor solvent such as water, methanol, acetre, etc.; Therefore, the content of these poor solvents is 20 wt% or less, preferably 10 wt% or less.
A practical content is 5 wt% or less, particularly preferably 5 wt% or less. If the poor solvent content is 5 wt% or less, nylon can be dissolved in a short time under normal pressure at a temperature near the boiling point of TFE (about 74°C). It should be noted that, of course, when the amount is less than 5 wt%, even when it is more than 5 wt%, TFE
relatively low pressure at a temperature above the boiling point of, e.g. 4 kij
/an'' or less. In the case of nylon 11'P12, etc., it is difficult to dissolve in TFE alone (so it contains 1 to 10 wt% of a solubilizing agent such as phenol or metacresol). It is preferable to use TFE that has a
TFE or a solvent containing TFE as a main component is appropriately selected.

1.Cお、常温での溶解度以上のナイロンを溶解させる
場合には勿論加熱溶解させる必要があるが、常温での溶
解度以下のナイロンを溶解させる場合でも、溶解時間を
短縮するために、例えばTFEの沸点(約り4℃〕近傍
の温度で加熱溶解させるのが好ましい。
1. C. Of course, when dissolving nylon with a solubility higher than that at room temperature, it is necessary to heat it, but even when dissolving nylon with a solubility lower than that at room temperature, in order to shorten the dissolution time, for example, the boiling point of TFE is used. It is preferable to heat and melt at a temperature around 4°C.

本発明で使用される再沈殿用の貧溶媒は、ナイロンを常
温では溶解せず且つTFEと実質的に完全な相溶性を有
するものであれば伺でもよい。はとんどのナイロンの場
合には水、メタノール、アセトン等を好適に使用するこ
とができるが、特殊なナイロン、即ち水用溶性ナイロン
やアルコール可溶性ナイロン等の場合には、貧溶媒の選
択の際には注意が必要である。又、貧溶媒中にはTFE
が例えば3 Q wt%程度含有されていてもよいが、
TFE含有量が多いと貧溶媒を大量に添加しなければナ
イロンが析出しないので、実用的な見地からは貧溶媒中
のTFE含有量は10 wt%以fが好ましい。なお、
TFEとの相溶性がほとんどないn−ヘキサンや、TF
Eとの相溶性が成る程度しかないベンゼン等をナイロン
溶液に添加してもナイロン粉末は得られない。
The poor solvent for reprecipitation used in the present invention may be any solvent as long as it does not dissolve nylon at room temperature and has substantially complete compatibility with TFE. In the case of most nylons, water, methanol, acetone, etc. can be suitably used, but in the case of special nylons, such as water-soluble nylons and alcohol-soluble nylons, it is necessary to select a poor solvent. Caution is required. In addition, TFE is contained in the poor solvent.
may be contained, for example, about 3 Q wt%,
If the TFE content is high, nylon will not precipitate unless a large amount of poor solvent is added, so from a practical standpoint, the TFE content in the poor solvent is preferably 10 wt% or more. In addition,
n-hexane, which has almost no compatibility with TFE, and TF
Even if benzene or the like which is only compatible with E is added to the nylon solution, nylon powder cannot be obtained.

ナイロン溶液に再沈殿用の貧溶媒を添加する際のナイロ
ン溶液の温度は何℃でもよく、例えばTFEの沸点(約
74℃)近傍の温度でも常温でもよい。ただし、ナイロ
ンの種類、濃度によっては、ナイロンを加熱溶解させた
後に常温付近まで温度を低1させると、貧溶媒を添加す
る前であってもナイロンが寒天状に析出することがある
ので、貧溶媒を添加する際のナイロン溶液の温度は適宜
選択する必要がある。
The temperature of the nylon solution when adding the poor solvent for reprecipitation to the nylon solution may be any degree Celsius, and may be, for example, a temperature near the boiling point of TFE (about 74 degrees Celsius) or room temperature. However, depending on the type and concentration of nylon, if the temperature is lowered to around room temperature after heating and dissolving nylon, nylon may precipitate in an agar-like form even before adding a poor solvent. The temperature of the nylon solution when adding the solvent needs to be selected appropriately.

貧溶媒の添加量もナイロン溶液中のナイロンの種類や濃
度に応じて変え得るが、添加量が少ないとナイロン溶液
中のナイロンの析出が不完全になったり、たとえナイロ
ンが完全に析出したとしても、生成するナイロン粉末の
流動性が悪くなったりするので、貧溶媒の添加重量はナ
イロン溶液中のTFE又はTFEを主成分とする溶媒の
重量の0.5〜5倍、好ましくは1〜3倍が実用的であ
る。
The amount of poor solvent added can also be changed depending on the type and concentration of nylon in the nylon solution, but if the amount added is small, the precipitation of nylon in the nylon solution may be incomplete, or even if nylon is completely precipitated. The weight of the poor solvent added is 0.5 to 5 times, preferably 1 to 3 times, the weight of the TFE or TFE-based solvent in the nylon solution, since the fluidity of the produced nylon powder may deteriorate. is practical.

なお、貧溶媒を添加する際にはナイロン溶液を攪拌する
ことが必要であり、攪拌しないとナイロンは粉末状には
析出せず、塊状、フィルム状或いは繊維状に析出する。
Note that it is necessary to stir the nylon solution when adding the poor solvent; if stirring is not done, nylon will not be precipitated in the form of a powder, but will be precipitated in the form of lumps, films, or fibers.

(9) 本発明の方法でナイロン溶液に貧溶媒を添加して得られ
るナイロン粉末のスラリーに、通常のr過、洗浄、乾燥
等の操作を施すと粒径が1μ〜数百μの乾燥ナイロン粉
末が得られるが、粒径が太きいものは粒径が1μ〜数μ
のものが凝集しているだけである。従って、更に通常の
粉砕、分級操作を施せば1μ以上の種々の粒径の乾燥ナ
イロン粉末が容易に得られる。又、これらの乾燥ナイロ
ン粉末の重合度は、TFE又はTFEを主成分とする溶
媒に溶解させる前のナイロンの重合度とほとんど差はな
い。
(9) When the slurry of nylon powder obtained by adding a poor solvent to the nylon solution by the method of the present invention is subjected to ordinary r-filtration, washing, drying, etc., dry nylon with a particle size of 1 μm to several hundred μm is produced. Powder is obtained, but if the particle size is large, the particle size is 1μ to several μ
It's just a bunch of stuff. Therefore, dry nylon powders of various particle sizes of 1 μm or more can be easily obtained by further carrying out conventional pulverization and classification operations. Further, the degree of polymerization of these dry nylon powders is almost the same as the degree of polymerization of nylon before being dissolved in TFE or a solvent containing TFE as a main component.

更に、既に述べたよ5にTFEには種々の金属類に対す
る腐食性はほとんどないので、貧溶媒或いは溶解助剤と
して腐食性のあるものを採用しない限りは、本発明の方
法を実施するための装置の材質は特殊なものである必要
はなく、普通の炭素鋼やステンレス鋼で十分である。
Furthermore, as mentioned above, TFE has almost no corrosivity to various metals, so unless a corrosive substance is used as a poor solvent or dissolution aid, the apparatus for carrying out the method of the present invention cannot be used. The material does not need to be special; ordinary carbon steel or stainless steel is sufficient.

又、ナイロン溶液からナイロンを析出せしめて得られる
ナイロン粉末のスラリーの1過、洗浄等によってTFE
を含む溶液が得られるので、これ(1す に通常の蒸留操作を施せば、ナイロンを溶解させるのに
使用できるTFE又はTFEを主成分とする溶媒を回収
することができる。このよ5 K TFEを蒸留回収し
て再使用するという点に注目すれば、TFEより沸点が
約26℃も高い水を貧溶媒として採用し、簡単な蒸留に
よって水を少量含有するTFIを回収し、これにナイロ
ンを溶解させるのが実用的である。
In addition, by filtering and washing the slurry of nylon powder obtained by precipitating nylon from a nylon solution, TFE
A solution containing 5K TFE is obtained, and by performing a normal distillation operation, it is possible to recover TFE or a TFE-based solvent that can be used to dissolve nylon. Focusing on the point of recovering and reusing TFE by distillation, water, which has a boiling point about 26°C higher than TFE, is used as a poor solvent, and TFI containing a small amount of water is recovered by simple distillation, and then nylon is added to it. It is practical to dissolve it.

次に実施例により本発明を具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.

実施例1 2.11のナイロン66と含水率0.1 wt%以下の
TFElooy−とを、攪拌機、還流冷却器9滴下漏斗
及び熱電対(ガラス製保膜管付き)を備えた内容積50
0 Ccのフラスコに仕込み、攪拌しながらマントルヒ
ーターで加熱し、74℃に1時間保持すると透明なナイ
ロン溶液が得られた。この溶液の温度を74℃に保持し
、攪拌しながら滴下漏斗を使用して貧溶媒としての水2
00tを約5 i贋の速度で添加するとナイロン粉末の
スラリーが得られた。このスラリーを60メツシユの金
網で濾過し、(]す 次いでr液をN115AP紙で濾過し、更に水11で洗
浄し、f紙上残渣として高含水率のナイロン粉末のケー
クが得られた。このケークを顕微鏡で観察した結果、ナ
イロン粉末の粒径は1〜250μであり、粒径の太きい
ものは、粒径1−10μのものが凝集していた。
Example 1 Nylon 66 of 2.11 and TFElooy- with a water content of 0.1 wt% or less were mixed in a 50-liter container equipped with a stirrer, a reflux condenser, a 9-dropping funnel, and a thermocouple (with a glass retaining tube).
The mixture was charged into a 0 Cc flask, heated with a mantle heater while stirring, and kept at 74°C for 1 hour to obtain a transparent nylon solution. Keeping the temperature of this solution at 74 °C, add 2 mL of water as antisolvent using a dropping funnel while stirring.
A slurry of nylon powder was obtained by adding 00 t at a rate of about 5 i. This slurry was filtered through a 60-mesh wire mesh, and then the r solution was filtered through N115AP paper, and further washed with water 11 to obtain a cake of nylon powder with a high moisture content as a residue on the f paper. As a result of observation under a microscope, the particle size of the nylon powder was 1 to 250 microns, and the larger particles had agglomerated particles with a particle size of 1 to 10 microns.

実施例2〜lO ナイロン66の仕込量、ナイロンの溶解時間、水添加時
のナイロン溶液の温度及び水の添加量を表1のように変
えて実施例1を繰返したところ、いずれも高含水率のナ
イロン66粉末のケークが得られ、粉末の粒径は1〜2
50μであった。
Example 2~lO When Example 1 was repeated by changing the amount of nylon 66 charged, the dissolution time of nylon, the temperature of the nylon solution at the time of water addition, and the amount of water added as shown in Table 1, high water content was obtained in all cases. A cake of nylon 66 powder was obtained, and the particle size of the powder was 1 to 2.
It was 50μ.

表1 (12) 実施例11〜17 ナイロン6の仕込量、ナイロンの溶解時間、水添加時の
ナイロン溶液の温度及び水の添加量を表2のように変え
て実施例1を繰返したところ、いずれも高含水率のナイ
ロン6粉末のケークが得られ、粉末の粒径は】〜250
μであった。
Table 1 (12) Examples 11 to 17 Example 1 was repeated by changing the amount of nylon 6 charged, the dissolution time of nylon, the temperature of the nylon solution at the time of water addition, and the amount of water added as shown in Table 2. In both cases, a cake of nylon 6 powder with high moisture content was obtained, and the particle size of the powder was ~250.
It was μ.

表2 実施例18〜22 ナイロンの仕込量一定(8,7F)、含水率0.1wt
%以下のTFEの仕込量一定(loo P )、ナイロ
ンの溶解時間一定(2時間)、水の添加量一定(300
9)の条件下で、ナイロンの種類を表3のように変えて
実施例1を繰返したところ、いずれ(13) も高含水率のナイロン粉末のケークが得られ、粉末の粒
径は1〜250μであった。
Table 2 Examples 18-22 Nylon charge constant (8,7F), moisture content 0.1wt
% of TFE or less (loo P ), nylon dissolution time constant (2 hours), water addition amount constant (300
When Example 1 was repeated under the conditions of 9), changing the type of nylon as shown in Table 3, a cake of nylon powder with a high moisture content was obtained in each case (13), and the particle size of the powder was 1 to 1. It was 250μ.

実施例23〜25 表4に示すようにメタクレゾールの含有率の異なるT 
F E 1009−と2.19−のナイロン11とをフ
ラスコに仕込み、74℃で2時間加熱溶解せしめたこと
を除い又は実施例1と同じ条件で、実施例1を繰返した
ところ、いずれも高含水率のナイロン(14) l1粉末のケークが祠られ、粉末の粒径は1〜250μ
であった。
Examples 23 to 25 T with different metacresol content as shown in Table 4
Example 1 was repeated under the same conditions as Example 1, except that F E 1009- and 2.19-nylon 11 were charged into a flask and heated and melted at 74°C for 2 hours. A cake of nylon (14) l1 powder with moisture content is formed, and the particle size of the powder is 1-250μ.
Met.

表4 実施例26 フェノールを5 wt%含有するT F E 100%
と11.19のナイロン12とをフラスコに仕込み、7
4℃で3時間加熱溶解せしめたことを除いては実施例1
と同じ条件で、実施例1を繰返したところ、いずれも高
含水率のナイロン12粉末のケークが得られ、粒径は1
〜300μであった。
Table 4 Example 26 TFE 100% containing 5 wt% phenol
and 11.19 nylon 12 into a flask, 7
Example 1 except that it was heated and dissolved at 4°C for 3 hours.
When Example 1 was repeated under the same conditions as above, a cake of nylon 12 powder with a high moisture content was obtained in each case, and the particle size was 1.
It was ~300μ.

実施例27〜31 ナイロン溶液に添加する貧溶媒の穐類を表5のように変
え、貧溶媒添加時のナイロン溶液の温度(15) を25℃に保持したことを除いては実施例1と同じ条件
で、実施例1を繰返したところ、いずれも高含水率のナ
イロン66粉末のケークが得られ、粉末の粒径は1−2
50μであった。
Examples 27 to 31 Same as Example 1 except that the poor solvent added to the nylon solution was changed as shown in Table 5, and the temperature of the nylon solution (15) at the time of addition of the poor solvent was maintained at 25°C. When Example 1 was repeated under the same conditions, a cake of nylon 66 powder with a high moisture content was obtained in each case, and the particle size of the powder was 1-2.
It was 50μ.

実施例32〜35 表6に示すような溶媒100?と5.3?のナイロン6
6とをフラスコに仕込み、74℃で3時間加熱溶解せし
めたことを除いては実施例1と同じ条件で、実施例1を
繰返したところ、いずれも高含水率のナイロン66粉末
のケークが得られ、粉末の粒径は1〜250μであった
Examples 32-35 Solvent 100? as shown in Table 6 And 5.3? nylon 6
Example 1 was repeated under the same conditions as Example 1, except that 6 and 6 were placed in a flask and heated and dissolved at 74°C for 3 hours. In each case, a cake of nylon 66 powder with a high water content was obtained. The particle size of the powder was 1 to 250μ.

(16) 実施例36\38 表7に示すような溶媒150V−と7.9 fのナイロ
ン66とを内容積500eCの耐圧オートクレーブに仕
込み、窒素置換後110℃に3()分間保持したが、圧
力はいずれも4 kl/cm’以下であった。次いで7
0℃まで冷却した後、150vの水を約49−7分の速
度で圧入し、常温まで冷却してから取出し、実施例1と
同様のr過、洗浄等を繰返すと、いずれも高含水率のナ
イロン66粉末のケークが得られ、粉末の粒径は1〜2
50μであった。
(16) Example 36\38 Solvent 150V and 7.9 f nylon 66 as shown in Table 7 were charged into a pressure-resistant autoclave with an internal volume of 500eC, and after nitrogen purging, the autoclave was kept at 110°C for 3 () minutes. The pressure was below 4 kl/cm' in all cases. then 7
After cooling to 0°C, 150V of water was injected at a rate of about 49-7 minutes, cooled to room temperature, taken out, and the same filtration and washing as in Example 1 were repeated, resulting in a high water content. A cake of nylon 66 powder was obtained, and the particle size of the powder was 1 to 2.
It was 50μ.

(17) 表7 ナイロン19をi o o ccの98%硫酸に溶解せ
しめ、オストヮルド型粘度計を使用して25℃で測定し
た相対粘度(以下、硫酸相対粘度と略記する)が2.7
4である40.0pのナイロン66と含水率1wt%の
TFE460fとを、攪拌機、還流冷却器1滴下漏斗及
び熱電対(ガラス製保鰻管付き)を備支た内容積2ノの
フラスコに仕込み、攪拌しながらマントルヒーターで加
熱し、74℃に3時間保持すると透明なナイロン溶液が
得られた。この溶液の温度を74℃に保持し、攪拌しな
がら貧溶媒としての水1380F−を約10p/分の速
度で添加すると(18) ナイロン粉末のスラリーが得られた。このスラリーを8
0メツシユの金網でf過し、次いでr液をNuSAP紙
で1過し、更に水5看で洗浄し、r紙上残渣として高含
水率のナイロン粉末のケークが得られ、粉末の粒径は1
〜200μであった。このケークをガラス製広口瓶に採
取し、水を加えて800yのスラリーが得られた。次い
でこのスラリーを小型の噴霧乾燥機で乾燥したところ、
粒径l〜200μの乾燥ナイロン粉末が得られ、その硫
酸相対粘度は271であった。
(17) Table 7 Nylon 19 was dissolved in io cc of 98% sulfuric acid, and the relative viscosity (hereinafter abbreviated as sulfuric acid relative viscosity) measured at 25°C using an Ostold viscometer was 2.7.
40.0p nylon 66 and TFE460f with a moisture content of 1wt% were placed in a flask with an internal volume of 2 mm equipped with a stirrer, a reflux condenser, a dropping funnel, and a thermocouple (with a glass eel preservation tube). A transparent nylon solution was obtained by heating with a mantle heater while stirring and maintaining at 74° C. for 3 hours. The temperature of this solution was maintained at 74° C., and water 1380 F as a poor solvent was added at a rate of about 10 p/min while stirring (18) to obtain a slurry of nylon powder. This slurry is 8
The liquid was passed through a wire mesh with 0 mesh, and then the liquid was passed through NuSAP paper for 1 hour, and then washed with water for 5 minutes to obtain a cake of nylon powder with a high water content as a residue on the paper, and the particle size of the powder was 1.
It was ~200μ. This cake was collected in a glass wide-mouthed bottle, and water was added to obtain 800 y of slurry. This slurry was then dried in a small spray dryer.
A dry nylon powder with a particle size of 1 to 200 μm was obtained, and its sulfuric acid relative viscosity was 271.

実施例40 硫酸相対粘度が278であるナイロン61Gをナイロン
66の代わりに使用して実施例39を繰返すと、粒径l
〜200μの乾燥ナイロン610粉末が得られ、その硫
酸相対粘度は2.76であった。
Example 40 Example 39 is repeated using nylon 61G, which has a sulfuric acid relative viscosity of 278, in place of nylon 66, and the particle size l
A ~200μ dry nylon 610 powder was obtained with a sulfuric acid relative viscosity of 2.76.

実施例41 硫酸相対粘度が245であるナイロン6をナイロン66
の代わりに使用して実施例39を繰返すと、粒径1〜2
00μの乾燥ナイロン6粉末が得られ、その硫酸相対粘
度は2.41であった。
Example 41 Nylon 6 with a sulfuric acid relative viscosity of 245
Repeating Example 39 using instead of
A dry nylon 6 powder of 00 μm was obtained, and its sulfuric acid relative viscosity was 2.41.

(19) この乾燥粉末を更に乳鉢で粉砕して得られた粉末の粒径
は1〜140μであった。
(19) The particle size of the powder obtained by further crushing this dry powder in a mortar was 1 to 140μ.

特許出願人 旭化成工業株式会社 (20)Patent applicant: Asahi Kasei Industries, Ltd. (20)

Claims (1)

【特許請求の範囲】 1 ナイロンを2.2.2− )リフルオロエタノール
又)’!、 2,2.2− )リフルオロエタノールを
主成分とする溶媒に溶解させ、ナイロンを常温では溶解
せス且つ21212− トリフルオロエタノールと実質
的に完全な相溶性を有する貧溶媒を核ナイロン溶液に攪
拌下に添加してナイロンを析出させることを特徴とする
ナイロン粉末の製造法2 ナイロンが、ナイロン6.6
6 、610 、612 。 6/66、6/66/610.6/66/612  か
ら成る群から選ばれた少なくとも一つである特許請求の
範囲第1項記載の製造法 3 ナイロン溶液中のナイロン濃度が0.1〜15wt
%である%許請求の範囲第1項記載の製造法4 ナイロ
ン溶液中のナイロン濃度が1 = 10wt%である特
許請求の範囲第3項記載の製造法5 溶媒力2.2.2
− トリフルオロエタノールである特許請求の範囲第1
項記載の製造法 6 溶媒が水、メタノール、アセトン等の貧溶媒を5w
1%以下含有する2、2.2− )リフルオロエタノー
ルである特許請求の範囲第1項記載の製造法 7、 ナイロンが、ナイロン11又は12で、且つ溶媒
がフェノール、メタクレゾール等の溶解助剤を1〜10
wt%含有スる2、2.2− トリフルオロエタノール
である特許請求の範囲第1項記載の製造法 8、 貧溶媒が水、メタノール、アセトンから成る群か
ら選ばれた少なくとも一つである特許請求の範囲第1項
記載の製造法 9、 貧溶媒が水である特許請求の範囲第8項記載の製
造法 10、 溶tl&カ2.2.2− )リフルオロエタノ
ールで且つ貧溶媒が水である特許請求の範囲第1項又は
第4項記載の製造法 11、溶媒が水を5 wt%以下含有する2、2.2−
)リフルオロエタノールで且つ貧溶媒が水である特許請
求の範囲第1項又は第4項記載の製造法12  貧溶媒
の添加重量がナイロン溶液中の溶媒の重量の0.5〜5
倍である特許請求の範囲第1項記載の製造法 13  貧溶媒の添加重量がナイロン溶液中の溶媒の重
量の1〜3倍である特許請求の範囲第12項記載の製造
法 14  ナイロン6 、66 、610 、612 、
6/66、6/66/6 ] 0 、6/66/612
  から成る群から選ばれた少な(とも一つのナイロン
を、水を5 wt%以下含有する2、2.2− )リフ
ルオロエタノールから成る溶媒にナイロン濃度が1〜1
0 wt%になるように溶解させ、該溶媒の重量の1〜
3倍重量の水を該ナイロン溶液に添加する特許請求の範
囲第1項記載の製造法
[Claims] 1 Nylon 2.2.2-) Refluoroethanol or)'! , 2,2.2-) Dissolve nylon in a solvent containing trifluoroethanol as a main component, and add a poor solvent that does not dissolve nylon at room temperature and has substantially complete compatibility with 21212-trifluoroethanol to the core nylon solution. Method 2 for producing nylon powder, characterized in that the nylon is added under stirring to precipitate nylon.
6, 610, 612. 6/66, 6/66/610.6/66/612 The manufacturing method 3 according to claim 1, wherein the nylon concentration in the nylon solution is 0.1 to 0.1. 15wt
% Manufacturing method according to claim 1 4 Manufacturing method according to claim 3 where the nylon concentration in the nylon solution is 1 = 10 wt% Solvent power 2.2.2
- Claim 1 which is trifluoroethanol
Manufacturing method described in Section 6 The solvent is a poor solvent such as water, methanol, acetone, etc.
2,2.2-) refluoroethanol containing 1% or less, the manufacturing method 7 according to claim 1, wherein the nylon is nylon 11 or 12, and the solvent is a dissolution aid such as phenol or metacresol. 1 to 10
A manufacturing method according to claim 1, which is sulfur 2,2,2-trifluoroethanol containing wt%, and a patent in which the poor solvent is at least one selected from the group consisting of water, methanol, and acetone. Manufacturing method 9 according to claim 1, manufacturing method 10 according to claim 8, in which the poor solvent is water, 2.2.2-) refluoroethanol, and the poor solvent is water. Manufacturing method 11 according to claim 1 or 4, wherein the solvent contains water at 5 wt% or less 2, 2.2-
) refluoroethanol and the poor solvent is water, the manufacturing method 12 according to claim 1 or 4. The added weight of the poor solvent is 0.5 to 5% of the weight of the solvent in the nylon solution.
Manufacturing method 13 according to claim 1, in which the weight of the poor solvent is 1 to 3 times the weight of the solvent in the nylon solution 14 Manufacturing method according to claim 12, in which the weight of the poor solvent is 1 to 3 times the weight of the solvent in the nylon solution 66, 610, 612,
6/66, 6/66/6] 0, 6/66/612
The concentration of nylon is 1 to 1 in a solvent consisting of a small amount (2,2.2-) of 2,2.2-
0 wt%, and 1 to 1% of the weight of the solvent.
The manufacturing method according to claim 1, wherein 3 times the weight of water is added to the nylon solution.
JP10219982A 1982-06-16 1982-06-16 Manufacturing method of nylon powder Expired JPS6030692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10219982A JPS6030692B2 (en) 1982-06-16 1982-06-16 Manufacturing method of nylon powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10219982A JPS6030692B2 (en) 1982-06-16 1982-06-16 Manufacturing method of nylon powder

Publications (2)

Publication Number Publication Date
JPS58219236A true JPS58219236A (en) 1983-12-20
JPS6030692B2 JPS6030692B2 (en) 1985-07-18

Family

ID=14320987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10219982A Expired JPS6030692B2 (en) 1982-06-16 1982-06-16 Manufacturing method of nylon powder

Country Status (1)

Country Link
JP (1) JPS6030692B2 (en)

Also Published As

Publication number Publication date
JPS6030692B2 (en) 1985-07-18

Similar Documents

Publication Publication Date Title
US4841022A (en) Method for removing impurities from polyphenylene sulfide resin
JPS6123627A (en) Production apparatus for polyarylene sulfide
JPH036170B2 (en)
US3679638A (en) Preparing finely divided copolyamides by precipitation from alcohol-water solution
US3689227A (en) Method for producing insoluble sulfur
JPS58219236A (en) Production of nylon powder
JP3165184B2 (en) Method for producing spherical fine powder of amorphous nylon resin
EP0785962B1 (en) Polyarylene sulphide recycling process
JPS62240325A (en) Production of nylon powder
JP2014024957A (en) Method for manufacturing polyphenylene sulfide resin particulate dispersion
US3825586A (en) Process for enriching trans-trans salts of bis(4-aminocyclohexyl)methane and 1,12-dodecanedioic acid
JPS58219235A (en) Production of nylon powder
US1413457A (en) Process of filtering
JPH01315420A (en) Treatment of polyarylene sulfides
US1571054A (en) Method for removing silica from ore leaches
JP3999123B2 (en) Methods for preparing polymer solutions containing repeated azole units, solutions prepared by this method, and methods for their use.
JPS6112933B2 (en)
US821394A (en) Dissolving and regenerating rubber.
JP2009057405A (en) Granulation method for polyoxyethylene ether of bisphenol a
JPH01178525A (en) Production of fine polyether sulfonic acid powder
JPH05239223A (en) Production of polycarbodiimide powder
JP2000001545A (en) Production of polyimide powder
JPS59109522A (en) Isolation of polyarylene polyether
JPH0712923B2 (en) Method for producing carbonaceous mesophase molded article
HU209565B (en) Process for manufacturing of polycaprolactam-powder,-paste or -waterdispersion by using of polycaprolactam, especially polycaprolactam-waste