JPS58215314A - Molding method of composite material molded article - Google Patents

Molding method of composite material molded article

Info

Publication number
JPS58215314A
JPS58215314A JP57096922A JP9692282A JPS58215314A JP S58215314 A JPS58215314 A JP S58215314A JP 57096922 A JP57096922 A JP 57096922A JP 9692282 A JP9692282 A JP 9692282A JP S58215314 A JPS58215314 A JP S58215314A
Authority
JP
Japan
Prior art keywords
laminate
matrix resin
molding
electromagnetic energy
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57096922A
Other languages
Japanese (ja)
Inventor
Masamichi Ishida
石田 正通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP57096922A priority Critical patent/JPS58215314A/en
Publication of JPS58215314A publication Critical patent/JPS58215314A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the working cost of a molding considerably, by feeding an electromagnetic energy to the laminate composed of a reinforcing fiber and the matrix resin which contains the conductive carbon material of 1.0-70wt% to the matrix resin and molding it. CONSTITUTION:A carbon material containing matrix resin is prepared by adding the conductive carbon material of 1.0-70wt% to the matrix resin and mixing them well. Then, a reinforcing fiber is made mat like after being impregnated with the carbon containing matrix resin and a laminate is obtained by laminating this or laminating alternately the reinforcing fiber and the carbon containing matrix resin which is molded film like. By feeding an electromagnetic energy to the obtained laminate and treating it a composite material molded product is obtained. The working cost of a molding can be reduced considerably in this way.

Description

【発明の詳細な説明】 本発明は複合材料成形物の新規な成形法に関する。[Detailed description of the invention] The present invention relates to a novel method for forming composite material moldings.

従来より複合材料成形物は航空機、車輌、X線関連機材
、音響関連機材のほかスポーツ・レジャー用品例えば釣
りざお、ゴルフシャフト、テニスラケット等に用(・も
れており、今後更に用途が拡大するものと期待されてい
る。
Composite material moldings have traditionally been used in aircraft, vehicles, X-ray-related equipment, audio-related equipment, as well as sports and leisure products such as fishing rods, golf shafts, tennis rackets, etc. It is expected that

この複合材料に用いられる補強用繊維としては、ガラス
繊維のほかに芳香族ポリアミド繊維、ボロン繊維、炭素
繊維などが開発され、さらにこの複合材料に極限の性能
を付与するための幅広い研究が行われている。
In addition to glass fiber, aromatic polyamide fibers, boron fibers, and carbon fibers have been developed as reinforcing fibers used in this composite material, and extensive research has been conducted to give this composite material the ultimate performance. ing.

しかし成形加工法、特に樹脂の硬化、溶融賦形について
は技術的進歩がみられず、代表的な積層年の成形法とし
てはホットプレス成形法とオートクレーブ成形法が用い
られている。9しかしホットプレス成形法は比較的簡単
な形状でしかも比較的肉厚の薄いもの、例えば板状成形
物に利用されるが、ホットプレスの上下面の平行度及び
平面性に問題があり、また熱の伝導性が面中央と端部で
著しく異なるため、形状の小さなものにしか適用できな
い。このため大形の複合材料の成形にはオートクレーブ
形成法が用いられている。この形成法には加熱不活性ガ
スを用いる方法と蒸気で加熱する方法があるが、いが著
しく長くなり、生産性及び熱効率が劣るため成形加工コ
ストが大幅に高くなるという欠点がある。
However, no technological progress has been made in molding methods, particularly resin curing and melt shaping, and hot press molding and autoclave molding are the typical molding methods used in lamination years. 9 However, although the hot press molding method is used for products with relatively simple shapes and relatively thin walls, such as plate-shaped molded products, there are problems with the parallelism and flatness of the top and bottom surfaces of the hot press, and Because thermal conductivity differs significantly between the center and edges of the surface, it can only be applied to small objects. For this reason, autoclave forming methods are used to mold large-sized composite materials. This forming method includes a method using a heated inert gas and a method using steam heating, but these methods have the disadvantage that the molding process is extremely long and the productivity and thermal efficiency are poor, resulting in a significantly high molding cost.

本発明は、これらの欠点を改良したものであって、補強
用繊維及びマl−IJラックス脂に対して1.0〜70
重量%の導電性炭素物質を含有するマトリックス樹脂か
らなる積層体に、電磁気的エネルギーを供給することを
特徴とする、複合材料成形物の成形法であ、る−0 補強用繊維としては、無機繊維、有機繊維のいずれでも
よいが、糞壕昧出臼ガラス繊維、芳香族ナイロン繊維、
ボロン繊維、アルミナ繊維が好ましい。長繊維、短繊維
のいずれを用いてもよく、また2種以上の繊維を併用す
ることもできる。
The present invention has improved these drawbacks, and has a 1.0 to 70
A method for forming a composite material molding, characterized by supplying electromagnetic energy to a laminate made of a matrix resin containing % by weight of a conductive carbon material. It can be either fiber or organic fiber, but it can be made of glass fiber, aromatic nylon fiber,
Boron fibers and alumina fibers are preferred. Either long fibers or short fibers may be used, or two or more types of fibers may be used in combination.

マl−IJラックス脂としては、熱硬化性樹脂例えばフ
ェノール系樹脂、ポリエステル系樹脂、エポキシ系樹脂
等、熱可塑性樹脂例えばナイロン6、ナイロン66、P
ET%PBT 、ポリカーボネート、ポリオレフィン、
ポリアセタール、ABS等が用いられる。
Maru-IJ lux resins include thermosetting resins such as phenolic resins, polyester resins, epoxy resins, thermoplastic resins such as nylon 6, nylon 66, P
ET%PBT, polycarbonate, polyolefin,
Polyacetal, ABS, etc. are used.

また導電性炭素物質としては、例えばアセチレンブラッ
ク、黒鉛、繊維状の炭素等が用℃・られる。繊維状の炭
素が特に好ましい。これらの炭素物質は体積抵抗が10
1〜10−5Ω・m、特に10−2〜10−4Ω・釧の
ものが好ましい。体積抵抗が101Ω・σを越えると電
磁気的エネルギーの利用効率が大幅に低下し、一方体積
抵抗が10−5Ω・梅未満の炭素物質を製造することは
困難である。
Further, as the conductive carbon material, for example, acetylene black, graphite, fibrous carbon, etc. can be used. Fibrous carbon is particularly preferred. These carbon materials have a volume resistivity of 10
1 to 10 −5 Ω·m, particularly 10 −2 to 10 −4 Ω·m is preferable. When the volume resistivity exceeds 101 Ω·σ, the efficiency of electromagnetic energy utilization decreases significantly, and on the other hand, it is difficult to produce a carbon material with a volume resistivity of less than 10 −5 Ω·σ.

本発明を実施するに際しては、マトリックス樹脂に対し
、1.0〜70重量%の導電性炭素物質を加えてよく混
合することにより炭素物質含有マトリックス樹脂を調製
する。
In carrying out the present invention, a carbon material-containing matrix resin is prepared by adding 1.0 to 70% by weight of a conductive carbon material to the matrix resin and mixing well.

導電性炭素物質の量がマトリックス樹脂の1゜0重量%
未満の場合は、不十分な熱量を供給することができず、
また70重量%を越えるとマトリックス樹脂としての役
割を果たさな(なり、高強度の複合材料が得られない。
The amount of conductive carbon material is 1.0% by weight of the matrix resin.
If it is less than that, insufficient heat cannot be supplied,
Moreover, if it exceeds 70% by weight, it will not play its role as a matrix resin, and a high-strength composite material will not be obtained.

次いで補強用繊維及び炭素物質含有マトリックス樹脂か
らなる積層体を製造する。積層体の製法としては、補強
用繊維に炭素物質含有マトリックス樹脂を含浸させたの
ちマット状となし、これを積層する方法又は補強用繊維
とフィルム状に成形した炭素物質含有マトリックス樹脂
を交互に積層する方法が用いられる。
Next, a laminate consisting of reinforcing fibers and a carbon material-containing matrix resin is manufactured. The laminate can be manufactured by impregnating reinforcing fibers with a carbon-containing matrix resin, forming them into a mat, and then laminating them, or by alternately laminating reinforcing fibers and carbon-containing matrix resin formed into a film. A method is used.

こうして得られた積層体に電磁気的エネルギーを供給し
て処理すると複合材料成形物が得られる。電磁気的エネ
ルギーを供給する方法としては、直流又は交流電流を積
層体に供給する方法、コイル内に積層体を挿入したのち
コイルに高周波を供給する方法、積層体にマイクロ波を
照射する方法等が用いられる。工業的にはマイクロ波照
射法を用いることが好まし℃・。マイクロ波とは周波数
1 +−1HzないしI GHzの電磁波を意味する。
When the laminate thus obtained is treated by supplying electromagnetic energy, a composite material molded article is obtained. Methods for supplying electromagnetic energy include a method of supplying direct current or alternating current to the laminate, a method of inserting the laminate into a coil and then supplying high frequency to the coil, and a method of irradiating the laminate with microwaves. used. Industrially, it is preferable to use the microwave irradiation method. Microwave means electromagnetic waves with a frequency of 1 + - 1 Hz to I GHz.

マイクロ波を照射する場合には、積層体は金型と同じ形
状にしてお(ことが必要である。このため金型上の積層
体をフィルム状物質で被覆し、フィルム間のシールを十
分に行い、真空脱気することが好ましい。また必要に応
じ1〜20 kg / cm2程度の窒素ガス又は空気
で加圧することが好ましい。
When irradiating with microwaves, it is necessary that the laminate be in the same shape as the mold.For this reason, the laminate on the mold is coated with a film-like substance, and the seal between the films is sufficiently secured. It is preferable to perform vacuum degassing.It is also preferable to pressurize with nitrogen gas or air at about 1 to 20 kg/cm2 as necessary.

金型としては電磁気的エネルギーの吸収が少なく、かつ
耐熱性の物質が好ましく、例えばガラス、陶磁器、テフ
ロン等が用いられる。
The mold is preferably made of a material that absorbs little electromagnetic energy and is heat resistant, such as glass, ceramics, Teflon, and the like.

フィルム状物質としては耐熱性に優れ、双極子モーメン
トの小さい物質が好ましく、例えばポリエステルフィル
ム、弗素−ポリマー#丑士=〕 (ポリ弗化ビニリデン、ポリテトラ兇ロロエチ、+イミ
ドフィルム等が用℃・られる。
As a film-like material, a material with excellent heat resistance and a small dipole moment is preferable, such as polyester film, fluorine-polymer #Ushishi=] (polyvinylidene fluoride, polytetrafluoroethylene, +imide film, etc.). .

積層体の昇温プログラムは、電磁気的エネルギー供給量
(出力)及び照射時間により調節できるO 本発明方法によれば、電磁気的エネルギーを供給するこ
とにより、マトリックス樹脂中の炭素物質が加熱源とな
り、周囲の樹脂を硬化又は溶融させるため、大形で複雑
な形状の積層体でも内外面を均一に昇温させることかで
きる。したがってオートクレーブ成形法に比較して成形
物の性能が著しく向上する。また電磁気的エネルギーを
用いるので、積層体の温度を容易に調節できるため、再
現性に優れており工業上きわめて有利である。さらに積
層体のみが加熱されるので、エネルギー使用量が著しく
減少する。
The temperature increase program of the laminate can be adjusted by the amount of electromagnetic energy supplied (output) and the irradiation time.According to the method of the present invention, by supplying electromagnetic energy, the carbon material in the matrix resin becomes a heating source. Since the surrounding resin is cured or melted, it is possible to uniformly raise the temperature of the inner and outer surfaces of even large and complex-shaped laminates. Therefore, the performance of the molded product is significantly improved compared to the autoclave molding method. Furthermore, since electromagnetic energy is used, the temperature of the laminate can be easily controlled, resulting in excellent reproducibility and is extremely advantageous industrially. Furthermore, since only the laminate is heated, energy consumption is significantly reduced.

しかも積層体の昇温時間を短縮できるうえ、オートクレ
ーブ成形法のように加熱装置の温度が低下するのを待た
ずに成形物を直ちに搬出できるので、成形加工サイクル
を一犬幅に短縮できる。
Furthermore, the time required to heat up the laminate can be shortened, and the molded product can be taken out immediately without having to wait for the temperature of the heating device to drop as in the autoclave molding method, so the molding cycle can be shortened by one inch.

実施例1 エポキシ樹脂前駆体100重量部に長さ5fiの炭素繊
維15重量部を加えて混合し、この混合物をガラス繊維
を平織したクロスに含浸し、半硬化状態にしてガラスク
ロスプリプレグを、また芳香族ポリアミド繊維を8枚朱
子織にしたクロスに含浸し、芳香族ポリアミドクロスグ
リプレグを製造する。ガラス製平板状金型上にガラスク
ロスプリプレグを内層部に厚さ20咽となるように積層
し、その両面に芳香族ポリアミドクロスプリプレグをそ
れぞれ厚さ5期となるように積層する。この積層体の大
きさは1o。
Example 1 100 parts by weight of an epoxy resin precursor and 15 parts by weight of carbon fibers having a length of 5fi were added and mixed, and this mixture was impregnated into a plain weave cloth made of glass fibers, and the mixture was semi-cured to produce a glass cloth prepreg. An aromatic polyamide cloth grip preg is produced by impregnating an 8-ply sateen cloth with aromatic polyamide fibers. Glass cloth prepreg is laminated on the inner layer of a glass flat mold to a thickness of 20 mm, and aromatic polyamide cloth prepreg is laminated on both sides of the glass cloth prepreg to a thickness of 5 mm. The size of this laminate is 1o.

OX800mである。It is OX800m.

この積層体をポリエチレンフィルムで被覆し、シールを
十分に行ったのち、真空ポンプで系内を真空脱気し、マ
イクロ波発生装置を組み込んだ容器内に挿入する。次い
で15分間で室温から160℃まで昇温し、さらに16
0°Cに45分間保持したのち、直ちに積層体を取り出
して空冷する。
After this laminate is covered with a polyethylene film and sufficiently sealed, the inside of the system is evacuated using a vacuum pump, and the laminate is inserted into a container equipped with a microwave generator. Next, the temperature was raised from room temperature to 160°C in 15 minutes, and further heated for 160°C.
After holding at 0°C for 45 minutes, the laminate is immediately taken out and air cooled.

マイクロ波発生装置としては、出力i kWと2kWの
2段切換が可能な装置を用い、マイクロ波の周波数は2
.45 GHzである。積層体の温度調節は、出力の切
換又は電源のオン−オフで行った。
As the microwave generator, we used a device that can switch outputs in two stages: i kW and 2 kW, and the microwave frequency was 2 kW.
.. 45 GHz. The temperature of the laminate was controlled by switching the output or turning the power on and off.

積層体を容器に仕込んでから取り出すまで65分間を要
したが、これは従来のオートクレーブ法の所要時間の1
/3〜1/4である。得られた成形体は欠陥がなく良好
な形状であった。
It took 65 minutes from putting the laminate into the container to taking it out, which is one fraction of the time required by the conventional autoclave method.
/3 to 1/4. The obtained molded product had no defects and had a good shape.

実施例2 ナイロン66の100重量部に長さ6簡の炭素繊維25
重量部を加え、エクストルーダーで混練し、Tダイより
フィルム状に押し出す。このフィルムとガラスクロスを
テフロン製平板状金型上に成形後の厚みが40爛となる
ように積層フ ムで被覆し、シールを十分に行ったのち、系内を真空と
する。この積層体を、出力20 kWのマイクロ波発生
装置を備えた加圧容器に装填し、15 ky / cm
2Gまで加圧したのち、マイクロ波を15分間照射する
。照射後、直ちに積層体を系外に搬送して空冷する。得
られた成形体は欠陥がなく良好な形状であった。しかも
積層体を仕込んでから取り出すまでに要した時間は20
分間であり、成形加工時間を著しく短縮できた。
Example 2 100 parts by weight of nylon 66 and 6 strips of carbon fiber 25
Add parts by weight, knead with an extruder, and extrude into a film from a T-die. This film and glass cloth were covered with a laminated film on a Teflon flat mold to a thickness of 40 mm after molding, and after sufficient sealing, the system was evacuated. This laminate was loaded into a pressurized container equipped with a microwave generator with an output of 20 kW, and the output was 15 ky/cm.
After pressurizing to 2G, microwave irradiation is performed for 15 minutes. Immediately after irradiation, the laminate is transported outside the system and cooled in air. The obtained molded product had no defects and had a good shape. Moreover, the time required from loading the laminate to taking it out was 20 minutes.
The molding time was significantly reduced.

出願人 三菱レイヨン株式会社 代理人 弁理士小 林 正 雄Applicant: Mitsubishi Rayon Co., Ltd. Agent: Patent attorney Masao Kobayashi

Claims (1)

【特許請求の範囲】 1、 補強用繊維及びマトリックス樹脂に対して1゜0
〜70重量%の導電性炭素物質を含有するマトリックス
樹脂からなる積層体に、電磁気的エネルギーを供給する
ことを特徴とする、複合材料成形物の成形法。 2、 導電性炭素物質として短繊維状の炭素繊維を用い
ることを特徴とする特許請求の範囲第1項に記載の方法
。 気 6、 積層体に電磁、的エネルギーを供給するに際し、
該積層体をフィルム状物で被覆したのち、該フィルム系
内を減圧にすることを特徴とする特許請求の範囲第1項
に記載の一方法。 4、 電磁気的エネルギーとしてマイクロ波を利用する
ことを特徴とする特許請求の範囲第1項に記載の方法。
[Claims] 1. 1°0 for reinforcing fibers and matrix resin
A method for forming a composite material molding, characterized in that electromagnetic energy is supplied to a laminate made of a matrix resin containing ~70% by weight of a conductive carbon material. 2. The method according to claim 1, characterized in that short carbon fibers are used as the conductive carbon material. 6. When supplying electromagnetic energy to the laminate,
A method according to claim 1, characterized in that after the laminate is coated with a film-like material, the pressure inside the film system is reduced. 4. The method according to claim 1, characterized in that microwaves are used as the electromagnetic energy.
JP57096922A 1982-06-08 1982-06-08 Molding method of composite material molded article Pending JPS58215314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57096922A JPS58215314A (en) 1982-06-08 1982-06-08 Molding method of composite material molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57096922A JPS58215314A (en) 1982-06-08 1982-06-08 Molding method of composite material molded article

Publications (1)

Publication Number Publication Date
JPS58215314A true JPS58215314A (en) 1983-12-14

Family

ID=14177843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57096922A Pending JPS58215314A (en) 1982-06-08 1982-06-08 Molding method of composite material molded article

Country Status (1)

Country Link
JP (1) JPS58215314A (en)

Similar Documents

Publication Publication Date Title
JPH069877B2 (en) Method for producing resin-impregnated glass fiber composite product
JP5294609B2 (en) Gas-barrier carbon fiber reinforced prepreg, carbon fiber reinforced plastic, and production method thereof
WO2019073848A1 (en) Method for manufacturing fiber-reinforced resin molded article
CN108284564B (en) A kind of preparation method and product of the multilayered structure injection-molded item of fibre reinforced
KR100251786B1 (en) Process for the production of composite molded article
CN104774424A (en) Ablation-resistance resin for resin film infusion process and preparation method thereof
JPH10128860A (en) Manufacture of fiber-reinforced plastic molded product
US6447880B1 (en) Composite laminates and their preparation
JPH0558894B2 (en)
JPS58215314A (en) Molding method of composite material molded article
JP2948048B2 (en) Composite material for bending and its bending method
JPH08118381A (en) Manufacture of cfrp molded product
JP2004276471A (en) Fiber-reinforced thermoplastic composite molding and its molding method
JPS6270028A (en) Joining method of laminate resin
US4957432A (en) Forced jet convection oven for vacuum bagging
JPS58215315A (en) Molding method of composite material molded article
JPS58205727A (en) Preparation of molding of composite material
JP2017128012A (en) Autoclave molding method, autoclave molding device and manufacturing method of molding block used therefor
JPH02182438A (en) Method for heat-curing of fiber reinforced plastic having conductivity by microwave
JP2002248694A (en) Method for molding fiber reinforced composite material
JPH069869B2 (en) Joint structure of synthetic resin members
JP2563694B2 (en) Method for producing high heat radiation fiber reinforced plastic
Peerzada et al. Fabrication methods of rapid cured composites
JPS6189032A (en) Manufacture of laminate
JP3469044B2 (en) Manufacturing method of foamed phenolic molded product