JPS58217421A - Manufacture of silicon tetrachloride - Google Patents
Manufacture of silicon tetrachlorideInfo
- Publication number
- JPS58217421A JPS58217421A JP9849482A JP9849482A JPS58217421A JP S58217421 A JPS58217421 A JP S58217421A JP 9849482 A JP9849482 A JP 9849482A JP 9849482 A JP9849482 A JP 9849482A JP S58217421 A JPS58217421 A JP S58217421A
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- carbon
- bearing ore
- pellets
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Silicon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は、四塩化ケイ素の製造方法の改良に関する。[Detailed description of the invention] The present invention relates to improvements in a method for producing silicon tetrachloride.
四塩化ケイ素は、微細シリカ、高純度合成石英、窒化ケ
イ素、4炭化ケイ素或いは種々の有機ケイ素化合物合成
用原料として有用なものである。Silicon tetrachloride is useful as a raw material for synthesizing fine silica, high-purity synthetic quartz, silicon nitride, silicon tetracarbide, or various organosilicon compounds.
四塩化ケイ素の製法としては”(II金金属シリコン−
はフェロシリコンに塩素或いは塩化水素を作用させて製
造する方法(2)炭化ケイ素に塩素を作用させる方法、
(3)ケイ石と炭素との混合物に塩素を作用させる方法
などがあるが、特に(3)の方法は若干の吸熱反応であ
るのでさらKこれにシリコン或いは炭化ケイ素等の発熱
性物質を添加する方法がとられて、いる。As for the manufacturing method of silicon tetrachloride,
(2) A method of manufacturing by reacting chlorine or hydrogen chloride with ferrosilicon (2) A method of reacting chlorine with silicon carbide,
(3) There are methods such as applying chlorine to a mixture of silica stone and carbon, but method (3) in particular involves adding a pyrogenic substance such as silicon or silicon carbide to it since it is a slightly endothermic reaction. A method has been taken to do so.
(1)及び(2)の方法は原料費が高く、コストが高く
なるという欠点がある。(3)の方法は原料費は安価で
あるが、反応温度が高く、且つ反応性が低く実用的では
ない。その理由の一つはs 1o 2/c7tt2の反
応は(1)発熱反応でないため流動床式反応炉では十分
な温度を反応に付与することができないからである。Methods (1) and (2) have the drawback of high raw material costs and high costs. Although method (3) has low raw material costs, the reaction temperature is high and the reactivity is low, making it impractical. One of the reasons for this is that the reaction of s 1o 2 /c7tt2 (1) is not an exothermic reaction, and therefore a sufficient temperature cannot be applied to the reaction in a fluidized bed reactor.
そのため発熱反応を付与する添加剤として金属ケイ素や
炭化ケイ素を配合する方法も検討されているが(1)及
び(2)の方法と同様にコストアップ0となる。本発明
者の知見によれば(3)の方法において装置を固定床又
は移動床を用いる場合原料をペレットとすれば、反応炉
に対する原料充填が容易となり、又塩素との反応により
生成する四塩化ケイ−素ガスが原料層を通過することを
容&JICL捕集が完全に行うことができる利点がある
。しかし強度をある程度具えたペレットとするには、ピ
ッチ、糖蜜、ポリビニルアルコール、カルボキシメチル
セルローズNa塩等の結合剤を添加して成形しなければ
ならずそれらにより生成する塩化ケイ素に不純物が混入
する問題があり、さらにコストアップとなるという入店
がある。Therefore, a method of blending metallic silicon or silicon carbide as an additive for imparting an exothermic reaction has been considered, but like methods (1) and (2), there is no increase in cost. According to the findings of the present inventor, when using a fixed bed or a moving bed for the apparatus in method (3), if the raw material is pelletized, it becomes easier to charge the raw material into the reactor, and the tetrachloride produced by the reaction with chlorine There is an advantage that the gas and JICL collection can be performed completely so that the silicon gas passes through the raw material layer. However, in order to make pellets with a certain degree of strength, binders such as pitch, molasses, polyvinyl alcohol, and carboxymethylcellulose Na salt must be added and molded, resulting in the problem of impurities being mixed into the silicon chloride produced. There is a store entry that will further increase the cost.
又原料ケイ石の代りにシリカフラワー、アエロジル等の
二酸化ケイ素を用いると反応性はすぐれているが価格が
高く嵩比重が高いことからペレットの生産性が低いので
工業的には使用できない。Furthermore, if silicon dioxide such as silica flour or Aerosil is used instead of the raw material silica stone, the reactivity is excellent, but it is expensive and has a high bulk specific gravity, so the productivity of pellets is low, so it cannot be used industrially.
本発明はこれらの欠点を解決することを目的とするもの
で、ケイ石と炭素とを原料としこれに塩素を反応させて
四塩化ケイ素を製造する方法において、クリストバライ
ト相が30〜50重量係トリジマイト相が5〜20重量
係残部が非晶質である鉱物組成を有するケイ素含有鉱石
と炭素とをそれぞれその粒度な100μ以下で、しかも
50μ以下の粒度が90重tht%以上含有するように
調整し、さらに前記ケイ石と炭素とのモル比を2〜6と
なるように配合し結合剤の存在下成形してペレットとし
、これを反応炉に充填し塩素を供給することを特徴とす
る四塩化ケイ素の製法である。The present invention aims to solve these drawbacks, and is a method for producing silicon tetrachloride using silica stone and carbon as raw materials and reacting them with chlorine. A silicon-containing ore having a mineral composition in which the phase is 5 to 20% by weight and the remainder is amorphous and carbon are each adjusted to have a particle size of 100μ or less, and that the particle size of 50μ or less contains 90% by weight or more. , further comprising blending the silica stone and carbon in a molar ratio of 2 to 6, forming pellets in the presence of a binder, filling the pellets into a reactor, and supplying chlorine. This is a method of manufacturing silicon.
以下さらに本発明をさらに詳しく説明する。The present invention will be explained in more detail below.
本発明は特定のケイ石と炭素の粉末なモル比2〜3とな
るように配合しこれを結合剤として水を用いてペレット
としこれを反応炉に充填して塩素を併給し四塩化ケイ素
とする方法である。In the present invention, a specific silica stone and carbon are blended in a powdery molar ratio of 2 to 3, and then made into pellets using water as a binder, which is then charged into a reactor and co-supplied with chlorine to form silicon tetrachloride. This is the way to do it.
本発明に用いる特定のケイ石は、クリストバライト相3
0〜50重當憾、トリジマイト相5〜20重量係残部が
非晶質の鉱物組成を有するもので、オパール質ケイ石と
して国内において入手可能なものである。The specific silica stone used in the present invention is cristobalite phase 3
It has an amorphous mineral composition with a tridymite phase of 0 to 50 weight and a tridymite phase of 5 to 20 weight, and is available domestically as opalescent silica.
このようなケイ石と炭素とをそれぞれ別々に粉砕し所定
の粒度とするがその粒度は100μ以下でしかも50μ
以下が90重−1ts以上含1゛するように微粉末とし
たものが好ましい。このように粉砕したものは反応性が
良好となるからである。These silica stones and carbon are each crushed separately to a predetermined particle size, and the particle size is less than 100μ and more than 50μ.
It is preferable to make it into a fine powder so that it contains 90 weight -1 ts or more. This is because the product pulverized in this way has good reactivity.
炭素はコークス、カーボンブラック等が好適であるが、
これに限られるものではなく無煙炭等も使用可能である
。Carbon is preferably coke, carbon black, etc.
The material is not limited to this, and anthracite or the like can also be used.
前記したケイ石と炭素とのモル比は2〜6とするが、こ
れはケイ石の還元が行われるようにするためである。The molar ratio of silica stone and carbon is set to 2 to 6, and this is to ensure that silica stone is reduced.
結合剤としては公知の結合剤が使用でき具体例として水
ピッチ、糖蜜、ポリ1ニルアルコール、カルボキシメチ
ルセルローズNa塩等があげられるが、水以外のものは
塩化ケイ素中に不純物として含有するので好ましくない
。As the binder, known binders can be used, and specific examples include water pitch, molasses, polyl-1-nyl alcohol, carboxymethyl cellulose Na salt, etc. However, substances other than water are preferred since they are contained as impurities in silicon chloride. do not have.
これらの中、水は安価でありペレットとした場1合必要
な強度が得られ取り扱いも便利であるので好ましいもの
である。Among these, water is preferred because it is inexpensive, provides the necessary strength when made into pellets, and is convenient to handle.
水を結合剤とする場合の添加量はケイ石と炭素との混合
物に対して5〜25重錆係である。これらの範囲外では
本発明に必要な強度等が得られない。When water is used as a binder, the amount added is between 5 and 25 parts of the mixture of silica and carbon. Outside these ranges, the strength required for the present invention cannot be obtained.
前記した原料混合物をペレットとするにはディスクペレ
ッター等の成型機で結合剤の存仕下成形すれは移動床等
で使用できるのに十分な強度のものが得られる。In order to make pellets from the above-mentioned raw material mixture, pellets can be formed using a molding machine such as a disk pelleter in the presence of a binder, which is strong enough to be used on a moving bed or the like.
このようKして得られたペレットを反応炉に充填して塩
素を供給し温度1000〜1600°Cで反応させれば
四塩化ケイ素が収率よ〈得られる。By filling the pellets obtained in this way into a reactor, supplying chlorine, and allowing the reaction to occur at a temperature of 1,000 to 1,600°C, silicon tetrachloride can be obtained in a high yield.
以下図面により本発明をさらに説明するが、回向は本発
明の実施例に用いる移動床式反応炉の縦断面図である。The present invention will be further explained below with reference to the drawings, which are longitudinal sectional views of a moving bed reactor used in embodiments of the present invention.
まず図面に示すように移動床式反応炉1は、竪型の反応
器であって中心部にヒーター2を具えた加熱部を設け、
上部側面からペレット供給ロアからペレットが供給され
、下部より反応済原料の排出口6を設けたものである。First, as shown in the drawing, the moving bed reactor 1 is a vertical reactor equipped with a heating section equipped with a heater 2 in the center.
Pellets are supplied from a pellet supply lower from the upper side, and a discharge port 6 for reacted raw materials is provided from the lower part.
炉の中心部の側面には断熱材4で放熱しないように扱榎
されている。The sides of the center of the furnace are covered with heat insulating material 4 to prevent heat radiation.
このような装置にペレットを充填し温度1000〜13
00℃に加熱すると共に塩素供−給口5から塩素を供給
すれば四塩化ケイ素が収率よ〈得られる。Pellets are filled into such a device and heated to a temperature of 1000 to 13
By heating to 00 DEG C. and supplying chlorine from the chlorine supply port 5, silicon tetrachloride can be obtained at a high yield.
以下実施例をあげてさらに本発明を説明する。The present invention will be further explained below with reference to Examples.
実施例
第1表及び第2表に示す市販のオパール質ケ゛イ石を粒
度100μ以下でその中50μ以下90重i%以上にそ
れぞれ粉砕したものを結合剤として水を用−いディスク
ペレツター(不ニパウダル社゛製)にて直径10TnA
さ10喚のペレットを作成し、温度゛150°04時間
乾燥した。Examples Commercially available opal silica stones shown in Tables 1 and 2 were crushed to a particle size of 100μ or less and 90% by weight or less of 50μ or less, using a disc pelleter (non-ferrous) using water as a binder. Diameter 10TnA (manufactured by Nipaudal Co., Ltd.)
A pellet of 10 times was prepared and dried at a temperature of 150° for 4 hours.
比較のためにケイ素含有鉱石を代えた以外は同様に行っ
た。これらの条件及び結果を第3表に示す。For comparison, the same procedure was carried out except that the silicon-containing ore was changed. These conditions and results are shown in Table 3.
強度の測定は’l、[1mの高さから自然落下させ、1
0ケのペレットが崩壊するか否かをチェックした。The strength was measured by dropping naturally from a height of 1 m.
It was checked whether or not the 0 pellets disintegrated.
伺、粉末粒度は全て100μ以下で50μ下が90%以
上に調整したが合成シリカは市販展のまま使用した。The particle size of all the powders was adjusted to 100 μm or less, with 90% or more of 50 μm or less, but the synthetic silica was used as it was commercially available.
第 1 表 ケイ素含有鉱石の鉱物刊成(%)第 2
表 ケイ素含有鉱石の化学分析値(係)図面に示した移
動床式塩素化炉に前記のペレットを充填し1.000°
C〜1,3006Cの反応温度下で塩素をJ3/h導入
し、生成する四塩化ケイ素な一10℃のトラップに凝縮
させ11cg当りに使用しこ電力量を算出し反応性の目
安とした。結果な請4表に示す。Table 1 Mineral composition (%) of silicon-containing ores Part 2
Table: Chemical analysis values of silicon-containing ore (related) The above pellets were charged into the moving bed chlorination furnace shown in the drawing and heated to 1.000°.
Chlorine was introduced at a reaction temperature of C to 1,3006 C, and the resulting silicon tetrachloride was condensed in a trap at 10 DEG C., and the amount of electricity used per 11 cg was calculated and used as a measure of reactivity. The results are shown in Table 4.
第4表 4、図面の説明゛ 図面は本発明の実施例に用いる装置の縦断面図である。Table 4 4. Explanation of drawings The drawing is a longitudinal sectional view of an apparatus used in an embodiment of the present invention.
符号1は移動床反応炉、2加熱用ヒーター、3淵度セン
サー、4断熱材、5塩素供給口、6反応済原料取出口、
7原料ペレット投入口、8生成ガス取出し口を示す。1 is a moving bed reactor, 2 is a heating heater, 3 is a depth sensor, 4 is a heat insulator, 5 is a chlorine supply port, 6 is a reacted raw material outlet,
7 raw material pellet input port and 8 generated gas outlet are shown.
特許出願人 電気化学工業株式会社Patent applicant: Denki Kagaku Kogyo Co., Ltd.
Claims (1)
イ素を製造するにあたり、重量基準でクリストバライト
相30〜50q6、トリジマイト相5〜20%残部非晶
質であるケイ素含有鉱石と炭素とをそれぞれ粒度100
μ以下その9o係以上が50μ以下の粉末としさらにこ
れらを混合し、その5102とCとのモル比を2〜6と
したペレットを用いることを特徴とする四塩化ケイ素の
製造法。Silicon-containing ore, carbon and chlorine are reacted to produce tetrachloride.”
In producing iron, a silicon-containing ore with a cristobalite phase of 30 to 50q6 and a tridymite phase of 5 to 20%, the balance being amorphous, and carbon each having a particle size of 100
1. A method for producing silicon tetrachloride, which comprises using a powder having a particle size of 9o or less of 50μ or less, which is further mixed, and a pellet having a molar ratio of 5102 and C of 2 to 6 is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9849482A JPS58217421A (en) | 1982-06-10 | 1982-06-10 | Manufacture of silicon tetrachloride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9849482A JPS58217421A (en) | 1982-06-10 | 1982-06-10 | Manufacture of silicon tetrachloride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58217421A true JPS58217421A (en) | 1983-12-17 |
JPS6359968B2 JPS6359968B2 (en) | 1988-11-22 |
Family
ID=14221193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9849482A Granted JPS58217421A (en) | 1982-06-10 | 1982-06-10 | Manufacture of silicon tetrachloride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58217421A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011078225A1 (en) * | 2009-12-22 | 2011-06-30 | Jnc株式会社 | Method for manufacturing polysilicon and method for manufacturing silicon tetrachloride |
-
1982
- 1982-06-10 JP JP9849482A patent/JPS58217421A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011078225A1 (en) * | 2009-12-22 | 2011-06-30 | Jnc株式会社 | Method for manufacturing polysilicon and method for manufacturing silicon tetrachloride |
JP5755150B2 (en) * | 2009-12-22 | 2015-07-29 | 東邦チタニウム株式会社 | Method for producing polysilicon and method for producing silicon tetrachloride |
Also Published As
Publication number | Publication date |
---|---|
JPS6359968B2 (en) | 1988-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2934648B2 (en) | Method for producing boron carbide | |
US4292276A (en) | Apparatus for producing silicon carbide | |
CA1159630A (en) | Process for the preparation of silicon from quartz and carbon in an electric furnace | |
US4820341A (en) | Process for producing silicon or ferrosilicon in a low-shaft electric furnace | |
US4217335A (en) | Process for producing β-silicon carbide fine powder | |
JPH055765B2 (en) | ||
US4536379A (en) | Production of silicon carbide | |
JPS60112610A (en) | Preparation of silicon tetrachloride | |
JPS58217421A (en) | Manufacture of silicon tetrachloride | |
JPS589807A (en) | Preparation of sic in high purity | |
US3956454A (en) | Process for producing aluminum trichloride | |
JPH0218317A (en) | Preparation of silicon tetrachloride | |
JP2696733B2 (en) | Method for producing crystalline silicon nitride powder | |
JPH01249620A (en) | Production of silicon tetrachloride | |
JP2536849B2 (en) | Β-crystal silicon carbide powder for sintering | |
JPH0643247B2 (en) | Rice husk combustion ash composition and method for producing the same | |
JPS616109A (en) | Manufacture of sic | |
JPS6021808A (en) | Manufacture of silicon tetrachloride | |
JPS63297205A (en) | Production of nitride | |
JPH0645450B2 (en) | Method for producing silicon tetrachloride | |
JP3006843B2 (en) | Method for producing metal complex containing silicon carbide powder | |
JP2747462B2 (en) | Method for producing crystalline silicon nitride powder | |
JPS5891016A (en) | Manufacture of silicon nitride powder with high density and high sinterability | |
JPS6227004B2 (en) | ||
US3353917A (en) | Production of phosphorus |