JPS58218506A - Reduction of flow speed of effluent water and block therefor - Google Patents

Reduction of flow speed of effluent water and block therefor

Info

Publication number
JPS58218506A
JPS58218506A JP10084482A JP10084482A JPS58218506A JP S58218506 A JPS58218506 A JP S58218506A JP 10084482 A JP10084482 A JP 10084482A JP 10084482 A JP10084482 A JP 10084482A JP S58218506 A JPS58218506 A JP S58218506A
Authority
JP
Japan
Prior art keywords
water
partition wall
main walls
wall
water outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10084482A
Other languages
Japanese (ja)
Other versions
JPH0346605B2 (en
Inventor
Ryuichi Takezawa
竹沢 隆一
Kenichi Sano
佐野 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuriku Electric Power Co
Original Assignee
Hokuriku Electric Power Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Power Co filed Critical Hokuriku Electric Power Co
Priority to JP10084482A priority Critical patent/JPS58218506A/en
Publication of JPS58218506A publication Critical patent/JPS58218506A/en
Publication of JPH0346605B2 publication Critical patent/JPH0346605B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B8/00Details of barrages or weirs ; Energy dissipating devices carried by lock or dry-dock gates
    • E02B8/06Spillways; Devices for dissipation of energy, e.g. for reducing eddies also for lock or dry-dock gates

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Revetment (AREA)
  • Nozzles (AREA)

Abstract

PURPOSE:To reduce the speed of effluent water by expanding the interval of blocks by a method in which blocks in which the interval between paired left and right-handed main walls is gradually narrowed, a partition wall in the middle of the vertical direction of both the main walls is gradually inclined, and nozzles are provided at the upper and lower parts of the partition wall are set radially. CONSTITUTION:In a block B, the interval between paired left and right-handed main walls 1 and 2 is gradually narrowed, a partition wall 3 is provided in a gradually inclined manner in the middle of the vertical direction of both the main walls 1 and 2, a partition wall 4 is laid from the partition wall 3 at the narrow ends of both the main walls 1 and 2 to the upper parts, and nozzles 5 and 6 are provided at the upper and lower sides of the partition wall 3 between both the main walls 1 and 2. The blocks are set radially in such a way that the nozzles 5 and 6 are inclined toward the sides from the central parts in the horizontal direction of a tailrace 7. The effluent water is dived into the front water region with a sufficient inertial force by means of the upper and lower nozzles 5 and 6 of the blocks B, and thereby the flow speed of the effluent water is reduced by the expansion of the water channel.

Description

【発明の詳細な説明】 この発明は、火力発電所から排出される復水器の冷却水
を、放水路の放水口より港湾などの公共の水域に放出す
る際に適用される放流水の流速低減方決と低減するブロ
ックに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to the flow rate of discharge water applied when the cooling water of a condenser discharged from a thermal power plant is discharged from the discharge port of a discharge channel into a public water body such as a port. Regarding reduction methods and blocks to be reduced.

航路、泊地あるいは船だまり等の港湾水域に面して放水
口を設けた場合には、放流水によって船舶の航行に影響
しないように十分に遅い流速で放流すると共に、流速分
布が広範囲に亘って均等化され、偏流による高流速水域
の発生を防止しなければならない。これに対処する方法
として、従来は放水口の出口に導流壁あるいは消波ブ0
7りを設置して、流速の均等化に務められていたが、放
水口を出た水が再び偏流を起したり、また放水口前面水
域の表層付近に流れることから、特に吃水の浅い船への
航行に影響を及ぼすことが顕著であった。また、一つの
解決法として放水口の拡幅も考えられるが、環境規制が
強化される昨今においては殆んど不可能に近いものであ
り、まして既設の発電所に更に発電所を増設することも
、放流水が増加することから許されない現状である。
When a water outlet is installed facing a port water area such as a channel, an anchorage, or a shipyard, the water should be released at a sufficiently slow flow rate so that the water does not affect ship navigation, and the flow velocity distribution should be spread over a wide range. It must be equalized to prevent the occurrence of high-velocity waters due to drifting currents. As a way to deal with this, conventional methods have been to install a guide wall or a wave-dissipating block at the outlet of the water outlet.
A water pipe was installed to equalize the flow velocity, but the water that exits the outlet sometimes becomes polarized again, or flows near the surface of the water area in front of the outlet, which is particularly important for ships with shallow water. There was a noticeable impact on navigation. In addition, one possible solution is to widen the water outlet, but in these days of tightening environmental regulations, it is almost impossible to do so, and it is also difficult to add more power plants to existing power plants. This is an unacceptable situation as the amount of discharged water will increase.

この発明は以上の実状を鑑み、既設の放水路をそのまま
に生かし、既設の発電所を稼動した状態の下に対処でき
ると共に、発電所増設後の既設放水路の放水量増加に伴
なう放流流速の増大にも対処されることを目的として開
発されたものである。
In view of the above-mentioned circumstances, this invention makes it possible to make use of the existing waterway as it is, to cope with the situation when the existing power plant is in operation, and to cope with the increase in water discharge from the existing waterway after the expansion of the power plant. It was developed with the aim of dealing with increases in flow velocity.

本発明な開発に至る前に種々の実験を重ねられたが、流
速低減対策の条件は、放水口より50痛より先が航路と
なり、しかも吃水の浅い船は放水口の近くを通過するこ
ともあり、航行に影響を与えないためには流速を50 
”//s以下とすれば良い0唯し放水口の近くでは下層
を特に考慮する必要がない。以上の条件が得られるため
の対策として、放水口の出口で流速分布が不均等である
と、高速流の水域が生ずるものと想定して、均等化を計
るように実験してみたが、放水口の左右両岸からの補償
流によって、放流水の両側に大きな渦領域が生じる。こ
のために沖合側へ放流水が流れるに従って、流れる領域
が狭められ流速が想定流速より速くなる性質が明白化さ
れた。それでは、放水口より分散放出することが試みら
れたが、慣性力がなく殆んど分散されず全く効果がなく
、表層のみの流れとなり減速することが出来なかった。
Before developing the present invention, various experiments were conducted, and the conditions for reducing the flow velocity were that the route should be 50 meters beyond the water outlet, and shallow ships with stagnant waters could pass close to the water outlet. Yes, and in order not to affect navigation, the current speed should be set to 50
"//s or less should be 0 However, there is no need to particularly consider the lower layer near the water outlet. As a countermeasure to obtain the above conditions, if the flow velocity distribution is uneven at the outlet of the water outlet. , I assumed that a high-speed water area would occur and tried to equalize it, but due to the compensation flow from both the left and right banks of the water outlet, large eddy areas were created on both sides of the water outlet. It became clear that as the discharged water flows offshore, the flow area narrows and the flow velocity becomes faster than the expected flow velocity.Therefore, attempts were made to disperse the discharge from the outlet, but there was no inertial force and it was almost impossible to do so. The flow was not dispersed and had no effect at all, and the flow was only on the surface layer and could not be slowed down.

こ−で、本発明者は更に研究を重ねて本発明を発明する
に至ったのであるが、前記の実験でも明らかになったが
、放水口の偏流による最大    、4町 流速が放水時の、3〜4倍になるもので、そのためには
放水口の出口では想定流速のKで放出する必要がある。
Therefore, the present inventor conducted further research and came up with the present invention, but it was also revealed in the above experiment that the maximum flow velocity due to the uneven flow of the water outlet during water discharge. This will increase the amount by 3 to 4 times, and for this purpose, it is necessary to release the water at the assumed flow rate K at the outlet of the water outlet.

流速tv+の計算式はV=”/A(1;Lは放流量、A
は原種)であるから、放流量(Q)が一定であれば原種
(Alを大きくすれば良い。しかし前述の如く流量悼)
を大きく改増することが不可能であることから、その解
決策が検討された。
The formula for calculating the flow rate tv+ is V=”/A (1; L is the discharge amount, A
is the original species), so if the discharge amount (Q) is constant, it is sufficient to increase the original species (Al should be increased. However, as mentioned above, the flow rate)
Since it is not possible to significantly increase the number, a solution was considered.

そして、原種を大きくするため、放水口の前面水域を利
用する。しかし前面水域を最小にしてなるべく沖合に出
ないように幅を大きくして利用することが案出された@ 以上の前面水域を利用するためには、放水口よりの放流
水を加速して表層と下層へ扇状に拡大するように多数の
ノズルを使用して放出する実験が行なわれた。その結果
、想定されていた流速以乍に保つことが出来るようにな
った。そこで実用化されるノズルが必要であり、耐久性
からもコンクリート製が選ばれ、加工面をも考慮したブ
ロックが案出された。
Then, to increase the size of the original species, use the water area in front of the water outlet. However, it was devised to minimize the front water area and widen it so that it does not go offshore as much as possible. An experiment was conducted in which a large number of nozzles were used to release the liquid in a fan-like manner into the lower layers. As a result, it became possible to maintain the flow velocity below the expected level. Therefore, a nozzle that could be put to practical use was needed, and a concrete block was chosen due to its durability, and a block was devised that also took into account the machining surface.

即ち第1図に示す如く、左右一対の主壁(1) (2)
をその間隔が一端より他端へ、順次狭くなるように配し
1両生壁(1) (2)の竪方向の中間に隔壁(3)を
両生壁(1) (2)の狭くなる方へ順次低く傾斜する
ように架設すると共に、両生am(1) (2)の狭い
端の隔壁(3)より上部に仕切me (4)を架設し、
両生壁間の隔壁(3)を境いとして上下にノズル部(5
) (6)を設けたものである。尚、プレツクが流水圧
により滑動及び転倒しないように1一方の主壁(1)の
肉厚を他の主壁(2)より厚くして、重量配分が考慮さ
れている。
That is, as shown in Figure 1, a pair of left and right main walls (1) (2)
Arrange the partitions so that the spacing becomes narrower from one end to the other, and place a partition wall (3) vertically in the middle of the two walls (1) and (2) in the narrower direction of the two walls (1) and (2). At the same time, a partition me (4) is constructed above the bulkhead (3) at the narrow end of the amphipod am (1) (2),
The nozzle part (5) is located above and below the partition wall (3) between the two walls.
) (6) has been established. In order to prevent the plecks from sliding and falling due to the pressure of flowing water, one main wall (1) is made thicker than the other main wall (2) in consideration of weight distribution.

以上のブロック(B)を放水口(7)に第2図図示の如
く、中央部より左右に5個づつ対称的に、しかも中央部
より側方へ至るに従って各ノズル部(5) (6)が側
方へ傾くように即ち放射状に配設する。
As shown in Figure 2, the above blocks (B) are attached to the water outlet (7) symmetrically from the center to the left and right, and each nozzle part (5) (6) goes from the center to the side. are arranged so that they are inclined laterally, that is, in a radial manner.

尚、この配設工事は放水した状態の下で、クレーン船で
作業することが出来る。
This installation work can be carried out using a crane ship under water spray conditions.

このように配設したところ、第3図に示す如く、放流水
はブロック艶)の上下のノズル部(5) (6)によっ
て十分な慣性力をもって前面水域の水中へ潜るものであ
る。そこで、流速を所々で計測した結果、第2図の矢印
で示すが、太い実線は表層流、点線は中層流1細い実線
は底層流を示し、また、各線に添えて示す数値は流速a
II/Sの単位である。更に実施された放水口(7)の
出口は1輻40寓、水深3寡で流量は54ゴ/Sである
。また図中の座標線は20鴇おきに画いている。そして
ブロック(Blを通過した放流水は、ノズル部(5) 
(6)によって最大2.2m/sと約5倍に加速されて
放出され、海底6.7〜8.0鶏にまで達するが、以後
急速に減衰して20ん30α/Sぐらいの値となり、5
0雪先の航路境界(8)では10 、203/fjとな
り目標の50txt/sより大きく下回り、目的を十分
に達成していることが確認された。
With this arrangement, as shown in FIG. 3, the discharged water dives into the water in the front water area with sufficient inertia through the upper and lower nozzles (5) and (6) of the block. The results of measuring the flow velocity at various locations are shown by the arrows in Figure 2. The thick solid line indicates the surface flow, the dotted line indicates the middle flow, and the thin solid line indicates the bottom flow.
It is a unit of II/S. Furthermore, the outlet of the water outlet (7) that has been implemented is 40 g/s, the water depth is 3 g/s, and the flow rate is 54 g/s. Also, the coordinate lines in the figure are drawn every 20 digits. Then, the discharged water that has passed through the block (Bl) is transferred to the nozzle section (5).
(6), it is accelerated about 5 times to a maximum of 2.2 m/s and released, reaching the sea floor at 6.7 to 8.0 m, but after that it rapidly decays to a value of about 20 to 30 α/S. ,5
At the route boundary (8) with zero snow ahead, the result was 10.203/fj, which was significantly lower than the target of 50txt/s, confirming that the objective had been fully achieved.

以上のように、この発明による方法によれば、放水口よ
り放流水を加渉して水平及び垂直方向へ放射状に放出し
て、放水口前面の水域で(実施では約2Qm以内)拡大
して減速するものであって、殆んど海底で処理されるも
のであるから、放水口の附近を通過する吃水の浅い船に
も影響がなく、また航路では殆んど減速した状態でその
分布が均等化され、偏流の恐れがないことから船の航行
にも影響を与えることがなくなる。
As described above, according to the method of the present invention, water is mixed with water from the water outlet and released radially in the horizontal and vertical directions, expanding in the water area in front of the water outlet (within approximately 2Qm in practice). Since it decelerates and is mostly disposed of on the seabed, it does not affect shallow ships passing near the water outlet, and its distribution is mostly decelerated during shipping routes. Since the current is equalized and there is no risk of drifting, it will not affect the navigation of the ship.

しかも、ブロックを配設する工事のみで減速化を計るこ
とが出来、放水口を拡大する必要もなくなり、殊に発電
所の増設に際しその効果を顕著に発揮するものである。
Moreover, it is possible to reduce the speed by simply installing blocks, eliminating the need to enlarge the water outlet, which is especially effective when expanding a power plant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に使用するブロックを示す斜視図、第
2図はこの発明の方法で実施された時の水流状況を示す
平面図、第3図は同じく断面図である。 (Bl・・ブロック、(1) (2)・・主壁、(3)
・・隔壁、(4)・・仕切壁%(5)(6)・・ノズル
部、(7)・・放水口、(8)・・航路境界
FIG. 1 is a perspective view showing a block used in this invention, FIG. 2 is a plan view showing a water flow situation when the method of this invention is carried out, and FIG. 3 is a sectional view. (Bl...Block, (1) (2)...Main wall, (3)
... Bulkhead, (4) ... Partition wall % (5) (6) ... Nozzle part, (7) ... Water outlet, (8) ... Channel boundary

Claims (1)

【特許請求の範囲】 1)放水路より放水口前面水域に放流する際に、放水口
で放流水を多数に分流すると共に加速し、各分流が放水
口より水平及び垂直方向へ放射状に拡がる状態に放出す
る放流水の流速低減方法。 2)相対向する一対の主m (1) (2)の間隔を一
端より他端へ向って順次狭く配し、両生壁(1) (2
)の上下方向の中間に隔壁(3)を両生壁(1) <2
)の狭くした方へ順次低く傾斜して架設し、両生壁(1
) (2)の狭くした端の隔壁(3)より上方に仕切壁
(4)を架設して、両生壁(1) (2)間の隔壁(3
)を境とする上下にそれぞれノズル部(5) (6)を
備えた放流水の流速低減用ブロック。
[Scope of Claims] 1) A state in which, when water is discharged from the waterway into the water area in front of the water outlet, the water is divided into a large number of streams at the water outlet and accelerated, and each branch stream spreads radially from the water outlet in the horizontal and vertical directions. How to reduce the flow rate of discharged water. 2) The spacing between a pair of opposing main m (1) (2) is arranged narrower from one end to the other end, and the amphibian wall (1) (2)
) with a partition wall (3) in the vertical middle of the amphibian wall (1) <2
) is built at a lower slope in the direction of the narrower side, and the amphibious wall (1
) A partition wall (4) is constructed above the partition wall (3) at the narrow end of (2), and the partition wall (3) is constructed between the amphibian wall (1) and (2).
) A block for reducing the flow velocity of discharged water, which is equipped with nozzle parts (5) and (6) on the upper and lower sides, respectively.
JP10084482A 1982-06-12 1982-06-12 Reduction of flow speed of effluent water and block therefor Granted JPS58218506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10084482A JPS58218506A (en) 1982-06-12 1982-06-12 Reduction of flow speed of effluent water and block therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10084482A JPS58218506A (en) 1982-06-12 1982-06-12 Reduction of flow speed of effluent water and block therefor

Publications (2)

Publication Number Publication Date
JPS58218506A true JPS58218506A (en) 1983-12-19
JPH0346605B2 JPH0346605B2 (en) 1991-07-16

Family

ID=14284623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10084482A Granted JPS58218506A (en) 1982-06-12 1982-06-12 Reduction of flow speed of effluent water and block therefor

Country Status (1)

Country Link
JP (1) JPS58218506A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077464A (en) * 2010-09-30 2012-04-19 Tokyo Kyuei Co Ltd Flow straightening outlet
EP2825705A1 (en) * 2012-03-14 2015-01-21 Jouni Jokela Hydraulic structure for water flow control
IT201800005154A1 (en) * 2018-05-08 2019-11-08 Daniele Fedi apparatus for optimizing the water level in the river bed
CN112195879A (en) * 2020-10-16 2021-01-08 四川大学 Horizontal layering narrow slit energy dissipater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5283356U (en) * 1975-12-17 1977-06-21
JPS53109335U (en) * 1977-02-08 1978-09-01

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5283356U (en) * 1975-12-17 1977-06-21
JPS53109335U (en) * 1977-02-08 1978-09-01

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077464A (en) * 2010-09-30 2012-04-19 Tokyo Kyuei Co Ltd Flow straightening outlet
EP2825705A1 (en) * 2012-03-14 2015-01-21 Jouni Jokela Hydraulic structure for water flow control
IT201800005154A1 (en) * 2018-05-08 2019-11-08 Daniele Fedi apparatus for optimizing the water level in the river bed
CN112195879A (en) * 2020-10-16 2021-01-08 四川大学 Horizontal layering narrow slit energy dissipater

Also Published As

Publication number Publication date
JPH0346605B2 (en) 1991-07-16

Similar Documents

Publication Publication Date Title
Goldstein The steady flow of viscous fluid past a fixed spherical obstacle at small Reynolds numbers
JPS58218506A (en) Reduction of flow speed of effluent water and block therefor
NO983469L (en) Bubble generation for friction reduction of ships
Rawn et al. Diffusers for disposal of sewage in sea water
Masse et al. Observations of the Niagara River thermal plume (Lake Ontario, North America)
CN109555088A (en) A kind of anti-whirlpool device of rectification
Hamill et al. Designing for propeller action in harbours
CN209619962U (en) A kind of anti-whirlpool device of rectification
Ramamurthy et al. Lateral weirs in trapezoidal channels
JPS5762970A (en) Hydraulic power plant utilizing principle of weir
JPS5744596A (en) Ship
JPS62253594A (en) Cut-off of seawater in drill moon pool
SU947265A1 (en) Water flow energy damper
CN206407067U (en) A kind of V-type ship rock-steady structure
Griffin Design Characteristics of Lock Systems in the United States: A Symposium: Influence of Model Testing on Lock Design
JPS631040Y2 (en)
JPS5495011A (en) Straightening flow device for plant piping
Tiwari et al. Stilling basins below outlet works–an overview
RAHMAN et al. Formation of navigational channel using bandal-like structures
JPH0124222Y2 (en)
RU1808904C (en) Method and apparatus for selective water intake from a water reservoir with in-depth water temperature stratification
SU87946A1 (en) Regulatory Power Plant
Maynord et al. Riprap stability and navigation tests for the divide-cut section Tennessee-Tombigbee Waterway: hydraulic model investigation
JOHNSTON The suppression of shear layer turbulence in rotating systems(Stabilization of turbulent shear layer flow in rotating systems by coriolis forces)
Pikarsky et al. Underflow sewers for Chicago