JPS58218314A - Method for controlling dimension of round bar - Google Patents

Method for controlling dimension of round bar

Info

Publication number
JPS58218314A
JPS58218314A JP57100419A JP10041982A JPS58218314A JP S58218314 A JPS58218314 A JP S58218314A JP 57100419 A JP57100419 A JP 57100419A JP 10041982 A JP10041982 A JP 10041982A JP S58218314 A JPS58218314 A JP S58218314A
Authority
JP
Japan
Prior art keywords
width
rolling
dimension
diameter
rolling mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57100419A
Other languages
Japanese (ja)
Other versions
JPH0424121B2 (en
Inventor
Koji Inazaki
稲崎 宏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP57100419A priority Critical patent/JPS58218314A/en
Priority to GB08315887A priority patent/GB2124364B/en
Priority to DE19833321104 priority patent/DE3321104A1/en
Priority to FR8309684A priority patent/FR2528333B1/en
Publication of JPS58218314A publication Critical patent/JPS58218314A/en
Publication of JPH0424121B2 publication Critical patent/JPH0424121B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/18Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a continuous process

Abstract

PURPOSE:To improve the comprehensive dimensional accuracy of a bar material, by using a measuring instrument for measuring a cross-sectional shape of the bar, and respectively recognizing vertical, horizontal, and diagonal dimensions of it for correcting the rolling reduction of a rolling mill at the final stage. CONSTITUTION:An angle detector 13 outputs the signals of an angle rotated from a standard angle and an angle rotated by 180 deg. from the rotated angle. The values of diameters of a wire rod material are detected at 30 points while the bar is rotated by a half revolution, and are inputted to an arithmetic device 9. When a vertical diameter H0, a horizontal diam. B0 and a diagonal diam. L0 are obtained, the deviations DELTAH0, DELTAB0, and DELTAL0 between said diameters and a target diam. D0 are also obtained. By using the relation between the change of rolling reduction of the last mill on the downstream which is previously obtained and the changes of horizontal, vertical and diagonal diameters, the changing quantities of horizontal, vertical and diagonal diameters obtained by adding the change of rolling reduction are added to said deviations, to calculate the estimated deviation from respective target values. The dimensions of the round bar are controlled by controlling the rolling reduction so that the maximum value of these three deviations becomes minimum.

Description

【発明の詳細な説明】 本発明は丸棒、線材等の円形断面条材の寸法制御に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to dimensional control of circular cross-section strips such as round bars and wires.

丸棒線材の圧延に於ては孔型が用いられ複数の圧延機に
よシ水平垂直交互し、圧下が加えられて真円に近い仕上
9寸法に加工される。ことで圧延材の寸法(断面形状)
は最終段の圧延機の圧下で#1は決定されるのでこの圧
延機の孔型形状は極めて精密加工され製品寸法毎に取り
替えられる。しかしながら孔型圧延の場合第、1図に示
すようにロールギャップ量によって孔型の底に接する点
A。
In rolling round rod wire rods, a hole die is used, and a plurality of rolling mills alternate horizontally and vertically, and rolling is applied to produce a finish close to a perfect circle with nine dimensions. The dimensions (cross-sectional shape) of the rolled material
Since #1 is determined by the rolling of the final stage rolling mill, the hole shape of this rolling mill is processed with extremely high precision and replaced for each product size. However, in the case of groove rolling, as shown in FIG. 1, the point A is in contact with the bottom of the groove depending on the roll gap.

Aの寸法(以下天地寸法という)が変化するし、孔型に
拘束されないフリー面の寸法B、B(以下巾寸法という
)も変化する。第1図(a)は適正な圧下の場合、(b
)はロールギャップが過大な場合、(C)はロールギャ
ップが過小な場合である。
The dimension A (hereinafter referred to as the vertical dimension) changes, and the dimensions B of the free surface not constrained by the hole shape (hereinafter referred to as the width dimension) also change. Figure 1 (a) shows that when the pressure is properly applied, (b)
) is the case when the roll gap is too large, and (C) is the case when the roll gap is too small.

更に圧延が進んでロールが摩耗すると製品の断面形状は
変化する。即ち第2図のロールの肩と称する部分Xが圧
延機の圧下による肉の流れにより最も摩耗し、従ってこ
の肩の部位の寸法(以下肩寸法)が最も大きな値となる
。この肩寸法は正確な位置を指定できないが通常は巾寸
法から30°近辺に存在する。第3図は80隼の−の断
面形状で、マイクロメータにより5@毎に測定した直径
をプロットしたものであるが明瞭に屑寸法が識別される
As rolling progresses further and the rolls wear out, the cross-sectional shape of the product changes. That is, the portion X called the shoulder of the roll in FIG. 2 is worn the most due to the flow of meat due to rolling by the rolling mill, and therefore the dimension of this shoulder portion (hereinafter referred to as shoulder dimension) has the largest value. Although the exact position of this shoulder dimension cannot be specified, it usually exists around 30 degrees from the width dimension. Fig. 3 shows the cross-sectional shape of the 80 mm square, and plots the diameter measured every 5 degrees using a micrometer, and the size of the debris can be clearly identified.

この2ケの突出した肩C,C又はC/、C/の間の部位
がフリー面D 、 D’であり、このフリー面と直交す
る部位が天地E、Eである。一般に丸棒の断面は第3図
の如き形状をしておシ肩寸法が最大値で、天地寸法、巾
寸法のいずれかが最小寸法となる場合と、第1図(、)
のように巾寸法が最大となる場合のいずれかに整理され
る。
The areas between these two protruding shoulders C, C or C/, C/ are the free surfaces D, D', and the areas orthogonal to these free surfaces are the top and bottom E, E. In general, the cross section of a round bar is shaped as shown in Figure 3, with the shoulder dimension being the maximum value and either the top, bottom or width dimension being the minimum dimension, and the other cases are as shown in Figure 1 (,).
It is sorted in one of the cases where the width dimension is maximum, such as.

しかしながら従来の圧延ラインではかかる圧延条材の断
面形状を知ることは不可能であシ、切断したサンプルを
測定する抜き取シ検査や冷却後剪断された製品を限界ゲ
ージやマイクロメータで検査することしかできなかった
However, with conventional rolling lines, it is impossible to know the cross-sectional shape of such rolled strips, and sampling inspections that measure cut samples or inspections of sheared products after cooling with a limit gauge or micrometer are required. That's all I could do.

近年エレクトロニクスの進歩にょシ圧延機の後面(下流
)に光電式の寸法測定器を設けて丸棒の寸法を測定し、
これをもとに圧延機の圧下装置を動かして寸法の制御を
行なう試みがなされている。
Due to advances in electronics in recent years, a photoelectric dimension measuring device is installed at the rear (downstream) of the rolling mill to measure the dimensions of the round bar.
Based on this, attempts have been made to control the dimensions by operating the reduction device of the rolling mill.

例えば特公昭50−39066.5O−3906=7の
ように天地と巾の寸法を測定して上流側の2つの圧延機
の圧下もしくは張あを制御する方法があるが、圧延条材
は圧延後捻転するので圧延機のロールに対応して直交2
軸の光学式寸法測定器を設けたとしても必らずしも天地
、巾寸法の測定はできない欠点があった。又丸とえ天地
、巾寸法の測定ができたとしても前述のように最大寸法
は肩寸法の場合が多いので天地、巾の寸法岬御を行なう
だけでは製品の寸法精度に確実な寄与ができない問題が
あワた。
For example, there is a method as shown in Japanese Patent Publication No. 50-39066.5O-3906=7 in which the height and width dimensions are measured and the rolling or tensioning of the two upstream rolling mills is controlled, but the rolled strip is Since it is twisted, it is perpendicular to the roll of the rolling mill.
Even if an optical shaft dimension measuring device was provided, there was a drawback that it was not always possible to measure the vertical and width dimensions. Also, even if it is possible to measure the top, bottom, and width dimensions of a round toe, as mentioned above, the maximum dimension is often the shoulder dimension, so simply measuring the top, bottom, and width dimensions cannot reliably contribute to the dimensional accuracy of the product. I have a problem.

本発明は従来法のかかる欠点に鑑みなされたもので高精
度の連続回転式の寸法測定器を用いて断面形状を測定し
て天地、巾、肩の各寸法を識別ししかる後に所定の関係
式を用いて最終段の圧延機圧下を修正するとと亀に寸法
変動に大きく影響する圧延温度を検出して予測修正する
ことによって条材の総合的寸法精度の向上を計るもので
ある。
The present invention was developed in view of the drawbacks of the conventional method.The present invention measures the cross-sectional shape using a high-precision continuously rotating dimension measuring device, identifies the top, bottom, width, and shoulder dimensions, and then calculates a predetermined relational formula. When the final stage rolling mill reduction is corrected using this method, the overall dimensional accuracy of the strip is improved by detecting and predicting the rolling temperature, which has a large effect on dimensional fluctuations.

以下本発明の構成を詳細に説明する。The configuration of the present invention will be explained in detail below.

第4図は本発明方法を実施する際に使用する回転型の棒
線材の寸法計測装置を示し、光源2から発せられた光は
レンズ3を通って平行光線となシ、棒線材の影が受光レ
ンズ4を通って光電変換アレイ素子5の上に結像する。
FIG. 4 shows a rotary type measuring device for rod and wire rod dimensions used when carrying out the method of the present invention, in which light emitted from a light source 2 passes through a lens 3 and becomes parallel rays, and the shadow of the rod and wire rod is The light passes through the light receiving lens 4 and is imaged onto the photoelectric conversion array element 5 .

光電変換アレイ素子5には電荷結合素子を用いている。A charge coupled device is used for the photoelectric conversion array element 5.

この像は発信器6から加えられるパルスによってアレイ
素子5がら明暗に対応したパルス列の形で出力され、カ
ウンタ7で計数される。パルスカウントに変換された棒
線材の直径値は演算装置9に入力される。ここでパルス
列はスリップリング8を通して伝達される。棒線材の鉛
直に対してどの角度の直径を計りたかを認識する為に角
度検出器15の出方も演算装置9に入力されている。
This image is output from the array element 5 in the form of a pulse train corresponding to brightness and darkness by pulses applied from the oscillator 6, and is counted by the counter 7. The diameter value of the rod and wire rod converted into a pulse count is inputted to the calculation device 9. Here the pulse train is transmitted through the slip ring 8. The position of the angle detector 15 is also input to the arithmetic unit 9 in order to recognize at which angle the diameter is measured with respect to the vertical of the wire rod.

第5図は本寸法計測装置の立体図であるが、第4図に於
ける光源2、レンズ3,4、アレイ素子5、スリップリ
ング8は回転体12に一体となって装着さ′れておシ、
固定軸11を中心としてモータ10により一定方向に連
続回転する。この回転体12へのパルス信号の入力と同
じく回転体12からの明暗信号はスリップリング8を介
して行なわれてお)、回転体12は毎分45回転で回転
しているので棒線材の一断面の測定には回転体が180
°回る時間である[L66秒を要する。第4図の角度検
出器13は基準角度からの回転角度とこの180°回転
の信号を発生する。棒線材1の直径の測定は回転体が6
6回転する度に行なわれ半回転で計30カ所の直径値が
演算装置9に入力される。
FIG. 5 is a three-dimensional view of this dimension measuring device, and the light source 2, lenses 3, 4, array element 5, and slip ring 8 in FIG. 4 are integrally attached to the rotating body 12. Oshi,
It is continuously rotated in a fixed direction by a motor 10 around a fixed shaft 11. Similar to the pulse signal input to the rotating body 12, the bright/dark signal from the rotating body 12 is performed via the slip ring 8), and since the rotating body 12 rotates at 45 revolutions per minute, the rod and wire rods are A rotating body of 180 mm is used to measure the cross section.
It takes 66 seconds to turn [L66 seconds]. The angle detector 13 shown in FIG. 4 generates a signal of the rotation angle from the reference angle and this 180° rotation. The diameter of rod wire 1 is measured when the rotating body is 6.
This is done every six revolutions, and a total of 30 diameter values are input to the arithmetic unit 9 in half a revolution.

かかる回転式の寸法計測装置としては本顯発明者らが申
請中の実願昭55−20271号、実願昭53−237
29号、特願昭54−160952号等がある。
As such a rotary dimension measuring device, Utility Application No. 55-20271 and Utility Application No. 53-237 currently filed by the present inventors are known.
No. 29, Japanese Patent Application No. 160952/1984, etc.

さて30ケの直径値による棒線材の断面形状は演算装置
9によフ第3図のようにグラフィック表示もされるが、
同時に時間軸で表わした第6図のようにも記録計(図示
せず)に出力される。かかる時間軸上の一断面の直径の
パターンを数多く調査した結果直径値を時間もしくは角
度で微分した値が最大となる点が7リー面即ち中寸法に
対応することがわかった。従って第6図では(a)点が
巾寸法で4Jこれと直交する角度(b)の径が天地径と
なる。更にこの巾、天地の近傍の径を除いたうち巾寸法
に近い角度で最大のもの6が肩寸法に対応する。これら
巾、天地、肩の角、=6は第4図の角度検出器の信号と
対応づけられるが、棒線材の捻転がある場合はロールの
天地、巾に相当する角度との対応は完全でないこともあ
る。又巾寸法の識別にあたっては正弦波からの偏差が最
大となる直径をもつてすることも可能である。又ロール
の天地部の摩耗変化が少ないこと)・らロールの既知の
孔形の曲率に一致する部位をさがしその中心をもって天
地径とすることも有効である。即ち30ケの直径の差分
をとりその差分列のうち最も変化が小さい点をもって天
地としても良い。このようにして天地径HOs巾径8゜
、肩径り。が求オると目標径り。
Now, the cross-sectional shapes of the rods and wires based on the 30 diameter values are displayed graphically by the calculation device 9 as shown in Figure 3.
At the same time, the signal is also output to a recorder (not shown) as shown in FIG. 6 on the time axis. As a result of investigating many patterns of the diameter of one cross section on the time axis, it was found that the point where the value obtained by differentiating the diameter value with respect to time or angle is maximum corresponds to the 7 Lie plane, that is, the medium dimension. Therefore, in FIG. 6, point (a) is the width dimension, and the diameter at the angle (b) perpendicular to this is the vertical diameter. Furthermore, among this width and the diameter near the top and bottom, the largest angle 6 close to the width dimension corresponds to the shoulder dimension. These width, top and bottom, and shoulder angles, = 6, correspond to the signals from the angle detector shown in Figure 4, but if the wire rod is twisted, the correspondence with the angles corresponding to the top, bottom, and width of the roll is not perfect. Sometimes. In addition, when identifying the width dimension, it is also possible to use the diameter that has the maximum deviation from the sine wave. It is also effective to find a portion that matches the known curvature of the hole shape of the roll and use its center as the top and bottom diameter. That is, the difference between the 30 diameters may be taken, and the point with the smallest change among the differences may be taken as the top and bottom. In this way, the top and bottom diameter HOs width diameter is 8 degrees, and the shoulder diameter is 8 degrees. When you ask for it, the target diameter is reached.

との偏差が夫々ΔHo1 ΔB(1、ΔB0が求まシ天
地径H0、中径B0のいずれかが最小径となることも知
られているのでこれらの偏差ΔH0,ΔBO+ΔL0の
絶対値を小さくすれば条材の寸法が目標径D0に近くな
って精度を向上できる。次に寸法制御方法について説明
する。
It is also known that the minimum diameter is either the top diameter H0 or the middle diameter B0, so if the absolute values of these deviations ΔH0 and ΔBO+ΔL0 are reduced, The dimensions of the strip become close to the target diameter D0, and accuracy can be improved.Next, the dimension control method will be explained.

第7図にロー化孔型及び棒線材の断面の上半分を示す。FIG. 7 shows the upper half of the cross section of the rod and wire rod.

ロール4’l孔型は基準隙doのときpoを中心として
基準半径二1:となるよう研削されている。こ・11゜ のときロールギャップの圧延荷重によるスプリングアッ
プを無視するならば棒線材の断面は第7図の斜線のよう
な形となシ天地ではロール形状と一致するがフリー面で
はロールに拘束されない部分は基準半径&とは異る。今
第7図に於てロールのギャップがdoからd、+Δだけ
大きくなったときを考えると片側ではdo + j の
P′に断面の中心が移動し天地径は2R,+Δとなって
Δだけ大きくなるが、他の径は天地径からの角度をθと
すると=2Ro+Δeos a         ==
(2)式となりてΔcotseシか大きくならない。
The roll 4'l hole type is ground so that when the standard clearance is do, the standard radius is 21: with po as the center. If the spring-up due to the rolling load in the roll gap is ignored at this angle of 11°, the cross section of the rod and wire rod will be shaped like the diagonal line in Figure 7.It matches the roll shape in the vertical direction, but is constrained by the roll in the free surface. The part that is not set is different from the reference radius &. Now, in Fig. 7, if we consider the case where the roll gap increases from do to d, +Δ, the center of the cross section moves to P' of do + j on one side, and the top-to-bottom diameter becomes 2R, +Δ, which increases by Δ. However, for other diameters, if the angle from the top and bottom diameter is θ = 2Ro + Δeos a ==
Equation (2) is obtained, and Δcotse does not become large.

従って肩径が巾寸法後側にあって天地径からは60′′
程度であるので圧下量がΔ変化させても0.5Δしか変
化しない。この関係を第8図(a)に示す。第8図は縦
軸に肩径変化ΔL又は中径変化ΔBをとり、横軸に圧・
下修正量ΔSをとって表わした。
Therefore, the shoulder diameter is on the rear side of the width dimension and is 60'' from the top and bottom diameter.
Therefore, even if the rolling reduction amount changes by Δ, it will only change by 0.5Δ. This relationship is shown in FIG. 8(a). In Figure 8, the vertical axis shows shoulder diameter change ΔL or middle diameter change ΔB, and the horizontal axis shows pressure and
It is expressed by taking the downward correction amount ΔS.

一方巾寸法は直接ロールに拘束されていないので一つ上
流の圧延機の天地が当該圧延機のフIJ −面に対応す
ることから一つ上流の圧延機の圧下が支配的である。し
かしながら孔型に適正に肉が充満している状態では最終
圧延機のロールギャップを小さくすると巾方向に肉が逃
げて巾寸法が大きくなシ逆にギャップを大きくすると肉
が不足気味になって巾寸法が小さくなる。この関係を第
8図(b)に示すが圧下の変化量Δに比べ巾寸法の変化
は小さくかつ飽和する。これから巾寸法の修正は一つ上
流の圧延機の圧下で大まかに行ない微修正は最終圧延機
で行なうことが可能であることがわかる。よって前述の
棒線材の寸法計測器の出力より天地、巾、肩寸法の目標
径との偏差ΔHO9ΔBesΔL0がわかると必要な圧
下修正量を決定することができる。第9図は縦軸に寸法
偏差、横軸に圧下修正量をとりΔH9ΔB、ΔLが種々
変化した時の関係を表わす。
On the other hand, since the width dimension is not directly constrained by the rolls, the top and bottom of the rolling mill one upstream corresponds to the IJ-plane of the rolling mill, so that the rolling reduction of the rolling mill one upstream is dominant. However, when the groove is properly filled with meat, if the roll gap of the final rolling mill is made smaller, the meat escapes in the width direction and the width becomes larger.On the other hand, if the gap is made larger, the meat becomes insufficient and the width increases. Dimensions become smaller. This relationship is shown in FIG. 8(b), and the change in the width dimension is small compared to the amount of change Δ in the rolling reduction and is saturated. From this it can be seen that the width dimension can be roughly corrected at the rolling mill one upstream, and fine corrections can be made at the final rolling mill. Therefore, if the deviation ΔHO9ΔBesΔL0 of the vertical, width, and shoulder dimensions from the target diameter is known from the output of the above-mentioned bar and wire dimension measuring device, the necessary reduction correction amount can be determined. FIG. 9 shows the relationship when ΔH9ΔB and ΔL vary variously, with the vertical axis representing the dimensional deviation and the horizontal axis representing the reduction correction amount.

まず第9図(a)のように肩偏差が大きく次いで天地、
巾となりでいる場合は肩角度θを60°、圧下変化に対
する屑変化率を0.5、中食化率を0.33として圧下
ΔSを負の方向にΔS0修正すると肩と天地の偏差が等
り、 <かつ巾偏差が零となってこのとき最も寸法偏差
が小さくなる。第9図(b)は天地偏差が大きく次いで
肩、巾となっている場合であるが、この場合もΔSを負
に動かして天地偏差と巾偏差が等しいP点で偏差が最小
となる。次に圧下が過大で1出して巾偏差が最も大きく
、次いで肩、天地の第9図(c)の場合は逆に圧下を正
の方向にΔS(l動かしたP点で天地と肩の偏差が等し
くかつこのとき偏差が最小となる。ところが第9図(d
)のように巾寸法が極端に小さい場合は圧下をΔS0修
正してP点で偏差の最小化を・計るよシは、1−)上流
側の圧延機の圧下のギャップを大きくすることにより当
該圧延機での巾寸棒)を大きくして巾偏差をΔB0/と
し、しかる後に当該f:延機圧下をΔSo′修正すると
P′点で偏差最小とが1(、シ、より偏差が小さくkる
。この場合のように巾寸法の偏差が大きい場合は巾寸法
変化直ah第8図(b)のように圧下の過大変化時に飽
和現象を起すので最適圧下修正量が求まり難く、従って
圧下修正をなるべく小さくする方が正確でかつ偏差を小
さくできる。
First, as shown in Figure 9(a), the shoulder deviation is large, followed by the top and bottom.
If the width is the same, the shoulder angle θ is 60°, the rate of change in waste with respect to the change in roll is 0.5, the corrosion rate is 0.33, and if the roll reduction ΔS is corrected by ΔS0 in the negative direction, the deviation between the shoulder and the top and bottom is equalized. , < and the width deviation becomes zero, at which time the dimensional deviation becomes the smallest. FIG. 9(b) shows a case where the vertical deviation is large, followed by the shoulders and width, but in this case as well, by moving ΔS negatively, the deviation becomes minimum at point P where the vertical deviation and the width deviation are equal. Next, the roll reduction is excessive and the width deviation is 1, and the width deviation is the largest, followed by the shoulders and the top and bottom. are equal and in this case the deviation is the minimum.However, in Fig. 9 (d
) If the width dimension is extremely small, as in (1), correct the rolling reduction by ΔS0 to minimize the deviation at point P. By increasing the width bar in the rolling mill and making the width deviation ΔB0/, and then correcting the f:rolling reduction by ΔSo', the minimum deviation at point P' becomes 1(, shi, the deviation is smaller k If the deviation in the width dimension is large as in this case, the saturation phenomenon will occur when the width dimension changes as shown in Figure 8 (b), and the optimum reduction amount will be difficult to determine. It is more accurate to make the value as small as possible, and the deviation can be reduced.

以上説明したように最終圧延機の圧下変化ΔSが小さい
場合これに対する天地変化ΔH1肩変化ΔL1巾変化Δ
Bを夫々 Δ■=ΔS            ・・−・・(3)
式ΔL=ΔS coBe  θ=60°〜75°   
・・・−・−(4)式ΔB=A・ΔS        
  ・・・・・・(5)式と線型で近似できるので目標
径からの天地、肩、巾の偏差ΔHoeΔLo、ΔBeが
わかれば夫々の偏差(絶対値)の最大値を最小にするΔ
Sが(3) 、 (4) 。
As explained above, when the rolling reduction change ΔS of the final rolling mill is small, the vertical change ΔH1 shoulder change ΔL1 width change Δ
For each B, Δ■=ΔS ・・・−・(3)
Formula ΔL=ΔS coBe θ=60°~75°
...--(4) Formula ΔB=A・ΔS
......Equation (5) can be approximated linearly, so if you know the deviations ΔHoeΔLo and ΔBe of the height, shoulder, and width from the target diameter, you can calculate Δ to minimize the maximum value of each deviation (absolute value).
S is (3), (4).

(均を利用した ΔH=ΔH0+Δ台         ・・・−・・(
6)式Δ L= ΔL0+ ΔS・・ eos #  
         ・・・・・・(ハ式ΔB=ΔB、+
A’iΔS       ・・・・・・(8)式の3つ
の式の左辺4’ずれか2つの絶対値が等しいΔSを求め
その時メ泗る一つの式の絶対値を含めて最大値を決定し
、これを3つの式の3つの組合せについて行ない、最大
値が最も小さいものを選び出せばそのときの解ΔSが最
適解となる。この場合の+os eとAは棒線材のサイ
ズ毎にあらかじめ求めて記憶した定数であるが、制御の
過程で圧下をΔS動かした場合の天地、肩、巾の各寸法
の変化を前述の寸法計測器により求め、これよりこれら
定数の修正を適宜行なっても良い。更に圧延条材の温度
が変化した場合は第10図に示すように巾広がりの特性
が変化する。この図は圧延機のロールギャップを固定し
たものであるが、実際には変形抵抗が変化するので圧延
、機の剛性が小さい場合は圧延荷重の変化ΔFによりミ
ル光数をMとするとΔF/Mだけロールギャップは変化
する。従って圧延温度の変化ΔTによる第10図のごと
き巾寸法の変化ΔBΔiは 184丁=C・ΔT(C<O)      −・・・・
(9)式のみではなく圧下変化ΔF/Mによる巾変化を
加えた ΔB=c・ΔT+A・ΔF/M     −・・・・・
口1式となるが実際に観測できるのは制式による巾変化
ΔBと温度変化ΔT及び圧力変化ΔFの数多くのデータ
より統計的に係数C,Aも決定できる。この場合は圧延
機の圧下は外部からは意図的には動かきない方が望まし
いし、圧延力変化ΔFはロードセルにより実測しても良
いが数式モデルによりΔTより予測しても良い。従って
ΔTだけ圧延温度が変化した場合の天地、肩、巾の各寸
法偏差は(6)、 (7) 、 (8)にミルスプリン
グアップ変化ΔF/Mとぐ1式を考慮した<11) 、
 H、(1m式となる。
(ΔH using the average = ΔH0 + Δ level ・・・−・・(
6) Formula ΔL= ΔL0+ ΔS... eos #
・・・・・・(C formula ΔB=ΔB, +
A'iΔS...Find ΔS in which the absolute values of the left side 4' or two of the three equations in (8) are equal, and then determine the maximum value by including the absolute value of the one equation. If this is done for three combinations of the three equations and the one with the smallest maximum value is selected, the solution ΔS at that time becomes the optimal solution. In this case, +os e and A are constants calculated and memorized in advance for each size of rod and wire rod, but when the reduction is moved by ΔS during the control process, the change in each dimension of top, bottom, shoulder, and width can be measured using the above-mentioned dimension measurement method. These constants may be determined using a device and then modified as appropriate. Furthermore, when the temperature of the rolled strip material changes, the width spread characteristic changes as shown in FIG. In this figure, the roll gap of the rolling mill is fixed, but in reality the deformation resistance changes, so when rolling is performed and the rigidity of the mill is small, the number of mill lights is M due to the change in rolling load ΔF, then ΔF/M Only the roll gap will change. Therefore, the change ΔBΔi in the width dimension as shown in Fig. 10 due to the change ΔT in rolling temperature is 184 teeth=C・ΔT (C<O) -...
ΔB=c・ΔT+A・ΔF/M −・・・・
However, what can actually be observed is the width change ΔB, temperature change ΔT, and pressure change ΔF, which can be statistically determined based on a large amount of data. In this case, it is preferable that the rolling mill is not intentionally moved from the outside, and the change in rolling force ΔF may be actually measured using a load cell, or may be predicted from ΔT using a mathematical model. Therefore, when the rolling temperature changes by ΔT, the dimensional deviations of the top, shoulder, and width are as follows (6), (7), and (8), taking into account the mill spring-up change ΔF/M (<11),
H, (1m type.

ΔH=ΔH0+ΔF/M+J8      ・・・・・
・I式ΔL=ΔL0+(ΔF/M+ΔB ) toms
  ・・・−132式ΔB=ΔBo+A(ΔF/M+Δ
8 )    ・・−・−・(13式これらの式も第8
図と同様に示され(6)、(ハ、(8)式より最適圧下
修正量ΔS1艇定したのと全く同じ手続きで(11> 
、 (13、amのいずれか2式の絶対値が等しいとい
う連立′方程式を解き、そのときの残る一つの式の絶対
値と併せて最大値を求めこれらの中で最大値が最も小さ
い場合のΔBをもって最適解とすれば良い。これらの最
適解に基づく圧下の修正は修正結果を寸法計測器で確認
しながら行なわれるので圧下電動機の応答と寸法計測器
までの輸送遅れ時間を考慮して1本の圧延条材で10回
乃至20回行なわれる。更に圧延条材の温度を検出する
温度計は圧延機の入側に設けられ、測定された温度はや
はシ圧延機までの到達時間分遅れさせられる。
ΔH=ΔH0+ΔF/M+J8...
・I formula ΔL=ΔL0+(ΔF/M+ΔB) toms
...-132 formula ΔB=ΔBo+A(ΔF/M+Δ
8) ・・−・−・(Equation 13 These expressions are also the 8th
The same procedure as shown in the figure (6) and (c) was used to determine the optimum rolling reduction amount ΔS1 from equation (8) (11>
, (13. Solve the simultaneous equations in which the absolute values of any two equations of am are equal, find the maximum value together with the absolute value of the remaining one equation, and calculate the case where the maximum value is the smallest among them. It is sufficient to use ΔB as the optimum solution.Since the correction of the reduction based on these optimum solutions is performed while checking the correction results with a dimension measuring instrument, the response of the reduction motor and the transportation delay time to the dimension measuring instrument are taken into consideration. This process is carried out 10 to 20 times on the same rolled strip.Furthermore, a thermometer to detect the temperature of the rolled strip is installed on the entrance side of the rolling mill, and the measured temperature corresponds to the time it takes to reach the rolling mill. be delayed.

以上述べたごとく本願発明の方法によ、れば寸法計測器
が示す偏差出力は圧下修正によシ小さくなりておシ寸法
精度が向上していることが分り、本方法によれば極めて
精密な寸法精度の棒線材が製造可能であり、需要家での
引抜工程の不要化等効果が大きい。
As described above, it can be seen that according to the method of the present invention, the deviation output indicated by the dimension measuring instrument is reduced by the reduction correction, and the dimensional accuracy is improved. It is possible to manufacture rods and wires with dimensional accuracy, and has great effects such as eliminating the need for a drawing process at the customer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は日−ルギャップと圧延材の形状の関係図、第2
図はロール摩耗と肩の形状の説明図、第3図は棒断面の
形状を示す□−1第1図は寸法計測器の原理図、第5図
は寸法    立体図、第6図は時間軸と断面の関係を
=τ::フ、第7図は・−ル孔型と棒線材断面上:′:
゛車分の図、第8図は圧下修正量と肩径の変化の割合を
示す図、第9図は圧6下修正量と天地、巾、肩の各偏差
との関係を示す図、また第10図は温度と巾広がシの関
係の説明図である。 1:棒線材 2:光源 3:レンズ 4:受光レンズ 
5:光電変換アレイ素子 6:発信器7:カウンタ 8
ニスリツプリング 9:演算装置 10:モータ −1
:固定軸 12:回転体13:角度検出器 出願人  新日本製鐵株式会社 代理人弁理士   青   柳     稔□ 1 、′7 □ 第8図 第t (C) □    寸法flal! (b) 寸3L偵差 第10図 800     900     1000’CT F
L 延 j」贋 手続補正書(自発) 昭和57年7月20日 1、事件の表示 昭和57年特許願第100419号 2、発明の名称 丸棒の寸法制御方法 &補正をする者 事件との関係  特許出願人 住 所  東京都千代田区大手町二丁目6番3号名称 
(665)新日本製鐵線式会社 代表者 武 1)  豊 4、代理人 〒101 5、補正命令の日付  な し 6、補正によシ増加する発明の詳細な説明別、 紙 (1)明細書第1頁5行〜第2頁14行の特許請求の範
囲を次の様に補正する。 「(1)孔型による連続式圧延機列の出側に圧延材の回
りを回転する条材寸法計測器を設け、該計測器の出力に
よ多条材の断面形状を求め、この断面形状で最も孔型の
曲率に等しい径を天地径、もしくは最も変化が緩い角度
位置を天地、それと直交する角度位置を巾としそしてこ
の巾、天地径を除いた断面形状のうち最大径を肩とし、
夫々中、天地、清掻の目標値からの偏差ΔBOsΔ鳥、
Δ−を求め、これらにあらかじめ求めである最下流圧延
機の圧下変化と巾、天地、清掻の変化との関係を用いて
圧下門化を加えた場合の巾、天地、清掻の変化量を、、
、poえて夫々の目標値からの予測偏差を計算する日と
にょシこれらに 3つの偏差の最大値が最小となる圧下を制御することを
特徴とする丸棒の寸法制御方法。 (2)圧延機の圧下変化と巾、天地、清掻の寸法変化と
の関係式を条材寸法計測器の出方をもとに修正すること
を特徴とする特許請求の範囲第1項記載の丸棒の寸法制
御方法。 (3)巾寸法の粗修正を最下流圧延機より一つ上流の圧
延機の圧下にて行なうことを特徴とする特許請求の範囲
第1項記載の丸棒の寸法制御方法。 (4)巾寸法の粗修正を傘下流圧延機より一つ上流の圧
延機の圧下にて行なうことを特徴とする特許請求の範囲
第2項記載の丸棒の寸法制御方法。 (5)最下流圧延機の上流側に温度計を設は条材の圧延
温度を測定し圧延温度変化にともなう天地寸法変化及び
巾寸法変化層径変化を目標値からの予測偏差に加えたこ
とを特徴とする特許請求の範囲第1項記載の丸棒の寸法
制御方法。」(2)同第7頁11〜12行の記載を「査
した結果直、′11゜ 径値が最も急峻な1変化をする点がフリー面に対応す」
に補正す比1□・ (6)同第9頁7行の 載を に補正する。 (4)同第11頁10行の「肩」を「巾」に補正する。
Figure 1 is a diagram showing the relationship between the rolling gap and the shape of the rolled material.
The figure is an explanatory diagram of roll wear and shoulder shape, Figure 3 shows the shape of the bar cross section □-1 Figure 1 is a diagram of the principle of the dimension measuring instrument, Figure 5 is a three-dimensional diagram of dimensions, and Figure 6 is a time axis The relationship between the cross section and the cross section is =τ::F, Figure 7 shows the cross section of the hole type and rod wire rod:':
Figure 8 is a diagram showing the ratio of the amount of reduction correction and the change in shoulder diameter, Figure 9 is a diagram showing the relationship between the amount of reduction correction and each deviation of the top, bottom, width, and shoulder. FIG. 10 is an explanatory diagram of the relationship between temperature and width. 1: Rod wire 2: Light source 3: Lens 4: Light receiving lens
5: Photoelectric conversion array element 6: Transmitter 7: Counter 8
Nisri spring 9: Arithmetic unit 10: Motor -1
: Fixed shaft 12: Rotating body 13: Angle detector Applicant Nippon Steel Corporation Patent attorney Minoru Aoyagi 1,'7 □ Figure 8 t (C) □ Dimensions flal! (b) Dimension 3L rectangle 10th figure 800 900 1000'CT F
L En J” Written amendment of false procedure (voluntary) July 20, 1988 1, Display of the case 1982 Patent Application No. 100419 2, Name of the invention Method for controlling the dimensions of round bars & Person making the amendment Related Patent Applicant Address: 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name
(665) Nippon Steel Wire System Company Representative Takeshi 1) Yutaka 4, Agent 〒101 5, Date of amendment order None 6, Detailed explanation of invention increased by amendment, Paper (1) Specifications The scope of claims from page 1, line 5 to page 2, line 14 is amended as follows. (1) A strip size measuring device that rotates around the rolled material is installed on the exit side of the row of continuous rolling mills using the groove type, and the cross-sectional shape of the multi-strip material is determined from the output of the measuring device. The diameter that is most equal to the curvature of the hole shape is the top and bottom diameter, or the angular position where the change is the slowest is the top and bottom, and the angular position perpendicular to it is the width, and the maximum diameter of the cross-sectional shape excluding the top and bottom diameter is the shoulder,
Deviations from the target values for middle, top and bottom, and clearing, respectively, ΔBOsΔbird,
The amount of change in width, top and bottom, and clearance when Δ- is calculated, and reduction is added using the relationship between the rolling reduction change of the most downstream rolling mill and the change in width, top and bottom, and clearance, which are calculated in advance. of,,
A method for controlling the size of a round bar, comprising: calculating predicted deviations from respective target values; (2) The relational expression between the rolling reduction change of the rolling mill and the width, top and bottom, and scraping dimension changes is corrected based on the appearance of the strip dimension measuring device. Dimension control method for round bars. (3) The method for controlling the dimension of a round bar according to claim 1, characterized in that the rough correction of the width dimension is performed at a rolling mill one upstream from the most downstream rolling mill. (4) The method for controlling the dimension of a round bar according to claim 2, characterized in that the rough correction of the width dimension is performed in a rolling mill one upstream from the umbrella downstream rolling mill. (5) A thermometer was installed on the upstream side of the most downstream rolling mill to measure the rolling temperature of the strip, and changes in top and bottom dimensions, width dimensions, and layer diameter changes due to changes in rolling temperature were added to the predicted deviation from the target value. A method for controlling dimensions of a round bar according to claim 1, characterized in that: (2) The statement on page 7, lines 11-12: ``As a result of inspection, the point where the '11° diameter value changes by the steepest 1 corresponds to the free surface.''
Ratio 1□・(6) The information on page 9, line 7 of the same page is corrected to 1□. (4) Correct "shoulder" in line 10 of page 11 to "width".

Claims (1)

【特許請求の範囲】 (1)孔型による連続式圧延機列の出側に圧延機の回り
を回転する条材寸法計測器を設け、該計測器の出力によ
り条材の断面形状を求め、この断面形状で最も急峻な変
化をする角度位置を巾とし該角度と直交する径を天地径
、もしくは最も変化が緩い角度位置を天地それと直交す
る角度位置を巾としそしてこの巾、天地径を除いた断面
形状のうち最大径を肩とし、夫々中、天地、肩径の目標
値からの偏差ΔBeeΔHowΔLOを求め、これらに
あらかの巾、天地、肩径の変化量を加えて夫々の目標値
からの予測偏差を計算すること忙よシこれら3つの偏差
の最大値が最小となる圧下を制御することを特徴とする
丸棒の寸法制御方法。 (2)圧延機の圧下変化と巾、天地、肩径の寸法変化と
の関係式を条材寸法計測器の出力をもとに修正すること
を特徴とする特許請求の範囲第1項記載の丸棒の寸法制
御方法。 (3)巾寸法の粗修正を最下流圧延機よシ一つ上流の圧
延機の圧下にて行なうことを特徴とする特許請求の範囲
第1項記載の丸棒の寸法制御方法。 −(4)巾寸法の粗修正を最下流圧延機よシ―つ上流の
圧延機の圧下にて行なう仁とを特徴とする特許請求の範
囲第2項記載の丸棒の寸法制御方法。 (5)最下流圧延機の上流側に温度計を設は条材の圧延
温度を測定し圧延温度変化にともなう天地寸法変化及び
巾寸法変化肩径変托を目標値からの予測偏差に加えたこ
とを特徴とする特許請求の範囲第1項記載の丸棒の寸法
制御方法。
[Scope of Claims] (1) A strip size measuring instrument that rotates around the rolling mill is provided on the exit side of a row of continuous rolling mills using a groove type, and the cross-sectional shape of the strip is determined from the output of the measuring instrument; In this cross-sectional shape, the width is defined as the angular position where the steepest change occurs, and the diameter perpendicular to the angle is defined as the vertical diameter, or the angular position where the change is the slowest is defined as the angular position perpendicular to the vertical and vertical directions, and this width excludes the vertical diameter. The maximum diameter of the cross-sectional shape obtained is taken as the shoulder, and the deviations ΔBeeΔHowΔLO from the target values of the center, top, bottom, and shoulder diameters are calculated, and the changes in the width, top, bottom, and shoulder diameters are added to these and calculated from the respective target values. A method for controlling dimensions of a round bar, characterized in that the reduction is controlled to minimize the maximum value of these three deviations. (2) The relational expression between the rolling reduction change of the rolling mill and the dimensional changes of the width, top and bottom, and shoulder diameter is corrected based on the output of the strip dimension measuring device. Dimension control method for round bars. (3) The method for controlling the dimension of a round bar according to claim 1, characterized in that the rough correction of the width dimension is performed at the rolling mill one step upstream from the most downstream rolling mill. -(4) The method for controlling the dimension of a round bar according to claim 2, characterized in that the width dimension is roughly corrected by rolling the rolling mill upstream of the most downstream rolling mill. (5) A thermometer was installed on the upstream side of the most downstream rolling mill to measure the rolling temperature of the strip, and changes in top and bottom dimensions, width dimensions, and shoulder diameter changes due to changes in rolling temperature were added to the predicted deviation from the target value. A method for controlling the dimensions of a round bar according to claim 1.
JP57100419A 1982-06-11 1982-06-11 Method for controlling dimension of round bar Granted JPS58218314A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57100419A JPS58218314A (en) 1982-06-11 1982-06-11 Method for controlling dimension of round bar
GB08315887A GB2124364B (en) 1982-06-11 1983-06-09 Methods of gauging and controlling profile of bar or like workpiece
DE19833321104 DE3321104A1 (en) 1982-06-11 1983-06-10 METHOD FOR MEASURING AND CONTROLLABLY INFLUENCING THE PROFILE OF A ROUND BAR MATERIAL OR SIMILAR WORKPIECE
FR8309684A FR2528333B1 (en) 1982-06-11 1983-06-10 METHOD FOR CALIBRATING AND CONTROLLING THE PROFILE OF A BAR-LIKE PART OR THE LIKE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57100419A JPS58218314A (en) 1982-06-11 1982-06-11 Method for controlling dimension of round bar

Publications (2)

Publication Number Publication Date
JPS58218314A true JPS58218314A (en) 1983-12-19
JPH0424121B2 JPH0424121B2 (en) 1992-04-24

Family

ID=14273453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57100419A Granted JPS58218314A (en) 1982-06-11 1982-06-11 Method for controlling dimension of round bar

Country Status (1)

Country Link
JP (1) JPS58218314A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1003014A2 (en) * 1998-11-18 2000-05-24 SMS Demag AG Method for measuring height and width of a bar-shaped rolling mill
CN116713314A (en) * 2023-07-12 2023-09-08 索罗曼(广州)新材料有限公司 Titanium flat bar rolling one-step forming device and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1003014A2 (en) * 1998-11-18 2000-05-24 SMS Demag AG Method for measuring height and width of a bar-shaped rolling mill
EP1003014A3 (en) * 1998-11-18 2001-11-21 SMS Demag AG Method for measuring height and width of a bar-shaped rolling mill
CN116713314A (en) * 2023-07-12 2023-09-08 索罗曼(广州)新材料有限公司 Titanium flat bar rolling one-step forming device and method
CN116713314B (en) * 2023-07-12 2024-01-23 索罗曼(广州)新材料有限公司 Titanium flat bar rolling one-step forming device and method

Also Published As

Publication number Publication date
JPH0424121B2 (en) 1992-04-24

Similar Documents

Publication Publication Date Title
CA2682635C (en) Method for measuring the roundness of round profiles
CN109017867B (en) Dynamic measuring method for rail corrugation
CA2428377C (en) Method of and apparatus for measuring planarity of strip, especially metal strip
CN110017784A (en) A kind of online quality inspection device of curling steel roll end and method
CN108581635A (en) A kind of milling cutter side edge cutting edge abrasion three-dimensional detection device and method
JPS58218314A (en) Method for controlling dimension of round bar
CN108080423B (en) A kind of real-time intelligent rolling mill for obtaining loading roll gap information
JP3697015B2 (en) Method for determining the thickness of railroad rail columns
JPS58160805A (en) Method for measuring size and shape of large-diameter steel pipe
JPH05107124A (en) Method and device for nondestructive-measuring characteristic of continuously manufactured product by on-line
JPH073327B2 (en) Method and apparatus for automatic measurement of tubular products
CN105562357B (en) Method for classifying to metal tube
JP2829065B2 (en) Method of measuring thickness of rolled strip
JP3010885B2 (en) H-section steel web height measuring method and measuring device
Degner et al. Topometric on-line flatness measuring system for hot strip
JP3189721B2 (en) Estimation method of thickness of tapered steel plate
JPS60106610A (en) Control method of camber of rolling material
KR20190026194A (en) Apparatus for cutting hot material
Toenshoff et al. Use of Fresnel diffraction for the measurement of rotational symmetrical workpieces
GB2124364A (en) Methods of gauging and controlling profile of a bar or like workpiece
JPS60253907A (en) Shape measuring instrument
JPH02212015A (en) End cutting method in hot billet rolling
JPH0217054B2 (en)
JPH0543254B2 (en)
JPH026707A (en) Measuring method for worn crown of roll