JPS5821884A - Ultraviolet gas laser device - Google Patents

Ultraviolet gas laser device

Info

Publication number
JPS5821884A
JPS5821884A JP12034881A JP12034881A JPS5821884A JP S5821884 A JPS5821884 A JP S5821884A JP 12034881 A JP12034881 A JP 12034881A JP 12034881 A JP12034881 A JP 12034881A JP S5821884 A JPS5821884 A JP S5821884A
Authority
JP
Japan
Prior art keywords
discharge
electrode
laser
resistivity
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12034881A
Other languages
Japanese (ja)
Inventor
Kanichi Fujii
寛一 藤井
Masahiro Sugaya
菅谷 政宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pilot Corp
Original Assignee
Pilot Pen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pilot Pen Co Ltd filed Critical Pilot Pen Co Ltd
Priority to JP12034881A priority Critical patent/JPS5821884A/en
Publication of JPS5821884A publication Critical patent/JPS5821884A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To enable to repetitively operate a laser device and to inexpensively select and use a material which can readily selects the resistance value and which is readily treated by connecting a condenser directly to discharging electrodes so that the electrodes have higher than 0.05OMEGAcm of resistivity and non- inductive property. CONSTITUTION:A condenser 13 in a laser tube enclosure 11 is connected directly to a discharging electrode 12 or a discharging electrode holding material 19. The electrode 12 is selected for the resistivity of the component materials to a value higher than 0.05OMEGAcm, and is constructed in the shape becoming non-conductive of the using frequency. The pulse current is limited unitl the resistivity of the electrode 12 is up to 0.05OMEGAcm, and the sharpness of the waveform does not become obtuse. The electrode material may include, in addition to carbon, nichrome alloy, silicon, tantalum. The shape of the electrode may formed in the shape to set the self-inductance to zero to the current which flows through the main discharging gap.

Description

【発明の詳細な説明】 不発8)4はレーザ特性が優れた紫外域気体レーザ装置
にFIATる。
[Detailed Description of the Invention] Misfire 8) 4 is FIATed into an ultraviolet gas laser device with excellent laser characteristics.

200乃至300ナノメートルの紫外域波長の強力なレ
ーザ光ン得るための気体レーザについて、近年盛んな研
究が進ぬらhている6第1図に示T従米のレーザ概略図
において封入気体は窒素、希ガス(例えはアルゴン、ク
リプトン)または希ガスハロゲン(例えばXs(!1 
、 ArC1,KrF )を使用し、外囲器(11(辿
常はガラス管とTる)内の放電を極121に近接し接P
導線(至)!使用してコンデンサ(31!並列接続Tる
。コンデンサ(3)の両端は直流電源に接続され充電さ
れる。充電されたコンデンサ+31より送り出されるパ
ルス電圧により放電電榛(2)間にグロー放電7允住さ
せレーザ元ケ得る。希ガス複たけ希ガスハロゲンに電子
ビームl照射すると希ガスエキシマを生ずるため希ガス
または希ガスハロゲン7使用下るレーザをエキシマレー
ザと呼ぶ。エキシマレーザにより紫外域波長の元ン得る
とき上位レーザ準位の寿命(40ナノ秒)が、下位レー
ザ準位の寿命(10マイクロ秒)より極端に短いため、
レーザ発振l実現するためには前記パルス電圧によって
回路に流れるパルス電流としては立上りが急峻であるこ
とケ要Tる。立上りの急峻なパルス波電流に対し放電1
に極(21とコンデンサ(31との曲の接ト絢(7)と
軍杉自芽が保有Tるインダクタンス成分が大き(影響し
、良好な件能が得られなかった。ブたレーザ外囲器(1
1内で一旦放電が開始されると、その放電回路(矢印(
4))は。
In recent years, much research has been progressing on gas lasers for obtaining powerful laser beams with wavelengths in the ultraviolet region of 200 to 300 nanometers.6 In the schematic diagram of T. Jubei's laser shown in Figure 1, the filler gas is nitrogen, Noble gas (e.g. argon, krypton) or noble gas halogen (e.g. Xs (!1
, ArC1, KrF), and connect the discharge in the envelope (11 (usually a glass tube) close to the pole 121.
Leading wire (to)! The capacitor (31!) is connected in parallel.Both ends of the capacitor (3) are connected to a DC power source and charged.The pulse voltage sent from the charged capacitor +31 causes a glow discharge between the discharge currents (2). The source of the laser is obtained.When a rare gas compound or a rare gas halogen is irradiated with an electron beam, a rare gas excimer is generated, so a laser that uses a rare gas or a rare gas halogen is called an excimer laser. When obtaining an element, the lifetime of the upper laser level (40 nanoseconds) is extremely shorter than the lifetime of the lower laser level (10 microseconds).
In order to realize laser oscillation, the pulse current flowing through the circuit due to the pulse voltage must have a steep rise. Discharge 1 for a pulse wave current with a steep rise
The inductance component possessed by the pole (21 and the capacitor (31) (7) and Gunsugi Jitsume had a large inductance component (affected), and good performance could not be obtained. Vessel (1
Once discharge starts in 1, the discharge circuit (arrow (
4)).

コンデンサ(317知絡して形成Tるから104アンペ
アにも達Tる大電流が流ねることとT、fる。このよう
な大電流においてはグロー放電ケ維持Tめことが吏;F
しくアーク放電を誘発し易い。アーク放電は高熱ン発生
し、それによってレーザ外囲器である分子ガス!原子に
解離セしめスパッタリング作用によって電極ン急滝に損
傷させ、コンデンサの破壊!招く等の障害ケ起し、レー
ザの寿命ケ著しく知縮させることとなる。そのたぬ第1
図の構成によるレーザでは毎秒10パルヌ程度(10f
iz)のレーザ発振が限界であった。若しより冒速繰返
しの動作ケ得たい場合は、高価でpつ有沓なガスを流し
て使い捨てとTるか。
Since the capacitor (317) is formed in contact with the capacitor, a large current of up to 104 amperes can flow through it. At such a large current, it is necessary to maintain the glow discharge.
and easily induce arc discharge. The arc discharge generates high heat, thereby causing the laser envelope to become a molecular gas! The sputtering action of atoms dissociating causes damage to the electrodes and destroys the capacitor! This may cause problems such as damage to the laser, and the lifespan of the laser will be significantly shortened. That tanu number 1
The laser with the configuration shown in the figure has about 10 parnus (10f) per second.
iz) laser oscillation was the limit. If you want to achieve more rapid and repeated operation, you can run an expensive and expensive gas and make it disposable.

大規模なファンと冷却器!設けてガスヶ強制循還させる
かの何れ力)によらねばならなかった。
Massive fan and cooler! The gas had to be forced to circulate (somehow).

−万レーザの出力増大に影響Tる因子tプ、放電電流パ
ルスの波頭部における放電1に流立上り急峻度が大きい
ことであり、放電電流のず−り値そのものは面接の寄与
をしない。そこで放電電流!制限し、放電電流立上りン
急峻とTることが有利であって、放電回路に電流制限用
の抵抗ン直列接FjtTる試みが1jされた。
The factor that influences the increase in the output of a laser is that the steepness of the rise in the discharge current at the wave front of the discharge current pulse is large, and the deviation value of the discharge current itself does not make any contribution to the interview. Discharge current there! Since it is advantageous to limit the rise of the discharge current and make it steeper, attempts have been made to connect a current limiting resistor in series with the discharge circuit.

第2肉に示T装圓は従来の希ガスレーザや9素レーザに
おける回路構成fIlを示している。レーザ管外囲器1
11内に放電を極(2)のみを設置し。
The T-ring shown in the second frame shows the circuit configuration fIl in a conventional rare gas laser or 9-element laser. Laser tube envelope 1
Install only the discharge pole (2) in 11.

コンデンサ+31と放tt流制限用抵抗f51’z、外
囲器(11の外部に接続し、放電回路+41に流れる放
電電流を制限Tることである。このとぎ電流制限の目的
は十分達せられるが、抵抗(51→電極(2)→コンデ
ンサ+31 Y−巡Tる回路のインダクタンスのたぬ放
電電流パルスの波頭が鈍るから、希ガスレーザにおいて
は一応レーザ発振が可能であるか、窒素N2等の紫外域
気体レーザにおいては実験の結果低繰返し周波数の弱い
発振が侮られるに過ぎr(かった。
The purpose of this is to limit the discharge current flowing to the discharge circuit +41 by connecting the capacitor +31, the discharge current limiting resistor f51'z, and the envelope (11) to the outside of the discharge circuit +41. , resistor (51 → electrode (2) → capacitor + 31) Since the wavefront of the discharge current pulse is blunted due to the inductance of the Y-circuit T circuit, it may be possible to oscillate the laser with a rare gas laser. In field gas lasers, experiments have shown that weak oscillations at low repetition frequencies are underestimated.

本発明の目的は前述の欠点を改善し、比較的炉温な構成
でレーザ特性が優れた紫外線気体レーザ装置ン提惧する
ことにある。その定め本発明の要旨とTる点はレーザ管
外囲器内のコンデンサ!放電電極または放電室イタ保持
材に直接接続し、 JF!つ放電室@!はその楡成材料
の抵抗率を0.05Ωcm以上に選定し、使用周波数に
おいて放電室イタの形状を無誘導性となる形状に構成し
たことである。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned drawbacks and to provide an ultraviolet gas laser device having a relatively low furnace temperature and excellent laser characteristics. The key point of this invention is the capacitor inside the laser tube envelope! Connect directly to the discharge electrode or discharge chamber retaining material, and use JF! Two discharge chambers @! The resistivity of the material used for this purpose was selected to be 0.05 Ωcm or more, and the shape of the discharge chamber was configured to be non-inductive at the operating frequency.

以下図面に示T本発明の笑施例について紛明Tる。第3
1!21は本発明の第1実施例を示T側断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention shown in the drawings will be clearly explained below. Third
1!21 is a sectional view on the T side showing the first embodiment of the present invention.

第3図において気体は911えは希ガスハロゲンとし、
allはレーザlu、α2は放電電極、0ζはコンデン
サで管011に内蔵され且つ放電電極保持材09と接続
4想ン介Tることなく直接後もの、 a?lはトリガパ
ルス印加端子、(2)はii!、’流茜圧端子を示して
いる。トリガパルス!端子0ηに印加したとぎ、Ll→
C2→L2→電極a4→間隙(1&1→コンデンサα3
のように放電電流が流れ、コンデンサα31ン充電Tる
。このとぎ放電間隙a0に起る故知;の光が主放電間隙
09!照射Tる。その直後に放電電極■と電極保持材α
!1(例えはアルミニウム製)との間にグロー放電が住
する。この放電によりレーザ発振が開始される。トリガ
パルスの印加繰返しを早く行なうとぎ1元放電が早(な
りレーザ発振も1秒間250回まで可能となった。この
とぎ放′〔攬¥J1.極■は例えは方−ボンン知い円柱
状に形成し、管軸方向に丁度櫛の爾のように複数本並べ
て形成したものとTる。第3図ではその1本のみを示し
ている。カーボンにより放電、電極l]3ケ形成したと
ぎその抵抗率は0.3Ωcm″′Cあって、パルス電流
が制限され、波形急峻度の鈍ることがTK < 、 2
50 Hzの高速繰返し動作ができに。抵抗率!変化さ
せて実験した所。
In Figure 3, the gas is 911, which is a rare gas halogen,
all is the laser lu, α2 is the discharge electrode, 0ζ is the capacitor built in the tube 011 and connected to the discharge electrode holding material 09 directly without any intervention, a? l is the trigger pulse application terminal, (2) is ii! ,' indicates a flowing madder pressure terminal. Trigger pulse! When applied to terminal 0η, Ll→
C2 → L2 → electrode a4 → gap (1 & 1 → capacitor α3
A discharge current flows as shown, and the capacitor α31 is charged. The light that occurs in this sharp discharge gap a0 is the main discharge gap 09! Irradiation T. Immediately after that, discharge electrode ■ and electrode holding material α
! 1 (for example, made of aluminum), a glow discharge exists between the two. This discharge starts laser oscillation. By repeating the application of the trigger pulse quickly, the single discharge becomes faster (and the laser oscillation can be performed up to 250 times per second.) It is assumed that a plurality of electrodes are formed in the direction of the tube axis and arranged like the ends of a comb. Only one of them is shown in Figure 3. Its resistivity is 0.3 Ωcm''C, which limits the pulse current and blunts the waveform steepness.
Capable of high-speed repetitive operation of 50 Hz. Resistivity! I tried changing it and experimenting with it.

0.05Ωcmまでは前述と略同じ効果が得られ、それ
以下では不十分な効果となった。0.3Ωcm以以とT
ると250Hzの高速繰返し動作ができて最適である。
Substantially the same effect as described above was obtained up to 0.05 Ωcm, and the effect was insufficient below that. 0.3Ωcm or more and T
This makes it possible to perform high-speed repetitive operation at 250 Hz, which is optimal.

グラファイトと通称される材料の抵抗率は通常1O−s
Ωcmであるたぬ9本発明の電極材料としてグラファイ
トを使用Tることは不適当で、グラファイトより大きな
飴の抵抗率を有Tる材料を使用T金。そして電極材料と
してはカーボン以外にニクロム合骸、シリコン、タンタ
ル等!使用Tることができるか、カーボンは+4−抗(
faの選定が容易であるため使用に便利である。そして
抵抗率が0.3Ωcrnより太きければそれだけ電極の
長さン知くTることができ無訪導性とすることに有利で
ある。また電極形状は短い円柱状としているが、これは
主放電ギャップヶ介してfArれる電流に対し自己イン
ダクタンスが零とみなせる形状であれは良く、直径が大
ぎく肉J享の薄い円柱状とTることもできる。1fお第
3図において予備放′tJL曲隙aeヲ使用下ることは
アーク放電の発生を有効に防止Tることに効果がある。
The resistivity of the material commonly known as graphite is usually 1O-s.
It is inappropriate to use graphite as the electrode material of the present invention, and a material with a resistivity higher than that of graphite is used. In addition to carbon, electrode materials include nichrome alloy, silicon, and tantalum! Can be used for carbon +4-resistance (
It is convenient to use because it is easy to select fa. The thicker the resistivity is than 0.3Ωcrn, the more the length of the electrode can be adjusted, which is advantageous in achieving non-visit conductivity. In addition, the electrode shape is a short cylinder, but this can be any shape that can be considered to have zero self-inductance against the current flowing through the main discharge gap, and it can be a thin cylinder with a large diameter. You can also do it. 1F and FIG. 3, the use of the preliminary discharge gap ae is effective in effectively preventing the occurrence of arc discharge.

それはグロー放電の維持に必要な電子の供給か不十分に
なると放電自前が篩温のアークスポットを形成し、熱電
子放出によって電子の不足が補なわれるたぬアーク放電
が発生Tるのであるが、予#電離は紫外縁の電離作用に
よって、陰極面上および放11間に直接電子を補給下る
効果を有T 71ytめ、アークスポットによる陰極面
上の電子の補光を必要とし7.Cくなるからである。し
たがって本発明により放電電流の有効な制限が可能とな
りアーク現象に基づ(放電の集中が防げるばかりでな(
予備室wI装置Z併用Tることにより、アーク放電の発
生をより91果的に防止できる。
When the supply of electrons necessary to maintain a glow discharge becomes insufficient, the discharge itself forms an arc spot with a sieve temperature, and the lack of electrons is compensated for by thermionic emission, causing an arc discharge. 7. Pre-ionization has the effect of directly replenishing electrons on the cathode surface and between the electron beams due to the ionization action of the ultraviolet edge, and requires supplementary illumination of electrons on the cathode surface by an arc spot. This is because it becomes C. Therefore, the present invention makes it possible to effectively limit the discharge current based on the arc phenomenon (not only can concentration of discharge be prevented)
By using the preliminary chamber wI device Z together, the occurrence of arc discharge can be more effectively prevented.

次に第4図は本発明の第2実施例〉示Tレーザ装置の側
断面図であり、電極(12う71枚の平面板状とし、管
軸と平行に配置している。第4図において第3因と回−
の符号は同様のもの!示し、働は予備電離装置を示して
いる。第3図におけるコンデンサa」は予備4rL離用
の光源と主放電の元首!兼ねているが、第4図のコンデ
ンサu31は主放電のみに関与Tる。第4図における予
備電離装置翰は円柱絶縁体に複数の金榊環を嵌合せ、そ
れらは互いに若干前れているη)も。
Next, FIG. 4 is a side sectional view of a T laser device according to a second embodiment of the present invention, in which electrodes (12 to 71 planar plates are arranged parallel to the tube axis). The third cause and times-
The signs are the same! The figure shows a pre-ionization device. Capacitor a'' in Figure 3 is the light source of the preliminary 4rL separation and the head of the main discharge! However, the capacitor u31 in FIG. 4 is involved only in the main discharge. The pre-ionization device in FIG. 4 has a plurality of golden rings fitted onto a cylindrical insulator, which are slightly in front of each other.

両端に高電圧ケ印加Tると直列に同時放電させることが
できる。このように予#を離した元は、次に主放電間隙
αシにおいてレーザ管軸に沿って一神なグロー放電’r
住じさセる。このとき放電*極aZの材質は第3図と同
様とTるが、平版状となっているたぬ、放電がより一様
になり。
When a high voltage is applied to both ends, simultaneous discharge can be achieved in series. The source of this separation of pre-positions is then a single glow discharge 'r' along the laser tube axis in the main discharge gap α.
I live here. At this time, the material of the discharge *pole aZ is the same as that shown in FIG. 3, but it has a planar shape, and the discharge becomes more uniform.

出力が2倍近くに増加している、 レーザ管外囲器αVとしてガラス管の代りに塩化ビニー
ル樹脂管を使用した所、特にエキシマレーザにおいて塩
素・弗素 ガスの吸収される率が減少下るたぬガラス管
の場合と比べ1回のガス封入による寿命が2倍以上に長
(なった。
The output has nearly doubled, and when a vinyl chloride resin tube is used instead of a glass tube as the laser tube envelope αV, the absorption rate of chlorine and fluorine gases decreases, especially in excimer lasers. Compared to glass tubes, the lifespan of a single gas injection is more than twice as long.

′fたコンデンサは電極支持材αうと接絣Tること以外
に電極自身に接続Tることも可能である。
In addition to being connected to the electrode supporting material, the capacitor can also be connected to the electrode itself.

このようにして本発明によると紫外域レーザ光線ン得る
窒素レーザまたはエキシマレーザ装置において放電tW
の抵抗値と形状を適切に選定したため、放を電流パルス
ケ簡単有効に制限でき、そのたぬ立上り急峻度が鈍るこ
とがなく。
Thus, according to the present invention, in a nitrogen laser or excimer laser device capable of generating ultraviolet laser beams, a discharge tW is obtained.
By appropriately selecting the resistance value and shape of the current pulse, it is possible to easily and effectively limit the discharge of the current pulse, without dulling the steepness of the rise.

1つアーク現象に基づく放電の集中が防止できている。One thing is that concentration of discharge due to arc phenomenon can be prevented.

したがってレーザ元発住において高速繰返し動作か可能
で大出力となるηλら所謂レーザ特性が優れている。そ
して!極材料は比較的安価で且つ抵抗値の選定・加工が
容易な材料を便用Tることができ、更に熱・スパッタリ
ングに強い材料が得易いたぬ、レーザ装置として有用で
ある。更にガスン循還させることがないため装置が小型
となる。
Therefore, the so-called laser characteristics such as ηλ, which allows high-speed repetitive operation and high output at the laser source, are excellent. and! The electrode material is relatively inexpensive, and the resistance value can be easily selected and processed, and it is also easy to obtain a material that is resistant to heat and sputtering, making it useful as a laser device. Furthermore, since there is no gas circulation, the device becomes compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1 [N・第2図は従来の気体レーザ装置の構成を示
T図、 第3図・第4図は本発明の第1・第2実施例の構成を示
T図である。 111 Qll・・・レーザ管外囲器   +210・
・・放電1極131 +1:1−・・コンデンサ   
 (5)・・・電流制限抵抗I・・・針状を極    
 αS・・・主放電1間隙ae・・・予備放電間隙  
 α9・・・1!極保持材翰・・・予備電離装置 特許出願人 パイロット萬年社株式会社代 印 八 弁
卯士 齢木栄祐
1 [N] FIG. 2 is a T diagram showing the configuration of a conventional gas laser device, and FIGS. 3 and 4 are T diagrams showing the configuration of the first and second embodiments of the present invention. 111 Qll...Laser tube envelope +210・
・・Discharge 1 pole 131 +1:1−・・Capacitor
(5)...Current limiting resistor I...needle-shaped as pole
αS...Main discharge gap ae...Preliminary discharge gap
α9...1! Pole holding material holder...Preliminary ionization device patent applicant Pilot Mannensha Co., Ltd. Ink 8 Ben Ushi Eisuke Ogi

Claims (1)

【特許請求の範囲】 1 対向Tる放電室枠に並列接続されたコンデンサケ有
し、パルス性電圧ン印加して気体にグロー放電7允生さ
セる紫外紗気体レーザにおいて、前記コンデンサは前Y
’11宣電極または放電電極保持材に直接接続され、且
つ放電電極はその梗成わ科の抵抗率ン0.’05Ωcm
以上に選定し、使用周波数において無誘導性となる形状
とし定こと7特徴とTる紫外域気体レーザ装駅。 2 予備放電装緯パが放電電極の主放電間隙と対向Tる
位置に設けられていることン特徴とTる特許請求の範囲
第1項記載の紫外域気体レーザ装置。
[Scope of Claims] 1. In an ultraviolet gauze gas laser which has a capacitor connected in parallel to the discharge chamber frames facing each other, and which generates a glow discharge in a gas by applying a pulsed voltage, the capacitor is Y
'11 directly connected to the discharge electrode or the discharge electrode holding material, and the discharge electrode has a resistivity of 0. '05Ωcm
The ultraviolet gas laser equipment selected above has a shape that is non-inductive at the operating frequency and has seven characteristics. 2. The ultraviolet gas laser device according to claim 1, characterized in that the preliminary discharge opening is provided at a position opposite to the main discharge gap of the discharge electrode.
JP12034881A 1981-07-31 1981-07-31 Ultraviolet gas laser device Pending JPS5821884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12034881A JPS5821884A (en) 1981-07-31 1981-07-31 Ultraviolet gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12034881A JPS5821884A (en) 1981-07-31 1981-07-31 Ultraviolet gas laser device

Publications (1)

Publication Number Publication Date
JPS5821884A true JPS5821884A (en) 1983-02-08

Family

ID=14784005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12034881A Pending JPS5821884A (en) 1981-07-31 1981-07-31 Ultraviolet gas laser device

Country Status (1)

Country Link
JP (1) JPS5821884A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115884A (en) * 1985-09-12 1987-05-27 アマダ エンジニアリング アンド サ−ビス カンパニ− インコ−ポレ−テツド Gas discharge device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115884A (en) * 1985-09-12 1987-05-27 アマダ エンジニアリング アンド サ−ビス カンパニ− インコ−ポレ−テツド Gas discharge device

Similar Documents

Publication Publication Date Title
JPH05160491A (en) Pulsed gas discharge laser
US5247535A (en) Apparatus for preionization of gas in a pulsed gas laser
US4288758A (en) High power laser and cathode structure thereof
EP0015297A1 (en) Gas Laser
JPH0212035B2 (en)
US4509176A (en) Longitudinal-discharge-pulse laser with preionization obtained by corona effect
US3860887A (en) Electrically excited high power flowing gas devices such as lasers and the like
JPS5821884A (en) Ultraviolet gas laser device
US3588740A (en) Pulsed gas ion laser
EP0504652A1 (en) Gas laser oscillating device
JPH0373151B2 (en)
US3818375A (en) Multisided electron beam excited electrically pumped gas laser systems
Rothwell et al. High‐power discharge in Na‐Xe vapor
Harry et al. Multiple electrode system for high power CO2 laser excitation
Shuaibov et al. Characteristics of an electric circulation module for pulse-periodic ArF*, KrF*, and XeF* molecular lasers
RU2007802C1 (en) Device for initiation of discharge in gas laser
JP2685930B2 (en) Gas laser device
JPH0196974A (en) Gas laser oscillator
Weaver et al. Multipulse copper iodide laser at high repetition rates
SU582547A1 (en) Ion laser gaseous discharge tube
JPS6341233B2 (en)
Sabry Corona Torch enhanced N2 laser output energy
Wyndham et al. Time resolved studies of plasma evolution in a laser initiated capillary discharge
Beaupere et al. High Efficiency Switchless Operation Of A 0.5 J UV Preionized Excimer Laser
JPH02148778A (en) Laser oscillator