JPS58215287A - Fine working method - Google Patents

Fine working method

Info

Publication number
JPS58215287A
JPS58215287A JP57098935A JP9893582A JPS58215287A JP S58215287 A JPS58215287 A JP S58215287A JP 57098935 A JP57098935 A JP 57098935A JP 9893582 A JP9893582 A JP 9893582A JP S58215287 A JPS58215287 A JP S58215287A
Authority
JP
Japan
Prior art keywords
film
substrate
sample
light
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57098935A
Other languages
Japanese (ja)
Other versions
JPH0314555B2 (en
Inventor
Koji Ando
安藤 功「じ」
Yuuko Yokoyama
横山 「あ」子
Takashi Okuda
奥田 高士
Naoki Koshizuka
直己 腰塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57098935A priority Critical patent/JPS58215287A/en
Publication of JPS58215287A publication Critical patent/JPS58215287A/en
Publication of JPH0314555B2 publication Critical patent/JPH0314555B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To etch away selectively the desired place of a desired material, by irradiating a laser beam of the wavelength at which the coefft. of light absorption for the work increases to the work in a corrosive atmosphere. CONSTITUTION:The work 2 coated with a thin film 2B on a substrate 2A is prepd. and is disposed in a chamber 1 filled with a soln. LC for etching. Laser light LB of the wavelength at which the coefft. of light absorption for the film 2B increases is irradiated to the prescribed part of the work 2. Then, a groove 5 is formed in the locus part of the film 2B irradiated with the laser light but the substrate 2A having a small coefft. of light absorption for the wavelength of the light LB is not etched at all. Only the desired material of the desired place is etched away selectively by making use of the difference in the intensity of the optical absorption in the above-mentioned way.

Description

【発明の詳細な説明】 本発明は、微細加工法、殊に、同程度の腐食反応速度を
持つ二つ以上の物質領域から成る加工対象物において、
選択された物質領域中においてのみ、選択的な腐食除却
部分を形成する微細加工法に関する。物質領域は上下に
重なる層状領域でも、横方向に並設された組み合い領域
でも良い。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a microfabrication method, in particular in a workpiece consisting of two or more material regions with similar corrosion reaction rates.
The present invention relates to a microfabrication method for forming selective erosion removal areas only in selected material regions. The material regions may be layered regions that overlap one another, or interlocking regions arranged side by side in the horizontal direction.

各種素子の作成にとって、希望する場所の希望する物質
を撰択的に除却する技術は重要なものである。
Techniques for selectively removing desired materials at desired locations are important for the production of various devices.

従来、多くの方法が、この目的のために開発されてきた
が、特に腐食雰囲気に対して同程度の反応速度をもつ異
なる物質のうち、一方のみを撰択的に腐食除却する目的
の場合には、何らかの方法で、常に腐食状態を監視しな
がら行なわなければならず、極めて面倒である外、再現
性も良くなかった。
In the past, many methods have been developed for this purpose, especially when the purpose is to selectively corrode only one of different substances that have similar reaction rates in a corrosive atmosphere. The process must be carried out by some method while constantly monitoring the corrosion state, which is extremely troublesome and has poor reproducibility.

本発明は、こうした従来の方法の欠点を解消するために
なされたもので、試料を構成する物質の光学的吸収の強
さのちがいを利用して、簡単に希望する場所の希望する
物質のみを撰択的に腐食除却する方法を提供せんとした
ものである。
The present invention was made to eliminate these drawbacks of conventional methods, and utilizes the differences in optical absorption strength of the substances that make up the sample to easily collect only the desired substance in the desired location. The purpose is to provide a method for selectively removing corrosion.

本発明者等は、上記目的に沿い、腐食雰囲気中におかれ
た試料にレーザ光を照射し、その腐食速度について種々
研究を進めていたところ、レーザ光を照射した部分では
、レーザ光を強く吸収する物質のみが撰択的に腐食除却
される事を検証し、発明として完成するに至ったもので
ある。
In line with the above objective, the present inventors irradiated a sample placed in a corrosive atmosphere with laser light and conducted various studies on the corrosion rate. This invention was completed after verifying that only the absorbed substances are selectively removed by corrosion.

第1図は、本発明方法のための装置の原理図である。容
器/の中を腐食雰囲気とし、加工対象物コとしての試料
λを置く。
FIG. 1 is a diagram of the principle of the apparatus for the method according to the invention. A corrosive atmosphere is created inside the container, and a sample λ as an object to be processed is placed.

試料コが、複数の物質領域から成っていて、二つ以上の
物質領域が腐食雰囲気に対して同程度の反応速度を持っ
ておシ、そのitではいづれの物質領域中にも腐食加工
が施されてしまうような試料であると、本発明は有力に
その効果を発揮する。
If the sample consists of multiple material regions, and two or more material regions have similar reaction rates to a corrosive atmosphere, then corrosive processing is not applied to any of the material regions. The present invention is most effective when the sample is a sample that is easily exposed.

物質領域群の構造としては、第2図Aに示すように1例
えば基板としての第一物質領域、ZA上に、例えば薄膜
としての第二物質領域JBが形成されているような、層
状乃至積層構造でも良いし、第2図BIC示すように、
横方向に第一、第二領域、更には第三物質領域というよ
うに組み合い状に並設されているものでも良く、上記両
者を組み合わせたような、第2図Cに示す層状であって
尚且つその中の少くとも一つの層が組み合い構造となっ
ているもの等も良い。勿論、物質領域の種類数は図示の
場合に限らず、もっと多数であって良い。
As shown in FIG. 2A, the structure of the material region group is a layered or laminated structure in which, for example, a second material region JB as a thin film is formed on a first material region ZA as a substrate. It may be a structure, as shown in Figure 2 BIC,
The first, second, and third material regions may be arranged side by side in a combination in the horizontal direction, or may have a layered structure as shown in FIG. It is also preferable that at least one of the layers has an interlocking structure. Of course, the number of types of material regions is not limited to the illustrated case, and may be larger.

また例えば、n種類の物質領域の中、m種類の物質領域
(2<m<n)同志が略々腐食反応速度が同じである場
合、本発明は、これ等m種類の物質領域に対して特に有
効なものとなる。
For example, if among n types of material regions, m types of material regions (2<m<n) have approximately the same corrosion reaction rate, the present invention applies to these m types of material regions. This will be particularly effective.

勿論、腐食反応速度が大きく異なる物質量では、特に本
発明を適用しなくとも、目的とする選択加工は得やすい
が、本発明はこれ等の間にも適用でき、更に腐食速度に
差を付けることもできる。
Of course, it is easy to obtain the desired selective processing even without applying the present invention when the amounts of substances with significantly different corrosion reaction rates are used, but the present invention can also be applied between these types of substances, and further differentiate the corrosion rates. You can also do that.

装置説明に戻すと、レーザ3の光LBをレンズ≠で集光
し、試料コに照射する。レーザ3の光LBの波長λは、
腐食除却しようとする物質が十分強く吸収し、かつ腐食
除却されない必要のある物質は吸収しない波長とする。
Returning to the explanation of the apparatus, the light LB of the laser 3 is focused by a lens and irradiated onto the sample. The wavelength λ of the light LB of the laser 3 is
The wavelength should be one that is sufficiently strongly absorbed by the substance to be corroded and removed, and which is not absorbed by the substance that must not be corroded and removed.

レーザ3の光出力およびレンズ≠の試料λからの距離を
変化させ、試料コの光が照射されている部分の太きさと
温度を適当に選び、レーザ3からの光と試料コの相対的
位置を希望するパターンに従って移動させる。上記の構
成に於て、試料λ中、レーザ光が照射された部分では、
腐食除却しようとする物質がレーザ光を吸収し、その温
度を上昇させる。この温度上昇により腐食が急速に進み
、腐食除却し、ようとする物質は薄くなり0厚みが薄く
なるにつれて、光の吸収量が減少し温度は低下し、腐食
除却しようとする物質が全て除却されると、腐食は自動
的に停止する。
By changing the optical output of the laser 3 and the distance of the lens ≠ from the sample λ, appropriately selecting the thickness and temperature of the part of the sample irradiated with light, the relative position of the light from the laser 3 and the sample λ is determined. move according to the desired pattern. In the above configuration, in the part of the sample λ that is irradiated with the laser beam,
The material to be corroded and removed absorbs the laser light, raising its temperature. Due to this temperature rise, corrosion progresses rapidly, and the material to be corroded and removed becomes thinner.As the thickness becomes thinner, the amount of light absorbed decreases and the temperature decreases, and all the material to be corroded and removed is removed. Corrosion will stop automatically.

このような本発明に即した基本的実施例を具体的物質例
を挙げて第6.4図に就き説明する。
A basic embodiment according to the present invention will be described with reference to FIG. 6.4 using specific material examples.

この実施例で用いた加工対象物としての試料!は、二種
類の物質領域層λA、λBが重合状になった第2図Aの
構成のもので、第一乃至下部物質領域層2Aは、Gd、
Gα、0□基板であり、第二乃至上部物質領域、2Bは
、上記の基板の上にエピタキシャル成長させた(YBi
) s (FgGα)、0.薄膜である。
The sample as the workpiece used in this example! has the structure shown in FIG. 2A in which two types of material region layers λA and λB are polymerized, and the first to lower material region layers 2A are Gd,
Gα, 0□ substrate, and the second to upper material region, 2B, was epitaxially grown on the above substrate (YBi
) s (FgGα), 0. It is a thin film.

而して、こうした試料λに対し、この実施例では、上部
薄膜λBにのみ、−条の膜厚と同じ深さの溝加工をし、
この溝底には基板面を損傷することなく露呈させるもの
とする。
Therefore, in this example, for such a sample λ, a groove with the same depth as the film thickness of the - strip is formed only in the upper thin film λB,
The bottom of this groove shall be exposed without damaging the substrate surface.

先にも述べたが、このような溝加工の場合、従来技術で
は、薄膜if3に、溝形成予定部分を除いて保護層を被
せ、単に燐酸等の腐食雰囲気に浸すだけであるので、上
記両物質、2A、、2Bのように、共に燐酸に対して同
程度の反応速度を持つ場合、薄膜2Bの膜厚分を完全に
除却した溝ができてもその時点で自動的に以後の基板腐
食を止めることはできず、従って冒頭に述べた欠点が顕
れる外、加工時間も多いに掛かるという不具合もある。
As mentioned earlier, in the case of such groove processing, in the conventional technology, the thin film if3 is simply covered with a protective layer except for the area where the groove is to be formed, and then simply immersed in a corrosive atmosphere such as phosphoric acid. If substances such as 2A and 2B have similar reaction rates to phosphoric acid, even if a groove is formed that completely removes the thickness of thin film 2B, the subsequent corrosion of the substrate will automatically occur at that point. Therefore, in addition to the drawbacks mentioned at the beginning, there is also the problem that it takes a long time to process.

これに対して、本発明を適用すれば、以下のように、両
物質間に実質的乃至は等価的に大きな反応時間差を持た
せたのと同じになり、加工速度も極めて上昇し、従って
等価的にその加工時間のスケールで見れば基板に問題と
なる程の腐食が始まるまでには大きな時間を稼ぐことが
でき、自動停止と略々同効の結果を得ることができるの
である。
On the other hand, if the present invention is applied, as shown below, it will be the same as having a substantially or equivalently large reaction time difference between the two substances, and the processing speed will also be extremely increased, so that the equivalent In terms of processing time, it is possible to buy a large amount of time before corrosion starts to become a problem on the board, and it is possible to obtain almost the same effect as automatic stopping.

第5図Aに模式的に示すように、腐食用溶液Lcとして
燐酸I(3PO4を満たした試料室/内に試料−を配し
、第1図示の構成によシ、所要の溝巾に合わせたスポッ
ト径に絞ったレーザ光LBを、図示していないが試料室
上の窓を介して試料2上の所定部分に照射する。
As schematically shown in Fig. 5A, a sample is placed in a sample chamber filled with phosphoric acid I (3PO4) as a corrosive solution Lc, and the configuration shown in Fig. 1 is adjusted to the required groove width. A predetermined portion of the sample 2 is irradiated with a laser beam LB that has been focused to a spot diameter of 100 nm through a window (not shown) above the sample chamber.

勿論、通常、この種装置に見られるように、試料はX−
Y直交軸の各軸に沿って移動し得る移動量制御性の良い
試料台(図示せず)上に載置して良い。
Of course, as is usually the case with this type of device, the sample is
It may be placed on a sample stage (not shown) that can move along each axis of the Y orthogonal axis and has good movement controllability.

本実施例で用いたレーザは波長4BBnm及び515 
nmのレーザビームを発するアルゴンイオンレーザであ
る。而して、試料λ中、薄膜、2Bの53[]IL’1
7Lにおける光吸収係数は約5200cm−’で、基板
、2Aのそれは無視できる程、小さい。
The laser used in this example had a wavelength of 4BBnm and 515 nm.
This is an argon ion laser that emits a nm laser beam. Therefore, in sample λ, 53[]IL'1 of thin film 2B
The light absorption coefficient at 7L is about 5200 cm-', and that at substrate 2A is so small that it can be ignored.

以上の条件下において、レーザビームLB ヲ、試料か
ら206 m1mの距離に置いた焦点距離200m廊の
レンズで集光し、このビームと試料コとの相対的位置を
試料面で5μm4の速さで動かした。試料を容器から取
シ出し、顕微鏡で観察したところ、第6図Bに示すよう
に、レーザ照射された軌跡部分に溝jが堀れていること
が判明した。
Under the above conditions, the laser beam LB is focused by a lens with a focal length of 200 m placed at a distance of 206 m from the sample, and the relative position of this beam and the sample is adjusted at a speed of 5 μm on the sample surface. I moved it. When the sample was taken out of the container and observed under a microscope, it was found that a groove j was dug in the laser irradiated trajectory, as shown in FIG. 6B.

この溝jが先の予定仕様を満たしているか否かを実証す
るため、予じめ、薄膜、2Bの厚みを光学的手法により
測定し、既知値TA = 5.95μmとして知ってお
いて、粗さ計にょυ、溝jの深さTmを測定した。
In order to verify whether or not this groove j satisfies the previously planned specifications, the thickness of the thin film 2B was measured in advance using an optical method, and the known value TA = 5.95 μm was known. The depth Tm of the groove j was measured.

この測定結果をレーザ光出力の関数として示したものが
第4図で、レーザ光が弱いときは、薄膜−!Bの深さ方
向途中までで腐食除却が終っているが、レーザ光が強く
なると溝の深さTmは薄膜の厚み1と一致しておシ、レ
ーザ光を更に強くしても、溝の深さの増加はみられなか
った。
Figure 4 shows this measurement result as a function of laser light output. When the laser light is weak, the thin film -! Corrosion removal has been completed halfway in the depth direction of point B, but as the laser beam becomes stronger, the groove depth Tm matches the thickness 1 of the thin film. No increase was observed.

又5.95μmの深さを持つ溝の部分で、薄膜にのみ含
まれる成分である鉄の組成分析を行なったところ、鉄は
検出されなかった。以上の事は、レーザ光の照射によシ
、レーザ光を吸収する薄膜のみが撰択的に腐食除却され
、目的が果たされたことを示している。
Further, when the composition of iron, which is a component contained only in the thin film, was analyzed in the groove portion having a depth of 5.95 μm, no iron was detected. The above indicates that only the thin film that absorbs the laser beam was selectively corroded and removed by laser irradiation, and the purpose was achieved.

尚また、第4図示の曲線において、その立ち上がり部分
は比較的リニアとも見れるから、薄膜、2Bに形成する
溝5の深さは、光強度の調整により、成る程度の精度で
任意所望の途中までの深さとすることもできる。
Furthermore, since the rising portion of the curve shown in Figure 4 can be seen to be relatively linear, the depth of the groove 5 formed in the thin film 2B can be adjusted to any desired depth with a degree of accuracy by adjusting the light intensity. It can also be as deep as .

以上の実施例から推して、他の物質量でも、本発明は同
様に適用できること顕らかで、等測的に所要の物質の方
の所要部分の腐食反応速度を大きく促進したのと同じ、
具合の良い結果が得られるものである。
Judging from the above examples, it is clear that the present invention can be similarly applied to other amounts of substances;
Good results can be obtained.

こうして、本発明は、磁性体素子、半導体素子、誘電体
素子などの各種素子の構築構造形成に大きく貢献するこ
とができるが、具体的な応用例として、以下の例を挙げ
、本発明の及ばず波及効果の大きさを証しておく。
In this way, the present invention can greatly contribute to the formation of structural structures of various elements such as magnetic elements, semiconductor elements, and dielectric elements. Let me prove the magnitude of the ripple effect.

上記実施例と密接に関連し、また上記実施例そのものが
直接に指向するように、本発明は、基板上に形成された
膜の膜厚を測定する方法に直ぐ様、応用できる。
Closely related to, and directly directed to, the embodiments described above, the present invention can be readily applied to a method of measuring the thickness of a film formed on a substrate.

従来からも、膜厚測定法としては、様々な手法が開発さ
れてきた。その一つの方法として、光が膜の表面と裏面
とで反射され干渉する性質を用いて膜厚を測定するもの
があるが、この方法では、膜の屈折率を仮定する必要が
あり、表面が鏡面状の試料にしか適用されない。また、
他の方法として、試料を斜め研磨することによシ膜厚を
求める方法もあるが、この方法の欠点は試料の広い部分
を破壊してしまう事と手間のかかることにある。
Various methods have been developed for measuring film thickness. One method is to measure film thickness using the property that light is reflected and interferes with the front and back surfaces of the film, but this method requires assuming the refractive index of the film, and the surface Applicable only to specular specimens. Also,
Another method is to obtain the film thickness by obliquely polishing the sample, but the disadvantages of this method are that it destroys a large part of the sample and is time-consuming.

これに対して、上記した本発明を利用すれば、測定しよ
うとする膜の光吸収係数が大きく、この膜を載持してい
る基板のそれは小さいような波長λのレーザ光を選び、
先の手法で成る程度以上のパワーで当該膜2Bにこの膜
厚を完全に抜は切る溝jを作り、この溝jの深さTmを
既存の粗さ計等で測定すれば、先に述べたように、この
溝深さ諧と実際の膜厚nとは第4図からしても一致する
から、簡単に精度の良い測定ができることになる。
On the other hand, if the present invention described above is used, a laser beam having a wavelength λ is selected such that the light absorption coefficient of the film to be measured is large and that of the substrate on which this film is mounted is small.
If a groove j is created in the film 2B to completely remove this film thickness using a power greater than that achieved by the above method, and the depth Tm of this groove j is measured using an existing roughness meter, etc., the result described above can be obtained. As shown in FIG. 4, this groove depth scale and the actual film thickness n match, so that accurate measurement can be easily performed.

但し、第6図Bでは、溝jを試料λのX方向全幅ムに亘
って切った例を示したが、膜厚測定のために溝!を作る
なら、その長さtは十分短くても良< (L< tM)
 、場合によっては試料とビームとの相対移動はさせず
に、ピンホール状の溝乃至穴としても、ビームスポット
径をやや太き目にする等図れば、粗さ計に十分にかけら
れる。尚、公知の粗さ計はμmオーダ以下でもかなり高
い精度を持っている。
However, although FIG. 6B shows an example in which the groove j is cut across the entire width of the sample λ in the X direction, the groove j is cut in order to measure the film thickness. , the length t may be sufficiently short < (L < tM)
In some cases, even a pinhole-like groove or hole without relative movement between the sample and the beam can be sufficiently applied to the roughness meter if the beam spot diameter is made slightly thicker. Note that known roughness meters have fairly high accuracy even on the μm order or less.

このように、本発明を膜厚測定に応用すれば、従来のよ
うな欠点がなく、試料の微小な領域を破壊するのみで簡
単かつ精度の良い測定が行えることになる。
As described above, if the present invention is applied to film thickness measurement, there will be no drawbacks as in the conventional method, and simple and accurate measurement can be performed by simply destroying a minute area of the sample.

本発明は壕だ、一対の光フアイバ間とか光ファイバ、光
素子間の低損失固定コネクタ構造を作るのにも応用でき
る。
The present invention can also be applied to fabricating a low-loss fixed connector structure between a pair of optical fibers, optical fibers, or optical elements.

膜の中に光を伝播させて用いる光素子と光ファイバを簡
単にかつ安定に結合させる方法は、光を用した計測制御
システムのための重要な技術である。
A method of simply and stably coupling an optical element and an optical fiber by propagating light through a film is an important technology for measurement and control systems using light.

しかるに1従来、光ファイバとYsFgsO□等の光透
過性膜との結合は主に、膜の端面に直接光ファイバを接
着することにより行なわれて来た。
However, conventionally, optical fibers and light-transmissive films such as YsFgsO□ have been mainly bonded by directly bonding the optical fibers to the end surfaces of the films.

しかし、このような方法で作られた接着面は機械的強度
が弱く、又薄い膜の中心に光ファイバの先端を精度良く
合わせるのに高度の技術を必要とした。更に、光ファイ
バから膜に導入された光を、一定の長さ、膜中を伝播さ
せた後、再び他方の端面から光フアイバ中に導入するよ
うな構成の光素子では、基板と共に膜を一定の長さに切
断したのち、対向する一対の光ファイバを、それぞれの
中心が正しく合致するように光軸整合させて膜に接着す
る必要があシ、多くの労力と技術を必要とした。
However, the adhesive surface created by this method has low mechanical strength, and requires advanced technology to precisely align the tip of the optical fiber with the center of the thin film. Furthermore, in an optical element configured in such a way that light introduced into a film from an optical fiber is propagated through the film for a certain length, and then introduced into the optical fiber from the other end, the film is kept at a certain level along with the substrate. After cutting the fibers to a length, it was necessary to align the optical axes of a pair of opposing optical fibers so that their centers matched correctly and then bond them to the membrane, which required a lot of labor and skill.

これに対して、本発明を応用して、膜に光フアイバ固定
用のガイド溝を形成すれば、光ファイバと膜、元ファイ
バと光フアイバ間等の固定結合が作業性良く、かつ高い
光軸整合性をもって実現できる。
On the other hand, if the present invention is applied and a guide groove for fixing the optical fiber is formed in the film, the fixed connection between the optical fiber and the film, the original fiber and the optical fiber, etc. can be easily performed, and the optical axis can be increased. It can be achieved with consistency.

第5図以降に即してこの応用例を更に詳記するが、ここ
では、第5図Aに示すように、GclBGa110n基
板/JA上にエピタキシャル成長させた対象波長に対し
ては少くとも光透過性のY3FewO+を膜lλBに対
して、出力光ファイバ(後述)の端部を物理的にも光学
的にも結合し、更に入力ファイバの端部を出力ファイバ
と光軸整合させ乍ら該膜に同様に結合する場合を例に採
る。
This application example will be described in more detail with reference to FIG. 5 and subsequent figures, but here, as shown in FIG. The end of an output optical fiber (described later) is physically and optically coupled to the film lλB, and the end of the input fiber is aligned with the optical axis of the output fiber, while the film is similarly connected to the film lλB. Let's take as an example the case of combining.

基板/、2A、膜lλBは、本発明の適用にあっては、
先の本発明実施例の各層、2A、、2Bに相当する。
In the application of the present invention, the substrate /, 2A, and the film lλB are as follows:
This corresponds to each layer 2A, 2B of the previous embodiment of the present invention.

試料コとの対応を採れば、全体を符号7.2で示すこと
ができる。ここでは、これを光素子母材12と呼び、本
発明の応用工程ではこれが加工対象物である。
If the correspondence with the sample is taken, the whole can be indicated by the reference numeral 7.2. Here, this is called the optical element base material 12, and this is the object to be processed in the applied process of the present invention.

光素子母材/Jに対して、第5図に即して説明した本発
明方法を適用し、結果を先に述べれば、膜/λBの同−
X軸上に沿って、中間の長さムの連結部λθを介して対
向した一対の各長さt、 r tIIの溝/j、に、/
jBを作゛る(第5図B)。
The method of the present invention explained with reference to FIG. 5 was applied to the optical element base material /J, and the results are as follows:
Along the X-axis, a pair of grooves /j, each of length t, r tII, facing each other via a connection part λθ of intermediate length m, /
Create jB (Figure 5B).

本出願人の製作例では、アルゴンイオンレーザからのレ
ーザビームを、燐酸に浸した光素子母材/、2からスポ
ット径の関係で後述の適当な距離においた焦点距離20
0rn7/lrLのレンズで集光し、ビームパワー4W
の当該レーザビームを膜表面で相対速度1μmAで動か
した。
In the manufacturing example of the present applicant, the laser beam from the argon ion laser is placed at an appropriate distance from the optical element base material /,2 soaked in phosphoric acid at a focal length of 20, which will be described later in relation to the spot diameter.
Focus with 0rn7/lrL lens, beam power 4W
The laser beam was moved at a relative velocity of 1 μmA at the membrane surface.

第5図Bにおいて、母材/2の方の動きと見て、それが
矢印Xの方向であるとするなら、母材/コの先端縁から
先づ距Htt分、ビームを照射した後、当該ビームを遮
断して、長さ41分、母相を相対的に送り、再びレーザ
ビームを長さ28以上に亘って照射した。
In Fig. 5B, if we consider the movement of base material /2 in the direction of arrow X, then after irradiating the beam a distance Htt from the tip edge of base material /2, The beam was interrupted, the parent phase was relatively sent for a length of 41 minutes, and the laser beam was irradiated again over a length of 28 minutes.

これにより、膜12Bには一対の溝/ jA、 / j
13が中間連結部ユ0を挾んで形成され、各溝底面は基
板/、2Aの表面が露呈した平らなものとなると共に、
両溝/j)、、/JBのX軸方向軸心は完全に、乃至必
然的に一致する。
As a result, the membrane 12B has a pair of grooves /jA, /j
13 are formed sandwiching the intermediate connecting portion 0, and the bottom surface of each groove is flat with the surface of the substrate 2A exposed.
The axes of both grooves /j), , /JB in the X-axis direction completely or necessarily coincide with each other.

こうしてできた各層/J’A、1Zf3に、それぞれ、
長さt、 、 t3以上、クラッド2/Aを剥いてコア
、2/Bを露出させた光ファイバー/の当該コア2/B
を、第5図Cに示すように、コア端面が各層の、・奥端
面に当接するようにして収める。この作業の時に、各溝
中に適当な接着剤2コ(第5図D)を充填して、この硬
化にょシ、当該ファイバと溝との固定をなす。尚、浦切
りの時のビームスポット径は用いた光ファイバのコア径
に合わせるようにして、横方向のガタ付きを防ぎ、溝を
ガイドとするのが良い。
For each layer /J'A, 1Zf3 created in this way, respectively,
The core 2/B of an optical fiber with a length of t, , t3 or more, with the cladding 2/A stripped to expose the core and 2/B.
As shown in FIG. 5C, the core end surfaces are placed in contact with the inner end surfaces of each layer. During this operation, two suitable adhesives (FIG. 5D) are filled into each groove, and after curing, the fibers are fixed to the grooves. In addition, it is preferable to match the beam spot diameter when cutting the fiber to the core diameter of the optical fiber used to prevent lateral wobbling and to use the groove as a guide.

このように、本発明を要所に応用すると、両溝/6に、
/!Bの光軸整合が簡単かつ極めて精度良く行え、従っ
てこれをガイドとしての両光ファイバの光軸整合も伺の
厄介な作業も要らずに満足できる。また、勿論、膜/2
f3へ光を横力向にも伝搬させる必要がない場合、例え
ば、両党ファイバ間のみの光結合を行う場合には、クラ
ッドごと、ガイド溝内に収め、中間連結部2oの長さt
、を十分短くするとか、場合によっては切り通しの溝と
して両ファイバ端面相互を直接させても良く、いづれに
しろ、光回路技術に汎用性高く応用できるものである。
In this way, when the present invention is applied to important points, in both grooves/6,
/! The alignment of the optical axes of the optical fibers B can be performed easily and with extremely high accuracy, and therefore the alignment of the optical axes of both optical fibers using this as a guide can be satisfied without the need for troublesome work. Also, of course, membrane/2
When it is not necessary to propagate the light to f3 in the transverse force direction, for example, when optical coupling is performed only between the two fibers, the whole cladding is housed in the guide groove, and the length of the intermediate connecting part 2o is set to t.
, may be made sufficiently short, or in some cases, the end faces of both fibers may be directly connected to each other as cut-through grooves.In any case, it is highly versatile and can be applied to optical circuit technology.

本発明は更に、複合エピタキシャル膜の形成にも応用で
きる。
The invention is also applicable to the formation of composite epitaxial films.

一枚の基板上に、異なる組成を持つ膜をエピタキシャル
成長させることは、高い機能をもつ各種素子の作成に重
要である。例えば、ガーネット膜を用いた各素子は、磁
気バブル記憶素子や磁性体光素子などとして重要なもの
であるが、この材料に対しては、従来一度エビタキシャ
ル成長させられた膜を抗折的に除却して、基板を再び露
出させることは不可能であった。
Epitaxial growth of films with different compositions on a single substrate is important for creating various devices with high functionality. For example, devices using garnet films are important as magnetic bubble memory devices, magnetic optical devices, etc., but conventionally, for this material, films that have been grown epitaxially are It was not possible to remove and re-expose the substrate.

これに対し、本発明を応用すれば、形成済のガーネット
膜を抗折的に腐食除却することによって基板を露出させ
、その基板の上に再び異なる組成のガーネット膜をエピ
タキシャル成長させることが可能となり、一枚の基板上
に、異なる組成を持つ、ガーネット膜を複数層に亘って
成長させることができるようになる。
On the other hand, by applying the present invention, it becomes possible to expose the substrate by etching away the formed garnet film, and then epitaxially grow a garnet film with a different composition on the substrate again. It becomes possible to grow multiple layers of garnet films with different compositions on a single substrate.

この応用例に就き具体例を挙げて説明すると、第6図A
に示すように、GtlsG(LyO□基板1oaA上に
エピタキシャル成長させた(Y 、Nrl ) sF 
e 60tt膜101f3を持つ部材102を加工対象
物として本発明を応用し、第1図示により第6図示の加
工を施して、第6図Bに示すように、上部膜102Bに
選択的に開けた穴乃至溝103を形成し、その溝底に基
板101Aの表面を露呈させる。各層10コA。
To explain this application example by giving a concrete example, Fig. 6A
GtlsG ((Y, Nrl) sF epitaxially grown on a LyO□ substrate 1 oaA) as shown in
e The present invention was applied to the member 102 having the 60tt film 101f3 as a workpiece, and the processing shown in the first drawing was performed as shown in the sixth drawing to selectively open the upper film 102B as shown in FIG. 6B. A hole or groove 103 is formed, and the surface of the substrate 101A is exposed at the bottom of the groove. Each layer is 10A.

10コBは本発明基本的実施例の第一、第二層2A。10 pieces B are the first and second layers 2A of the basic embodiment of the present invention.

、2Bに相当する取扱いを受ける。, will be treated as equivalent to 2B.

具体的には、部材102を試料室l (第1,3図)内
の燐酸溶液しに浸し、出力5Wのアルゴンイオンレーザ
からのレーザビームLBを、部材102から206mA
TLの距離に置いた焦点距離200rn/rrLのレン
ズで集光し、照射した。膜はレーザビームエネルギを約
9割吸収した。基板の光吸収は無視できるtlど小さい
。レーザビームを部材10コ表面上で5μm′r/sの
速度で動かしたところ、巾約200μmで深さが膜厚に
等しい約4μmの溝101が得られ、溝の底には、基板
702にの表面が露出した。このようにした部材/(1
7,2上に通常の液相エピタキシー法で、(YB< )
 a (FgGα)、0□膜を成長させたところ、良質
の膜io−〇が得られた。即ち、第6図Cに示すように
、基板102にの上に(YNd) a (FgGcL)
 5Ott膜102f3があり、レーザ光を用いて腐食
除却した溝101および膜の上に(YBi)s (Fg
Gcz)50tt膜10コCが成長して新たな部材lθ
コ′を形成している。
Specifically, the member 102 is immersed in a phosphoric acid solution in the sample chamber l (Figs. 1 and 3), and a laser beam LB from an argon ion laser with an output of 5 W is applied to the member 102 at 206 mA.
Light was collected and irradiated with a lens having a focal length of 200rn/rrL placed at a distance TL. The film absorbed about 90% of the laser beam energy. The light absorption of the substrate is so small that it can be ignored. When the laser beam was moved on the surface of the member 10 at a speed of 5 μm'r/s, a groove 101 with a width of about 200 μm and a depth of about 4 μm equal to the film thickness was obtained. surface was exposed. Part made like this/(1
7,2 by the usual liquid phase epitaxy method, (YB< )
When a (FgGα), 0□ film was grown, a good quality film io-〇 was obtained. That is, as shown in FIG. 6C, (YNd) a (FgGcL) is formed on the substrate 102.
There is a 5Ott film 102f3, and (YBi)s (Fg
Gcz) 50tt film 10C is grown to form a new member lθ
It forms a ko′.

このように、本発明を応用すれば、基板上のガーネット
膜を抗折的に腐食除却することにより、基板の表面を露
出させ、その上に再びガーネット膜をエピタキシャル成
長させることができ、結局、一枚の基板の上に、組成の
異なる多くの膜を、任意の場所に作製することができる
As described above, by applying the present invention, by etching away the garnet film on the substrate, the surface of the substrate can be exposed, and the garnet film can be epitaxially grown on it again. Many films with different compositions can be fabricated at arbitrary locations on a single substrate.

これは、新たに成長させられた膜10.2C及びその下
層膜102f3と基板10コAとの光吸収係数差を利用
して、両膜に一連の透孔を穿ち、以降、同様の手順によ
シ、第三層目以降も基板上から成長させることが可能で
あることを意味している。
This involves making use of the difference in light absorption coefficient between the newly grown film 10.2C and its underlying film 102f3 and the substrate 10A, and drilling a series of through holes in both films, followed by the same procedure. This means that the third and subsequent layers can also be grown from the substrate.

このようにして構成される部材102′は、磁気バブル
記憶素子や磁性体光素子などとして有用な機能を与えら
れ、活躍するものであり、結局、本発明の恩恵に浴する
ものとなる。
The member 102' constructed in this manner is given a useful function as a magnetic bubble storage element, a magnetic optical element, etc., and plays an active role, and ultimately benefits from the present invention.

以上、各応用例にまで及んで詳記したように、本発明は
、腐食雰囲気中で同程度の反応速度を持つ少くとも二つ
の物質領域があったとしても、その中の一方の領域中の
選択的な部分を除却でき、しかもその作業性は頗る良く
、高精度でもある手法を提供するものであり、各種技術
分野への貢献度は上記応用例に留まることなく極め ゛
て高いものである。尚、レーザビームは既述のように相
対走査に限らず、大口径レーザに予じめマスクバター/
情報を載せたものでも良い。
As described in detail in each application example above, even if there are at least two material regions with similar reaction rates in a corrosive atmosphere, the It provides a method that can remove selective parts, has excellent workability, and is highly accurate, and its contribution to various technical fields is extremely high, and goes beyond the above application examples. . In addition, the laser beam is not limited to relative scanning as described above, but is also used for large-diameter laser beams with mask butter/
It can also be one with information.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法に用いる装置の一例の概略構成図
、第2図は加工対象物の物質領域構成例の説明図、第5
図は本発明一実施例方法の説明図、第4図は加工結果の
一例の説明図、第5図は本発明を応用しての光素子を作
成する際の各工程の説明図、第6図は本発明を複合エピ
タキシャル膜形成に応用する場合の各工程の説明図、で
ある。 図中、ユ、/コ、 101は加工対象物、;Ik、 2
B、 /2A。 lコB、ioコ)、、10コB、10コCは各物質領域
、3はレーザ、j 、 /j 、 103は加工結果と
しての除却部又は溝乃至穴、ユlは光ファイバ、ココは
接着剤、である。 第1図 Q 第2N 第3図 、A)(B) 第4図 ε 0 1 2 3 4(W) レーーリパニク(、侍ス2り 第6図 (A) 第 (A) 425− 1 (D) \−メr 1
FIG. 1 is a schematic configuration diagram of an example of the apparatus used in the method of the present invention, FIG. 2 is an explanatory diagram of an example of the material region configuration of the workpiece, and FIG.
Figure 4 is an explanatory diagram of an example method of the present invention, Figure 4 is an explanatory diagram of an example of a processing result, Figure 5 is an explanatory diagram of each step in producing an optical device applying the present invention, and Figure 6 is an explanatory diagram of each process when creating an optical device applying the present invention. The figure is an explanatory diagram of each step when the present invention is applied to forming a composite epitaxial film. In the figure, yu, /ko, 101 is the workpiece, ;Ik, 2
B, /2A. 10B, 10C), 10B, 10C are each material region, 3 is the laser, j, /j, 103 is the removed part or groove or hole as a result of processing, Yl is the optical fiber, here is an adhesive. Fig. 1Q Fig. 2N Fig. 3, A) (B) Fig. 4 ε 0 1 2 3 4 (W) Leuri Panic (Samurai 2) Fig. 6 (A) Fig. 425-1 (D) \-mer 1

Claims (1)

【特許請求の範囲】 腐食雰囲気下にあって、予定の物質領域中の所定部分に
、該物質の除却部分を形成する微細加工法であって、 上記予定の物質領域の光吸収係数が犬となる波長のレー
ザビームを用い、該レーザビームを上記所定部分区照射
すること全特徴とする微細加工法。
[Claims] A microfabrication method for forming a removal portion of a material in a predetermined portion of a predetermined material region under a corrosive atmosphere, the method comprising: A microfabrication method characterized in that the predetermined section is irradiated with the laser beam using a laser beam having a wavelength of
JP57098935A 1982-06-09 1982-06-09 Fine working method Granted JPS58215287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57098935A JPS58215287A (en) 1982-06-09 1982-06-09 Fine working method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57098935A JPS58215287A (en) 1982-06-09 1982-06-09 Fine working method

Publications (2)

Publication Number Publication Date
JPS58215287A true JPS58215287A (en) 1983-12-14
JPH0314555B2 JPH0314555B2 (en) 1991-02-27

Family

ID=14232976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57098935A Granted JPS58215287A (en) 1982-06-09 1982-06-09 Fine working method

Country Status (1)

Country Link
JP (1) JPS58215287A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191804A (en) * 1986-02-18 1987-08-22 Toppan Printing Co Ltd Method for retouching color filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191804A (en) * 1986-02-18 1987-08-22 Toppan Printing Co Ltd Method for retouching color filter

Also Published As

Publication number Publication date
JPH0314555B2 (en) 1991-02-27

Similar Documents

Publication Publication Date Title
US4933262A (en) Method of making integrated optical component
KR100872244B1 (en) Process for producing filmy optical waveguide
DE19544125A1 (en) Process for producing a diffraction grating, light guide component and their uses
EP0187467A1 (en) Glass integrated optical component
DE4040512A1 (en) INTEGRATED OPTICAL CIRCUIT AND METHOD FOR CONNECTING OPTICAL FIBERS
MXPA01000819A (en) Method for fabricating an optical waveguide.
US4523810A (en) Optical fiber coupling method and apparatus
DE69804065T2 (en) Process for shaping deflection mirrors in a planar waveguide in an integrated optical circuit
DE68920333T2 (en) METHODS FOR ROUGH FASTENING FIBERS ON INTEGRATED OPTIC CHIPS AND PRODUCTS THEREOF.
CA2497842A1 (en) Intrinsic fabry-perot optical fiber sensors and their multiplexing
JPS58215287A (en) Fine working method
JPH0194305A (en) Optical circuit device
Reitz et al. Integrated multimode optical waveguides in glass using laser induced deep etching
JP2002228868A (en) Method for manufacturing photonic crystal waveguide
TW201923401A (en) Optical component and method for the production thereof
Klotzbuecher et al. Custom specific fabrication of integrated optical devices by excimer laser ablation of polymers
JPS635310A (en) Production of optical connecting circuit
JPH0367204A (en) Integrated optical device and production thereof
EP0480477B1 (en) Coupling of optical fiber to optical waveguide device
Tao et al. Research on composite manufacturing method of semi-buried 1× 32 optical splitter
JP2009098432A (en) Device for converting laminated multi-channel optical path and method of manufacturing the same
Najafi et al. Recent progress in glass integrated optical circuits
WO2003019250A1 (en) Method for manufacturing an optical device having a cavity
Song 3D Micromachining of Optical Devices on Transparent Material by Ultrafast Laser
JP2781229B2 (en) Magneto-optical waveguide and method of manufacturing the same