JPS5821597B2 - Kanatsu Fukushi Palm - Google Patents

Kanatsu Fukushi Palm

Info

Publication number
JPS5821597B2
JPS5821597B2 JP50108011A JP10801175A JPS5821597B2 JP S5821597 B2 JPS5821597 B2 JP S5821597B2 JP 50108011 A JP50108011 A JP 50108011A JP 10801175 A JP10801175 A JP 10801175A JP S5821597 B2 JPS5821597 B2 JP S5821597B2
Authority
JP
Japan
Prior art keywords
zinc
silicic acid
coloring
paper
atomic ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50108011A
Other languages
Japanese (ja)
Other versions
JPS5232716A (en
Inventor
阿彦春雄
佐藤悌治
菅原勇次郎
薄井耕一
野沢成二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizusawa Industrial Chemicals Ltd
Original Assignee
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizusawa Industrial Chemicals Ltd filed Critical Mizusawa Industrial Chemicals Ltd
Priority to JP50108011A priority Critical patent/JPS5821597B2/en
Publication of JPS5232716A publication Critical patent/JPS5232716A/en
Publication of JPS5821597B2 publication Critical patent/JPS5821597B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Color Printing (AREA)

Description

【発明の詳細な説明】 本発明はカーボン紙を必要とせず任意の書写、印写を行
い得る複写紙即ち感圧複写紙に用いて著しい発色効果を
示す発色剤に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coloring agent that exhibits a remarkable coloring effect when used in copying paper, that is, pressure-sensitive copying paper, on which arbitrary writing and printing can be performed without requiring carbon paper.

感圧複写紙は特殊なものを除き、いずれも電子供与性の
ある有機色素の無色化合物と電子受容体である発色剤と
の間の電子授受による呈色反応を応用したものである。
All pressure-sensitive copying papers, with the exception of special types, utilize a coloring reaction caused by the exchange of electrons between a colorless compound of an electron-donating organic dye and a coloring agent, which is an electron acceptor.

(米国特許2548366号) 呈色反応物質たる有機色素の無色型化合物としては、普
通、発色状態を異にする二種以上の色素が併用される。
(US Pat. No. 2,548,366) As a colorless compound of an organic dye serving as a coloring reaction substance, two or more types of dyes having different coloring states are usually used in combination.

例えばトリフェニルメタン・フタリド系色素やフルオラ
ン系色素のごとく固体酸と接触した時、瞬時に発色する
ものやフェノチアジン系色素のごとく固体酸と接触して
も直ちには発色せず、数日を経過した後完全に発色して
、発色後の耐光性が高いもの等が用いられる。
For example, triphenylmethane/phthalide dyes and fluoran dyes that develop color instantly when they come into contact with a solid acid, and phenothiazine dyes that do not develop color immediately upon contact with a solid acid and may take several days to develop. A material that completely develops color and has high light resistance after color development is used.

また電子受容体である発色剤としては一般に固体酸が用
いられ、従来例えばアタパルジャイト、カオリン、ベン
トナイト、シリカ、アルミナ、マグネシア、天然ゼオラ
イト、ハロイサイト、例えば酸性白土の如きジオクタヘ
ドラル型モンモリロナイトならびに例えば活性白土の如
きその酸処理物等の天然又は酸処理粘土類が知られ、そ
のいくつかが実用化されてきた。
In addition, solid acids are generally used as coloring agents which are electron acceptors, such as attapulgite, kaolin, bentonite, silica, alumina, magnesia, natural zeolite, halloysite, dioctahedral type montmorillonite such as acid clay, and activated clay. Natural or acid-treated clays such as acid-treated products are known, and some of them have been put into practical use.

最近ではP−フェニルフェノ′−ルーホルムアルデヒド
縮合樹脂のごときいワユルフェノールレジンや3−フェ
ニルサリチル酸亜鉛のごとき芳香族カルボン酸の多価金
属塩も実用化されている。
Recently, high-grade phenolic resins such as P-phenylphenol-formaldehyde condensation resin and polyvalent metal salts of aromatic carboxylic acids such as zinc 3-phenylsalicylate have also been put into practical use.

これらの無色型色素および発色剤を用いる感圧複写紙は
、油にとかした色素を径数ミクロンの大きさのゼラチン
、アラビアゴムまたは合成樹脂等のカプセル(マイクロ
カプセル)で包み、これを塗被せる紙〔転写紙(Coa
ted BackまたはCB紙′と称する〕と、発色剤
を塗被せる紙〔受印紙(Coated Frontまた
はCF紙)と称する〕の二種の紙よりなる。
Pressure-sensitive copying paper that uses these colorless dyes and coloring agents is produced by coating the dye dissolved in oil, wrapped in capsules (microcapsules) of gelatin, gum arabic, or synthetic resin with a diameter of several microns. Paper [Transfer paper (Coa)
It consists of two types of paper: ted back or CB paper' and paper coated with a coloring agent (coated front or CF paper).

しかして両者を塗被面が向き合うように重ねて、ボール
ペンあるいはタイプライタ−にて圧力を加えると圧力の
加わった部分のカプセルが破れて油および無色の色素が
発色剤に接触して発色し、そこに着色したマークが印せ
られるのである。
However, when the two are placed one on top of the other so that the coated surfaces face each other and pressure is applied with a ballpoint pen or typewriter, the capsule in the area where the pressure is applied ruptures and the oil and colorless pigment come into contact with the coloring agent and develop color. A colored mark is placed there.

また2枚まだはそれ以上の複写を必要とする場合は、表
面に発色剤、裏面に色素を含むマイクロカプセルを塗被
せる中間紙(CoatedFront and Bac
kまだはCFB紙)を1枚またはそれ以上転写紙と受部
紙の間に入れて使用される。
If you need two or more copies, use an intermediate paper (Coated Front and Back) coated with a coloring agent on the front side and microcapsules containing a pigment on the back side.
It is used by placing one or more sheets of CFB paper between the transfer paper and the receiver paper.

ケイ酸(例えばシリカゲル)、水酸化亜鉛、またはケイ
酸亜鉛(例えばオルトケイ酸亜鉛)が感圧複写紙用の無
色型色素(例えばトリフェニルメタン・フタリド系のク
リスタルバイオレットラクトン=CVL)を発色させ、
添加助剤等として有効であることはこれまでも知られて
いる。
Silicic acid (e.g., silica gel), zinc hydroxide, or zinc silicate (e.g., zinc orthosilicate) colors colorless dyes for pressure-sensitive copying paper (e.g., crystal violet lactone (CVL) based on triphenylmethane phthalide),
It has been known that it is effective as an additive aid.

しかしながら、これらは単独では、発色性能の低さ又は
発色後の印字の耐光性の低さ等の点から実用に供し難い
ものである。
However, when used alone, these are difficult to put to practical use due to low color development performance or low light resistance of printed characters after color development.

例えばケイ酸(合成のシリカゲル、ケイソウ、土、天然
の粘土類を徹底的に酸処理して生じるケイ酸ゲル等)は
CVLのごとき色素に対する初期発色性能はかなり高い
が、発色後の耐光性が低く退色し易い。
For example, silicic acid (synthetic silica gel, diatomaceous earth, silicic acid gel produced by thorough acid treatment of natural clay, etc.) has a fairly high initial coloring performance for pigments such as CVL, but the light resistance after coloring is poor. Low and easy to fade.

また、水酸化亜鉛のごときもの(水酸化亜鉛、塩基性塩
化亜鉛の如き塩基性無機酸亜鉛、酸化亜鉛)は、発色性
能自体が著しく低い欠点がある。
Furthermore, substances such as zinc hydroxide (zinc hydroxide, basic inorganic zinc acids such as basic zinc chloride, and zinc oxide) have the disadvantage that coloring performance itself is extremely low.

また従来感圧複写紙用材料として知られているケイ酸亜
鉛はいずれもケイ素と亜鉛の原子比が1=1とか1:2
といつだようなメタケイ酸亜鉛又はオルトケイ酸亜鉛の
原子比のもの又はそれらに近いもので、これらは複合体
基剤(例えば特開昭48−53811)又は添加助剤(
例えば特公昭49−13454)等としては成る程度有
効であっても、それ単独では発色性能は低く、到底実用
に供することはできない。
In addition, zinc silicate, which is conventionally known as a material for pressure-sensitive copying paper, has an atomic ratio of silicon to zinc of 1=1 or 1:2.
The atomic ratios of zinc metasilicate or zinc orthosilicate, such as those of Zinc Metasilicate or Zinc Orthosilicate, or those close to them, are combined with composite bases (for example, JP-A-48-53811) or additive auxiliaries (
For example, even if it is effective to some extent as Japanese Patent Publication No. 49-13454), the coloring performance is low when used alone, and it cannot be put to practical use at all.

之等のうち、ケイ酸と亜鉛の完全に強固な化学結合を有
する結晶性のケイ酸亜鉛(例えばオルトケイ酸亜鉛)に
至ってはほとんど発色性能が認められないほどである。
Among these, crystalline zinc silicate (for example, zinc orthosilicate), which has a completely strong chemical bond of silicic acid and zinc, has almost no coloring performance.

本発明は、上記いずれかの固体酸(ケイ酸、ケイ酸亜鉛
、水酸化亜鉛等)とも異なり、非常に優れた発色性能を
有し、発色後の耐光性も良好な発色剤に関する。
The present invention relates to a coloring agent which, unlike any of the above-mentioned solid acids (silicic acid, zinc silicate, zinc hydroxide, etc.), has very excellent coloring performance and good light resistance after coloring.

さらに詳しくは、本発明は、Si対Znの原子比がに〇
、02乃至1:0.5、好ましくは1:0.04乃至1
:0.4の組成を有するようなケイ酸ゲル、又はSiO
2含量が88重量%以上の活性ケイ酸化合物と、水酸化
亜鉛又は塩基性無機亜鉛との混合物又は少なくとも部分
的に反応した反応生成物からなる発色剤に関する。
More specifically, the present invention provides a method in which the atomic ratio of Si to Zn is from 0.02 to 1:0.5, preferably from 1:0.04 to 1.
: Silicic acid gel having a composition of 0.4 or SiO
The present invention relates to a color former consisting of a mixture or at least partially reacted reaction product of an active silicic acid compound with a content of 88% or more by weight and zinc hydroxide or basic inorganic zinc.

本発明の発色剤を製造するには、例えば次の方法が好適
である。
For example, the following method is suitable for producing the color former of the present invention.

(1)ケイ酸アルカリと無機酸の反応により得られるケ
イ酸のヒドロゲルと、無機酸亜鉛と水酸化アルカリの反
応により得られる水酸化亜鉛又は塩基性無機酸亜鉛(例
えばZn5(OH)3C1□)をSiとZnの原子比が
1:0.02乃至1 : 0.5、好ましくは1:0.
04乃至1:0.4となるように混和し、必要により乾
燥し、粉砕する。
(1) Silicic acid hydrogel obtained by the reaction of an alkali silicate and an inorganic acid, and zinc hydroxide or basic inorganic acid zinc (e.g. Zn5(OH)3C1□) obtained by the reaction of an inorganic acid zinc and an alkali hydroxide. The atomic ratio of Si to Zn is 1:0.02 to 1:0.5, preferably 1:0.
The mixture is mixed in a ratio of 0.4 to 1:0.4, dried if necessary, and pulverized.

この場合の乾燥温度はケイ酸と亜鉛が強固な化学結合を
結ぶ温度(例えば700℃以上)より低い温度であれば
よいが、工業的な見地から100〜500℃が好ましい
The drying temperature in this case may be lower than the temperature at which silicic acid and zinc form a strong chemical bond (for example, 700°C or higher), but from an industrial standpoint, 100 to 500°C is preferable.

(2)天然の粘土類を充分に酸処理して得られる5i0
2含量が88重量%以上のケイ酸化合物(例えばゴム用
充填補強剤=ホワイトカーボン)と前述のごとき水酸化
亜鉛又は塩基性無機酸亜鉛とをSiとZnの原子比が1
:0.02乃至1:0.5好ましくは1:0.04乃至
1:0.4となるように混和し、必要に応じて乾燥し、
粉砕する。
(2) 5i0 obtained by sufficiently acid-treating natural clays
2. A silicic acid compound having a content of 88% by weight or more (e.g. rubber filler reinforcing agent = white carbon) and zinc hydroxide or basic inorganic acid zinc as described above are combined so that the atomic ratio of Si and Zn is 1.
:0.02 to 1:0.5, preferably 1:0.04 to 1:0.4, and dry if necessary.
Smash.

(3)上記(1)又は(2)の方法で述べられたような
ケイ酸ゲル又はケイ酸化合物と無機酸亜鉛とをSiとZ
nの原子比が1:0.02乃至1:0.5、好ましくは
1:0.04乃至1:0.4となるように水に混合分散
し、水酸化アルカリを加えて中和し、必要に応じて水洗
、乾燥し、粉砕する。
(3) Si and Z
Mix and disperse in water so that the atomic ratio of n is 1:0.02 to 1:0.5, preferably 1:0.04 to 1:0.4, and neutralize by adding alkali hydroxide, Wash, dry, and crush as necessary.

(4)ケイ酸アルカリと無機酸亜鉛の反応により得られ
る沈殿物、すなわちSiとZnの原子比が1:0.02
乃至1:0.5、好ましくは1 : 0.04乃至1:
0.4であるような水酸化亜鉛とケイ酸の共沈殿物を必
要に応じて水洗、乾燥し、粉砕する。
(4) Precipitate obtained by the reaction of alkali silicate and inorganic acid zinc, that is, the atomic ratio of Si and Zn is 1:0.02
1:0.5 to 1:0.5, preferably 1:0.04 to 1:
If necessary, the co-precipitate of zinc hydroxide and silicic acid having a concentration of 0.4 is washed with water, dried, and pulverized.

この場合、双方のアルカリの量と無機酸の量は中和当量
となるように予め調整しておいて、同時性加法又は一方
性加法によって反応させるのが好ましい。
In this case, it is preferable that the amounts of both alkalis and inorganic acids are adjusted in advance so as to be equivalent to neutralization, and the reaction is carried out by simultaneous addition or unilateral addition.

以上は本発明を実施するための主要な方法であるが、本
発明を実施するだめの方法は前記4つの方法に限定され
るものではない。
The above are the main methods for implementing the present invention, but the methods for implementing the present invention are not limited to the above four methods.

要するに本願発明においては、ケイ酸ゲル、又はSiO
□含量が部重量%以上のケイ酸化合物と、水酸化亜鉛又
は塩基性無機亜鉛とを、Si対Znの原子比がに〇、0
2〜1:0.5、好適には1:0.04〜1:0.4と
なるようになるべく緊密に混合し、700℃以下、好ま
しくは100〜500℃の範囲の温度で乾燥し、適当な
粒度に粉砕すればよいのである。
In short, in the present invention, silicic acid gel or SiO
□A silicic acid compound having a content of 1% by weight or more and zinc hydroxide or basic inorganic zinc are combined in an atomic ratio of Si to Zn of 〇, 0.
Mix as closely as possible to give a ratio of 2 to 1:0.5, preferably 1:0.04 to 1:0.4, and dry at a temperature below 700°C, preferably in the range of 100 to 500°C, All it has to do is grind it to an appropriate particle size.

本発色剤においては、主成分であるケイ酸と亜鉛の成分
比が、SiとZnの原子比で1:0.02乃至1:0.
5、好ましくは1:0.04乃至1:0.4となってい
ることが重要なのである。
In this color former, the component ratio of silicic acid and zinc, which are the main components, is 1:0.02 to 1:0 in terms of the atomic ratio of Si to Zn.
5. It is important that the ratio is preferably 1:0.04 to 1:0.4.

本発明で言うケイ酸化合物とは、例えば活性白土、酸性
白土、ハロイサイト、カオリナイト、天然ゼオライト等
の天然粘土類を充分酸処理して得られるSiO2含量が
88重量%以上のものをいう先に述べたように、ケイ酸
ゲル又はケイ酸化合物はトリフェニルメタン・フタリド
系やフルオラン系の無色型色素のごとくラクトン環の開
裂によ抄発色するものに対しては高い発色性能を示すが
水酸化亜鉛のごときものはそれらの無色型色素に対する
発色性能が著しく低い。
The silicic acid compound referred to in the present invention refers to a compound with an SiO2 content of 88% by weight or more obtained by sufficiently acid-treating natural clays such as activated clay, acid clay, halloysite, kaolinite, and natural zeolite. As mentioned above, silicic acid gel or silicic acid compounds exhibit high coloring performance for colorless dyes such as triphenylmethane phthalide and fluoran-based dyes, which develop color by cleavage of lactone rings. Coloring properties of substances such as zinc are extremely low relative to colorless pigments.

したがってこれら2種の混合物の発色性能は、混合物中
のSi対Znの原子比が小さくなるにつれて、すなわち
Znの含量が増えるにつれて、ケイ酸ゲル又はケイ酸化
合物の有する発色性能が稀釈され、その結果発色性能は
単調に減少していくことが最も容易に推定される。
Therefore, as the atomic ratio of Si to Zn in the mixture decreases, that is, as the Zn content increases, the coloring performance of the silicic acid gel or silicic acid compound is diluted, and as a result, the coloring performance of the mixture of these two types decreases. It is most easily estimated that the color performance decreases monotonically.

換言すれは、ケイ酸化合物の発色性能をさらに高める目
的で水酸化亜鉛等を加えることは無意味なだけでなく逆
に目的に反すると推定される。
In other words, it is presumed that adding zinc hydroxide or the like for the purpose of further enhancing the coloring performance of the silicate compound is not only meaningless but also contrary to the purpose.

然るに、本発明者等の研究によれば、意外にも、Znの
含量の少ないところでは、Znの含量の増加とともに発
色性能は増大し、ある点に達したところで減少がおこり
、Znの含量がさらに大きくなると発色性能は著しく減
少していくこと、そしてSi対Znの原子比が、1:0
.5、特に好適には1:0.4以下の場合は、Znを全
く含まないもとのケイ酸ゲル又はケイ酸化合物に比べ、
発色の直後及び1ケ月経過後の発色面の濃度が明らかに
高まることが発見された。
However, according to the research conducted by the present inventors, surprisingly, in areas where the Zn content is low, the coloring performance increases as the Zn content increases, and when it reaches a certain point, it decreases, and the Zn content increases. As the size increases further, the coloring performance decreases significantly, and the atomic ratio of Si to Zn is 1:0.
.. 5. Particularly preferably when the ratio is 1:0.4 or less, compared to the original silicic acid gel or silicic acid compound containing no Zn,
It was discovered that the density of the colored surface immediately after coloring and after one month had clearly increased.

かくして、前に述べたような方法を用いSi対Znの原
子比が1:0.02乃至1:0.5、特に好ましくは1
:0.04乃至1:0.4となるようにケイ酸ゲル又は
ケイ酸化合物と水酸化亜鉛又は塩基性無機酸亜鉛との混
合物又はそれらの部分反応生成物を製することにより、
初期発色性能並びに発色印字の耐光性の優れた感圧複写
紙用発色剤を得るにいたった。
Thus, using the method described above, the atomic ratio of Si to Zn is between 1:0.02 and 1:0.5, particularly preferably 1.
:0.04 to 1:0.4 by producing a mixture of silicic acid gel or silicic acid compound and zinc hydroxide or basic inorganic acid zinc or a partial reaction product thereof,
A color forming agent for pressure-sensitive copying paper which has excellent initial color development performance and light fastness of color printing has been obtained.

以下に本発明を実施例によりさらに詳しく説明する。The present invention will be explained in more detail below with reference to Examples.

尚、実施例における粉砕方法、受印紙の調製法及びその
発色性能の測定法は次の通りである。
In addition, the method of crushing, the method of preparing stamp paper, and the method of measuring its color development performance in Examples are as follows.

(1)粉砕 各実施例において得られる乾燥ケーキを実験用の衝撃式
粉砕機(不二電機工業KK製、ニックサンプルミルKn
−1型)で粉砕するか、又は磁製ポットミル(容量1’
)中、磁製ポールで30分間、つづいて朝鮮ポールで4
5分間粉砕する。
(1) Grinding The dry cake obtained in each example was crushed using an experimental impact pulverizer (manufactured by Fuji Denki Kogyo KK, Nick Sample Mill Kn).
-1 type) or a porcelain pot mill (capacity 1').
) Medium, 30 minutes with a porcelain pole, then 4 minutes with a Korean pole.
Grind for 5 minutes.

(2)受印紙の調製 各実施例において調製された発色剤試料を110℃乾燥
重量基準で20gとなるように取り、水50及びSBR
ラテックス(Dow6201固形分濃度50%)10g
に分散させたのち、10%NaOHを加えることにより
スラリーのpHを9.5に調製する。
(2) Preparation of stamp paper Take 20 g of the coloring agent sample prepared in each example on a dry weight basis at 110°C, add 50 g of water and SBR.
Latex (Dow6201 solid content concentration 50%) 10g
After dispersing the slurry in water, the pH of the slurry is adjusted to 9.5 by adding 10% NaOH.

さらに少量の水を加えることにより全量を100gとな
し、攪拌により均一なスラリーを得る。
Further, a small amount of water is added to bring the total amount to 100 g, and a uniform slurry is obtained by stirring.

(発色剤濃度−20%、固形分濃度−約25%)。(Coloring agent concentration - 20%, solid content concentration - about 25%).

上記のごとく調製されたスラリーを、コーティング・ロ
ッドを用いて、原紙に各4枚ずつ塗布する。
The slurry prepared as described above is applied to four base papers each using a coating rod.

(3)発色性能 (3−1)発色 各種の無色型色素を包含せるマイクロカプセルの塗布さ
れた転写紙と前記の方法で調製された受印紙を重ね、加
圧することにより発色させる。
(3) Color development performance (3-1) Color development A transfer paper coated with microcapsules containing various colorless dyes and a stamp paper prepared by the above method are stacked and pressed to develop color.

すなわち、受印紙の発色剤塗布面と転写紙のマイクロカ
プセル塗布面が向い合うように2枚の紙を重ね合わせ、
500kg/dの圧力を加えマイクロカプセルを完全に
つぶし受印紙の上に発色面を得る。
That is, the two sheets of paper are stacked so that the coloring agent-coated side of the stamp paper and the microcapsule-coated side of the transfer paper face each other.
A pressure of 500 kg/d was applied to completely crush the microcapsules to obtain a colored surface on the stamp paper.

用いられる各種転写紙に包含せられる無色型色素はつぎ
の通りである。
The colorless dyes included in the various transfer papers used are as follows.

(カッコ内は発色の色調) CvL紙(バイオレット)=クリスタルバイオレット・
ラクトン フルオラン紙(グリーン) −37−ジニチルアミノー
7′−ジベンジルアミノ・フルオラン市販転写紙(ブル
ー・ブラック)−クリスタルバイオレット・ラクトン、
ベンゾイル・ロイコメチレンブルー、ローダミンB・ア
ニリノラクタム。
(The color tone in parentheses) CvL paper (violet) = crystal violet.
Lactone fluoran paper (green) -37-dinitylamino-7'-dibenzylamino fluoran commercial transfer paper (blue/black) -Crystal violet lactone,
Benzoyl, leucomethylene blue, rhodamine B, anilinolactam.

(3−2) 初期発色性能 (3−1)の方法で得られる受印紙の発色面に直射日光
が当らないようにして室内で露光し、1時間後の可視部
の反射濃度を濃度計(富士写真フィルムKK製、Fuj
i DensitcmeterModel −P )に
よって測定し、各試料4個の測定値の平均値および肉眼
観測により判定し、その評価をつぎの印により表示する
(3-2) Initial color development performance: Expose the colored surface of the stamp paper obtained by the method in (3-1) indoors to avoid direct sunlight, and measure the reflection density in the visible region after 1 hour using a densitometer ( Manufactured by Fuji Photo Film KK, Fuji
iDensitcmeterModel-P), and determined by the average value of the measured values of 4 samples for each sample and visual observation, and the evaluation is indicated by the following mark.

×印 発色濃度が低く実用不可のもの △印 発色濃度は低いが実用可能のもの ○印 実用上十分な発色濃度のもの (2市販発色剤ジルトンM−AB’、水 沢化学工業KK製) ◎印 ○印より発色濃度が高いもの ・印 極めて発色濃度が高いもの (3−3) 印字耐光性 (3−2)で測定した発色受印紙を同様に引き続き1ケ
月間放置したのち、そのときの色の濃さ及び退色の度合
いから印字耐光性をつぎのように評価する。
× mark Coloring density is too low to be practical △ mark Coloring density is low but practical Items/marks with higher color density than the ○ mark Items with extremely high color density (3-3) After leaving the color-receiving stamp paper measured in printing light resistance (3-2) for one month in the same way, the color at that time was determined. The light fastness of the print is evaluated based on the darkness and degree of fading as follows.

△印 濃度が低く耐光性の悪いもの ○印 実用上十分な耐光性のもの (2市販発色剤ジルトンM−AB’、水 沢化学工業KK製) ◎印 ○印より耐光性のよいもの 実施例 1 1号水ガラス(0,600mol、 Sin□/ 1
00g、0.274 rnol 、 Na2O/ 10
0 g) 1000gを水に溶かし21となした液と塩
酸(試薬−級、1、OOmol、HCI/100g)5
48gを水に溶かし21となした液を、予め61の水を
入れて85℃に加熱しである容器中に、はげしく攪拌し
ながら同量ずつ同時に注加する(注加速度=201nl
/分)。
△ Mark: Low concentration and poor light resistance ○ Mark: Light resistance sufficient for practical use (2 commercially available coloring agent Jiruton M-AB', manufactured by Mizusawa Kagaku Kogyo KK) ◎ Mark: Better light resistance than ○ Mark: Example 1 No. 1 water glass (0,600mol, Sin□/1
00g, 0.274rnol, Na2O/10
0 g) 1000g dissolved in water to form 21 and hydrochloric acid (reagent grade, 1, OOmol, HCI/100g) 5
Dissolve 48 g in water to obtain 21, and pour the same amount at the same time into a container that has previously been heated to 85°C with water in 61 (pouring rate = 201 nl).
/ minute).

注加後、1時間攪拌を続け、吸引濾過法により充分に水
洗を行ない、ケイ酸のヒドロゲル・ケーキ(0,290
mol、 5in2/ 100 g)を得る。
After the addition, stirring was continued for 1 hour, and the suction filtration method was used to thoroughly wash with water to obtain a silicic acid hydrogel cake (0,290
mol, 5in2/100 g).

一方、塩化亜鉛(試薬−級、0.660mol。On the other hand, zinc chloride (reagent grade, 0.660 mol).

ZnCl2/100g)400gを水に溶かし21とな
した液と水酸化ナトリウム(試薬−級、2.33mol
、NaOH/100.p)227gを水に溶かし21と
なした液を、予め101の水を入れて80℃に加熱しで
ある容器中に、攪拌しながら、同量ずつ同時に注加する
(注加速度=20TrLl/分)。
Dissolve 400g of ZnCl2/100g) in water to obtain 21 and sodium hydroxide (reagent grade, 2.33mol)
, NaOH/100. p) Dissolve 227 g in water to obtain 21, and simultaneously pour the same amount into a container that has been heated to 80°C and filled with water from 101 while stirring (pouring rate = 20 TrLl/min). ).

注加後、1時間攪拌を続け、吸引濾過法により充分に水
洗を行ない、水酸化亜鉛と塩基性塩化亜鉛(= Zn5
(oH)3 c 12 )の混合物ケーキ(0,72
1mo1.ZnO/100g)を得る。
After the addition, stirring was continued for 1 hour, and the suction filtration method was used to thoroughly wash with water to remove zinc hydroxide and basic zinc chloride (= Zn5
(oH)3c12) mixture cake (0,72
1mo1. ZnO/100g) is obtained.

上記の如く得られたケイ酸のヒドロゲル・ケーキと水酸
化亜鉛及び塩基性塩化亜鉛の混合物ケーキをSi対Zn
の原子比が1:0.02(実施例1−1)、1:0.0
4(実施例1−2)、i : o、o s(実施例1−
3)、1:0.2(実施例1−4)又は1:0.5(実
施例1−5)となるように混合し、水に分散させ、攪拌
によりよく混和した後、吸引f遇する。
The silicic acid hydrogel cake obtained above and the mixture cake of zinc hydroxide and basic zinc chloride were mixed with Si vs. Zn.
The atomic ratio of is 1:0.02 (Example 1-1), 1:0.0
4 (Example 1-2), i: o, o s (Example 1-2)
3), 1:0.2 (Example 1-4) or 1:0.5 (Example 1-5), disperse in water, mix well by stirring, and then apply suction. do.

得られた沢過ケーキを110℃に乾燥し、衝撃式粉砕機
により粉砕(200メツシュ全通)することにより本発
明の発色剤が得られた。
The obtained filter cake was dried at 110° C. and pulverized using an impact pulverizer (throughput of 200 meshes) to obtain the coloring agent of the present invention.

本発色剤の発色性能を比較例1−1(原子比1:O−ケ
イ酸のみ)、1−2(原子比1:1)及び1−3(原子
比1:2)とともに第1表に示す。
The coloring performance of this coloring agent is shown in Table 1 along with Comparative Examples 1-1 (atomic ratio 1:O-silicic acid only), 1-2 (atomic ratio 1:1) and 1-3 (atomic ratio 1:2). show.

注) 括弧内の数字は可視部反射濃度を示す。Note: The numbers in parentheses indicate the visible reflection density.

実施例 2 硫酸亜鉛(試薬−級、0.344mo1.Zn5O。Example 2 Zinc sulfate (reagent-grade, 0.344mol.Zn5O.

/100g)800gを水に溶かし21となしだ液と水
酸化カリウム(試薬−級、1.52 mol 。
Dissolve 800 g of 21, saliva and potassium hydroxide (reagent grade, 1.52 mol) in water.

KOH/1101)362を水に溶かし21となした液
を、予め101の水を入れである容器中に、常温で攪拌
しながら、同量ずつ同時に注加する(注加速度=207
rLl/分)。
KOH/1101) 362 was dissolved in water to form 21, and the same amount was simultaneously poured into a container containing 101 water in advance while stirring at room temperature (pouring speed = 207
rLl/min).

注加後、1時間攪拌を続け、吸引濾過法によ抄充分に水
洗を行ない。
After the addition, stirring was continued for 1 hour, and the paper was thoroughly washed with water using a suction filtration method.

水酸化亜鉛のケーキ(0,680mol、 ZnO/1
00g)を得る。
Zinc hydroxide cake (0,680 mol, ZnO/1
00g).

上記の如く得られた水酸化亜鉛のケーキと新潟県中条町
産酸性白土(=ジオクタヘドラル型モンモリロナイト)
を硫酸で充分に酸処理して得られたケイ酸化合物(水沢
化学工業KK製、ゴム用充填補強剤ジルトンA、 1
.55mo1.Sin□/ 100I、すなわちSiO
2含量93重量%)をSi対Znの原子比が1:0.0
2(実施例2−1)、に0.04(実施例2−2)、1
:0.06(実施例2−3)1:0.08(実施例2−
4)、1:0.1(実施例2−5)、1:0.2(実施
例2−6)、1:0.3(実施例2−7)、に〇、4(
実施例2−8)又は1:0.5(実施例2−9)となる
ように混合し、水に分散させ、攪拌によりよく混和した
後、吸引濾過する。
Zinc hydroxide cake obtained as above and acid clay from Nakajo Town, Niigata Prefecture (=dioctahedral type montmorillonite)
A silicic acid compound obtained by sufficiently acid-treating with sulfuric acid (manufactured by Mizusawa Kagaku Kogyo KK, rubber filler reinforcing agent Jiruton A, 1
.. 55mo1. Sin□/100I, i.e. SiO
2 content 93% by weight) with an atomic ratio of Si to Zn of 1:0.0
2 (Example 2-1), 0.04 (Example 2-2), 1
:0.06 (Example 2-3) 1:0.08 (Example 2-
4), 1:0.1 (Example 2-5), 1:0.2 (Example 2-6), 1:0.3 (Example 2-7), 〇, 4 (
Example 2-8) or 1:0.5 (Example 2-9), dispersed in water, mixed well by stirring, and filtered by suction.

得られた沢過ケーキを110℃に乾燥し、衝撃式粉砕機
により粉砕(200メツシュ全通)することにより本発
明の発色剤が得られた。
The obtained filter cake was dried at 110° C. and pulverized using an impact pulverizer (throughput of 200 meshes) to obtain the coloring agent of the present invention.

本発色剤の発色性能を比較例2−1(原子比1:O=ジ
ルトンAのみ)、2−2(原子比1:1)及び2−3(
原子比1:2)とともに第2表に示す。
The coloring performance of this coloring agent was evaluated in Comparative Examples 2-1 (atomic ratio 1:O = Zilton A only), 2-2 (atomic ratio 1:1) and 2-3 (
They are shown in Table 2 along with the atomic ratio (1:2).

実施例 3 1号水ガラス1001を水に溶かし21となした液と硝
酸亜鉛(試薬−級、0.319mol。
Example 3 A solution prepared by dissolving No. 1 water glass 1001 in water to form 21 and zinc nitrate (reagent grade, 0.319 mol).

Zn(NO3)2/100.9)190g及び硝酸(試
薬−級、0.968mol、 HNO3/ 100 、
!ii’ ) 443gを水に溶かし21となしだ液を
、予め117の水を入れて75℃に加熱しである容器中
に、はげしく攪拌しながら、同量ずつ同時に注加(注加
速度−201rLlZ分)することによりケイ酸と水酸
化亜鉛の共沈殿物(Si対Znの原子比=1:0.1、
pH7,4)を得る。
Zn(NO3)2/100.9) 190g and nitric acid (reagent grade, 0.968mol, HNO3/100,
! ii') Dissolve 443 g of 21 in water and pour the same amount of 21 and the soybean liquid simultaneously into a container that has been heated to 75°C and filled with water of 117 while stirring vigorously (pouring speed - 201rLlZ). ) to form a coprecipitate of silicic acid and zinc hydroxide (atomic ratio of Si to Zn = 1:0.1,
pH 7.4) is obtained.

吸引沢過法により充分に水洗した後、得られた沢過ケー
キを110℃に乾燥したのち、500℃に3時間焼成し
、衝撃式粉砕機により粉砕(200メツシュ全通)する
ことにより本発明の発色剤が得られた。
After thoroughly washing with water using the suction filter method, the resulting filter cake was dried at 110°C, then calcined at 500°C for 3 hours, and pulverized using an impact pulverizer (throughputting 200 mesh) to produce the present invention. A color former was obtained.

本発明の発色性能を比較例3−1(1号水ガラスと硝酸
から同時注加法によって得られたケイ酸)及び3−2(
1号水ガラス及び水酸化ナトリウムの混合水溶液と硝酸
亜鉛の水溶液の同時注加法による反応で得られたケイ酸
と水酸化亜鉛の共沈殿物、原子比1:1)とともに第3
表に示す。
The coloring performance of the present invention was evaluated in Comparative Examples 3-1 (silicic acid obtained from No. 1 water glass and nitric acid by simultaneous addition method) and 3-2 (
A co-precipitate of silicic acid and zinc hydroxide (atomic ratio 1:1) obtained by the reaction of a mixed aqueous solution of No. 1 water glass, sodium hydroxide, and an aqueous solution of zinc nitrate (atomic ratio 1:1) as well as No. 3
Shown in the table.

Claims (1)

【特許請求の範囲】[Claims] 1 ケイ酸ゲル、又は天然粘土類を充分酸処理して得ら
れるS i O,2含量が88重量%以上のケイ酸化合
物と、水酸化亜鉛又は塩基性無機酸亜鉛との混合物又は
少なくとも部分的に反応した反応生成物から成り、且つ
原子比としてSi対Znが1:0.02乃至1:0.5
の組成を有することを特徴とする感圧複写紙用発色剤。
1 A mixture of silicic acid gel or a silicic acid compound having a S i O,2 content of 88% by weight or more obtained by sufficiently acid-treating natural clays and zinc hydroxide or basic inorganic acid zinc, or at least partially and the atomic ratio of Si to Zn is 1:0.02 to 1:0.5.
A coloring agent for pressure-sensitive copying paper, characterized by having the following composition:
JP50108011A 1975-09-08 1975-09-08 Kanatsu Fukushi Palm Expired JPS5821597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50108011A JPS5821597B2 (en) 1975-09-08 1975-09-08 Kanatsu Fukushi Palm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50108011A JPS5821597B2 (en) 1975-09-08 1975-09-08 Kanatsu Fukushi Palm

Publications (2)

Publication Number Publication Date
JPS5232716A JPS5232716A (en) 1977-03-12
JPS5821597B2 true JPS5821597B2 (en) 1983-05-02

Family

ID=14473716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50108011A Expired JPS5821597B2 (en) 1975-09-08 1975-09-08 Kanatsu Fukushi Palm

Country Status (1)

Country Link
JP (1) JPS5821597B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715996A (en) * 1980-07-03 1982-01-27 Mizusawa Ind Chem Ltd Novel clay mineral based color former for heat-sensitive copying paper and production thereof
JPS57212093A (en) * 1981-06-23 1982-12-27 Hooker Chemicals Plastics Corp Composition of developer
US4509065A (en) * 1981-12-04 1985-04-02 The Wiggins Teape Group Limited Record material
JPS60112484A (en) * 1983-11-24 1985-06-18 Matsushita Electric Ind Co Ltd Image-receiving material

Also Published As

Publication number Publication date
JPS5232716A (en) 1977-03-12

Similar Documents

Publication Publication Date Title
JPS6315158B2 (en)
JPS6036953B2 (en) pressure sensitive copy paper
JPS5948756B2 (en) pressure sensitive recording unit
EP0155593B1 (en) Fluoran compounds and recording sheets containing them
KR840000293B1 (en) Concentrated free-flowing aqueous dispersion compositions
JPH0428235B2 (en)
JPS5821597B2 (en) Kanatsu Fukushi Palm
JPH0466195B2 (en)
JPS6210271B2 (en)
US3732141A (en) Pressure-sensitive record material
JPH0428236B2 (en)
JPH0550397B2 (en)
US4159208A (en) Process for production of color developer
JPS646038B2 (en)
JPH0466194B2 (en)
DE2152765B2 (en) Color developer and recording sheet containing the same
JP2870194B2 (en) Pressure-sensitive copy paper
JPS58108190A (en) Pressure-sensitive recording sheet
JPH0562079B2 (en)
CA1211627A (en) Clay mineral-type color developer composition for pressure-sensitive recording sheets
JPS609066B2 (en) Labeling liquid composition
JPS58119890A (en) Pressure-sensitive recording sheet
JPH0464874B2 (en)
JPH0227158B2 (en)
JPH0226782A (en) Color forming recording material