JPS5821497B2 - Denryokukeito no Seigiyohouhou Oyobi Souchi - Google Patents
Denryokukeito no Seigiyohouhou Oyobi SouchiInfo
- Publication number
- JPS5821497B2 JPS5821497B2 JP50117648A JP11764875A JPS5821497B2 JP S5821497 B2 JPS5821497 B2 JP S5821497B2 JP 50117648 A JP50117648 A JP 50117648A JP 11764875 A JP11764875 A JP 11764875A JP S5821497 B2 JPS5821497 B2 JP S5821497B2
- Authority
- JP
- Japan
- Prior art keywords
- line
- converter
- direct current
- current
- grounded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Description
【発明の詳細な説明】
本発明は両端に交流電力を直流電力に変換または逆変換
する変換器を設け、この間を直流電路にて連係して両極
(バイポーラ)運転する電力系統の制御方法及び装置に
関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a control method and apparatus for a power system in which converters for converting or inverting AC power into DC power are provided at both ends, and the converters are connected through a DC power line for bipolar operation. It is related to.
両極運転できる直流電力系統の一例として直流送電系統
について見るとその送電線路の構成としては送電線路両
端の変換所で各々接地をとり中性線を省略する大地帰路
方式と、中性線の一端のみ]を接地する中性線帰路方式
とがある。Looking at a DC transmission system as an example of a DC power system capable of bipolar operation, the configuration of the transmission line is a return-to-ground system in which each converter station at both ends of the transmission line is grounded and the neutral wire is omitted, and the other is a ground return system in which the neutral wire is omitted. ] There is a neutral line return method in which the wire is grounded.
ここで、直流電流を大地に流すと、誘導障害、電蝕等の
問題があるので中性線一点接地が使用される。Here, if a direct current is passed to the ground, problems such as induction disturbance and electrolytic corrosion occur, so a single point grounding of the neutral wire is used.
この中性線一点液地方式の一例を第1図によって説明す
る。An example of this neutral line single point liquid field system will be explained with reference to FIG.
図に於て変換器用変圧器T1、変換器B1、直流リアク
トルDCL1からなる変換回路群G1と、同様に構成さ
れる他の3組の変換回路群G2.G3.G4を送電系統
の両端に設け、これらの陽極、陰極間を直流送電線路L
1.L2゜L3で接続し存両極運転が出来る様に連系す
る。In the figure, there is a conversion circuit group G1 consisting of a converter transformer T1, a converter B1, and a DC reactor DCL1, and three other similarly configured conversion circuit groups G2. G3. G4 is installed at both ends of the power transmission system, and a DC power transmission line L is connected between these anodes and cathodes.
1. Connect at L2° and L3 to enable bipolar operation.
そして前記直流送電線路のうち中性線L2の一端を接地
して直流送電系統を構成する。One end of the neutral line L2 of the DC transmission line is grounded to form a DC transmission system.
この直流送電系統が両極運転されている時に、変換回路
群G1で事故が発生すると変換器B1をゲートブロック
した後、図示しない交流側しゃ断器をしゃ断して系統を
保護する。If an accident occurs in the converter circuit group G1 while the DC power transmission system is in bipolar operation, the converter B1 is gate-blocked and then the AC side breaker (not shown) is shut off to protect the system.
これと協調して変換回路群G2も運転停止し、健全極の
変換回路群03 G4で片極運転(モノポーラ)を継
続する。In coordination with this, the operation of the conversion circuit group G2 is also stopped, and unipolar operation (monopolar) is continued with the conversion circuit group 03 G4 having a healthy pole.
しかしながら第1図に図示した事故点■で地絡事故が発
生すると事故極の変換回路群Gl、G2を停止しても健
全極が運転継続されていることにより中性線L2の非接
地端には中性線L2の電圧降下に相当する電位が生じ、
事故点■には変換器B1を通して直流電流が分流しつづ
ける。However, if a ground fault occurs at the fault point ■ shown in Figure 1, even if the converter circuit group Gl and G2 of the fault pole is stopped, the healthy pole continues to operate, so that the non-ground end of the neutral wire L2 generates a potential corresponding to the voltage drop of the neutral wire L2,
DC current continues to be shunted to the fault point (■) through converter B1.
この分流外を停止するためには健全極も停止しなければ
ならない。In order to stop this branched flow, the healthy pole must also be stopped.
この様に変換回路群G1の事故にもかかわらず、直流送
電系統全体を停止することは送電能力の低下が大きくは
なはだ不都合である。As described above, it is extremely inconvenient to shut down the entire DC power transmission system despite the fault in the converter circuit group G1, since the power transmission capacity will be greatly reduced.
上記、不都合の原因は健全極のみの片極運転時に中性線
L2の非接地端に中性線L2の電圧降下に相当する電位
が存在することにあるのでこの電位を除去すればよい。The cause of the above-mentioned inconvenience is that a potential corresponding to the voltage drop of the neutral wire L2 exists at the non-grounded end of the neutral wire L2 during unipolar operation with only a healthy pole, so this potential can be removed.
本発明の目的は、両端に交流を直流に変換又は逆変換す
る変換器を設け、この間を両極運転できるように直流線
路で連係し、かつ前記直流線路のうち中性線路の一端を
接地した電力系統に於て、前記中性線路の非接地側端部
に強制接地用開閉器を設け、前記電力系統の片極に地絡
事故が生じそその運転を停止した場合に、この強制接地
用開閉器を一時的に投入することにより中性線路の非接
地側端部に生じる電位を除去し、健全極側の運転を継続
できるようにした直流線路を含む電力系統の制御方法及
び装置を提供することにある。An object of the present invention is to provide a converter for converting alternating current to direct current or inversely converting it to direct current, and to connect the converters with a direct current line so that bipolar operation can be performed between the converters, and one end of the neutral line of the said direct current line is grounded. In the system, a forced grounding switch is provided at the non-grounded end of the neutral line, and when a ground fault occurs in one pole of the power system and the operation is stopped, this forced grounding switch is installed at the non-grounded end of the neutral line. To provide a control method and device for a power system including a DC line, which removes the potential generated at the non-grounded end of a neutral line by temporarily turning on a power line, and allows continued operation on the healthy pole side. There is a particular thing.
以下本発明の一実施例を図面を参照して説明する。An embodiment of the present invention will be described below with reference to the drawings.
第1図に示す直流送電系統に於て、中性線路L2の非接
地側端部、即ち図示左端に強制接地用開閉器、例えばし
ゃ断器CBを大地との間に設ける。In the DC power transmission system shown in FIG. 1, a forced grounding switch, such as a breaker CB, is provided at the non-grounded end of the neutral line L2, that is, at the left end in the figure, between it and the ground.
第2図は第1図で示した変換回路群G1と、そこに設け
られた事故検出装置を拡大して示しており、以下その詳
細を説明する。FIG. 2 shows an enlarged view of the conversion circuit group G1 shown in FIG. 1 and the accident detection device provided therein, and the details thereof will be explained below.
尚、第1図と同一の部分には同一符号を付し説明は省略
する。Note that the same parts as in FIG. 1 are denoted by the same reference numerals, and explanations thereof will be omitted.
変換器B1の交流側電路には各相毎に変流器CT1〜C
T3が設けられ、また直流側の陽極及び陰極側電路にも
それぞれ直流変流器DC−CT、、DC−CT2が設け
られる。Current transformers CT1 to C are installed for each phase in the AC side circuit of converter B1.
T3 is provided, and direct current transformers DC-CT, DC-CT2 are also provided in the anode and cathode side electric circuits on the direct current side, respectively.
RFi%RF3は共に整流回路で、変成器CT11〜C
T15を介して対応する前記変流器CT1〜CT2又は
直流変流器DC−。Both RFi%RF3 are rectifier circuits, and transformers CT11 to C
via T15 the corresponding current transformers CT1-CT2 or direct current transformer DC-.
CT1.DC−CT2の2次回路と接続し、これらの2
次電流を直流量に、1111、maX(K・1Ial、
K1Ib1.KIIcl)、K−1■41 に変換する
。CT1. Connect to the secondary circuit of DC-CT2 and connect these two
Next, convert the current into a DC amount, 1111, maX (K・1Ial,
K1Ib1. KIIcl), convert to K-1■41.
ここでKは定数、max(K・IIal、KIIbl、
K1Ic1)は()内。Here, K is a constant, max(K・IIal, KIIbl,
K1Ic1) is in parentheses.
の変数の最大値を表わす。represents the maximum value of the variable.
DIFlは直流電路の陽極側と陰済側に流れる電流11
. I4の差を検出する差動回路で、前記整流回路RF
i、RF3の出力に、1111.K・lI41を入力と
し、これらの差を出力する。DIFl is the current 11 flowing between the anode side and the negative side of the DC circuit.
.. A differential circuit that detects the difference between I4 and the rectifier circuit RF.
i, 1111. to the output of RF3. It inputs K·lI41 and outputs the difference between them.
この出力は整流回路RF4に・よって整流され絶対値I
K・l 111−K・1I411となった後レベル検出
回路LDiに加えられる。This output is rectified by the rectifier circuit RF4 and the absolute value I
After becoming K.l 111-K.1I411, it is added to the level detection circuit LDi.
レベル検出回路LDlはその入力、即ち直流電路の電流
11.I4の差が所定値以上になると、直流変流器DC
−CTiとDC−CT2で囲まれた保護区間に地絡事故
が発生したものと判断し出力87DGを11./にする
。The level detection circuit LDl has its input, that is, the current 11. of the DC circuit. When the difference in I4 exceeds a predetermined value, the DC current transformer DC
It is determined that a ground fault has occurred in the protected area surrounded by -CTi and DC-CT2, and the output 87DG is set to 11. / Make it /.
またDIF2は変換器B1の交流側電流Ia、Ib、I
cと直流側電流■。Also, DIF2 is the AC side current Ia, Ib, I of converter B1.
c and DC side current■.
・ との差を検出する差動回路で、前記整流回路RFl
。- A differential circuit that detects the difference between the rectifier circuit RFl
.
RF2の出力K −l 111 、 max(K ・l
Ia I。RF2 output K −l 111 , max(K ・l
Ia I.
K−I Ib l 、に−l Ic l)とを入力とし
、その差max(K −l Ial 、K・lIb1
、に−I Icl )−K・■、を出力し、レベル検出
回路LD2に加えフる。K−I Ib l , -l Ic l) are input, and the difference max(K −l Ial , K・lIb1
, -Icl)-K.■, is output and added to the level detection circuit LD2.
レベル検出回路LD2はこの入力、即ち交流側と直流側
との電流差が所定値以項になると変換器B1にアーム短
絡が発生したものと判断し出力51DAを11/lにす
る。When this input, that is, the current difference between the AC side and the DC side becomes equal to or greater than a predetermined value, the level detection circuit LD2 determines that an arm short circuit has occurred in the converter B1, and sets the output 51DA to 11/l.
尚、レベル検出回路LD2は、前記保護区間内の地絡事
故に対しても、;交流側と直流側との電流差が大きくな
るので出力51DAをXX1./にする。Incidentally, the level detection circuit LD2 outputs the output 51DA as XX1. / Make it /.
第3図は上記事故検出出力87DG、51DAに応動し
各種保護動作を行わさせる制御回路を示しており、図に
応で、ORは前記雨検出出力87;DG、51DAを入
力条件とするオアゲートで、その出力は変換器B1のゲ
ートブロック指令及び図示しない交流側しゃ断器のしゃ
断指令として用いられる。Figure 3 shows a control circuit that performs various protective operations in response to the accident detection outputs 87DG and 51DA. , its output is used as a gate block command for converter B1 and a cutoff command for an AC side breaker (not shown).
ANDiは地絡事故検出出力87DGと、健全極が運転
中である場合の条件信号とを入力条件とするアンドゲー
トで、その出力は強制接地用しゃ断器CBの投入指令と
して用いられる。ANDi is an AND gate whose input conditions are the ground fault detection output 87DG and a condition signal when the healthy pole is in operation, and its output is used as a closing command for the forced earthing circuit breaker CB.
AND2は、反転回路NOT及び動作遅れ回路TDEを
介して加わる地絡事故検出出力87DGと、強制接地用
しゃ断器の常開補助接点CB −a(CB投入時閉)と
を入力条件とするアンドゲートで、その出力は強制接地
用しゃ断器CBのしゃ断、即ち強制接地解除指令として
用いられる。AND2 is an AND gate whose input conditions are the ground fault detection output 87DG applied via the inverting circuit NOT and the operation delay circuit TDE, and the normally open auxiliary contact CB-a (closed when CB is turned on) of the forced grounding breaker. The output is used as a forced earthing breaker CB's breaker, that is, a forced earthing release command.
次に作用を説明する。Next, the action will be explained.
第1図に於て、変換回路G1をコンバータ運転している
とき、まず0点で地絡事故が発生すると事故点■を通し
て、接地点直流送電線路L2(中性線)、変換器用変圧
器TI間に事故電流が流れ第2図で示した交流電流Ia
、Ib、Icのいずれかと直流電流I4に事故電流分が
含まれる。In Figure 1, when the converter circuit G1 is operating as a converter, if a ground fault occurs at point 0, the fault point will be connected to the grounding point DC transmission line L2 (neutral line), converter transformer TI A fault current flows between the alternating current Ia shown in Figure 2.
, Ib, Ic and the DC current I4 include the fault current.
しかし、直流電流11には事故電流分は含まれないので
差動回路DIFiによって検出される差はIK・l 1
11 ”−11411> 0となりアンバランスを生
じ出力87DGは動作ゞ1〃となる。However, since the fault current is not included in the DC current 11, the difference detected by the differential circuit DIFi is IK・l 1
11''-11411>0, resulting in imbalance, and the output 87DG becomes the operation ゃ1〃.
同様に差動回路DIF2による差もmaX(K・1■a
1.K・1■b1.K・1■c1)−K・I1〉0とな
りアンバランスを生ずるため出力5 i DAも動作ゝ
1〃となる。Similarly, the difference due to the differential circuit DIF2 is also maX(K・1■a
1. K・1■b1. K・1■c1)−K・I1>0, which causes an unbalance, so that the output 5 i DA also operates as “1”.
87DGと51DAとが動作すると第3図の制御回路で
は87DGと51DAを条件とするオアゲートORが動
作して変換器B、のゲートブロック操作を行うと共に変
換器用変圧器T1の1次側に設けられる図示しない交流
しゃ断器をトリップして変換回路群G1と02を停止し
、健全極のみで片極運転を行なう。When 87DG and 51DA operate, in the control circuit shown in FIG. 3, an OR gate with conditions for 87DG and 51DA operates to operate the gate block of converter B, and is also provided on the primary side of converter transformer T1. An AC breaker (not shown) is tripped to stop the conversion circuit groups G1 and 02, and single-pole operation is performed using only the healthy poles.
これと同時に87DGの動作と健全極が運転されている
ことを条件にアンドゲートAND 1が動作し、中性線
非接地側の強制接地用しゃ断器CBを投入し、非接地端
大地電圧にもとずく変換器B1への分流を消滅させる。At the same time, AND gate AND 1 operates on the condition that 87DG operates and the healthy pole is operating, and the forced grounding breaker CB on the non-grounded side of the neutral wire is turned on, and the non-grounded end ground voltage is also turned on. The shunt to the Tozuku converter B1 is eliminated.
次に地絡事故が回復してg7DGが復帰すると所定時間
後遅延回路TDEが動作する。Next, when the ground fault is recovered and g7DG is restored, the delay circuit TDE is activated after a predetermined period of time.
このとき、強制接地用しゃ断器CBがすでに投入されて
いることを条件にアンドゲートAND2が動作して強制
接地しゃ断器DC−CBをトリップする。At this time, on the condition that the forced earthing breaker CB has already been turned on, the AND gate AND2 operates to trip the forced earthing breaker DC-CB.
また、第1図の事故点■の如き地絡に対しても同様に動
作する。Further, the same operation is performed for a ground fault such as the fault point (2) in FIG.
次に、第1図で示すように変換回路群G1にア。Next, as shown in FIG.
−ム短絡[F]が発生した場合は変換器用変圧器T1の
2次側は変換器B1を通して短絡電流が流れる。- When a short circuit [F] occurs, a short circuit current flows on the secondary side of the converter transformer T1 through the converter B1.
この短絡電流は直流側には流れないので、第2図の差動
回路DIF2の出力はmax(K−lIa I。Since this short circuit current does not flow to the DC side, the output of the differential circuit DIF2 in FIG. 2 is max(K-lIa I.
K・lIb1 、に、1Icl)Kl ■l >0とな
りアン4バランスを生ずるため出力5 l DAは動作
″うとなる。Since K·lIb1, 1Icl)Kl■l>0 and unbalance occurs, the output 5lDA becomes inoperable.
一方直流側電流はバランスしているためIK・l 11
1−K・lI411”oとなり、出力8γDGは不動作
″0..となる。On the other hand, since the DC side current is balanced, IK・l 11
1-K·lI411"o, and the output 8γDG is inactive"0. .. becomes.
従って第3図の制御回路は出力5 i DAが動作する
ためオアゲートORが。Therefore, in the control circuit of FIG. 3, since the output 5 i DA operates, the OR gate is OR.
動作して変換器B1のゲートブロック操作を行なうと共
に変換器用変圧器T1の1次側の図示しない交流しゃ断
器をトリップして変換回路群G1とG2を停止し、健全
極のみで片極運転を行なう。It operates to operate the gate block of converter B1, and also trips the AC breaker (not shown) on the primary side of converter transformer T1 to stop converter circuit groups G1 and G2, allowing single-pole operation with only healthy poles. Let's do it.
ここでg7DGは不動作であるから強制接地用し、や断
器CBは投入されない。Here, since g7DG is inactive, it is used for forced grounding, and disconnector CB is not turned on.
このように変圧器用変圧器T1の2次側の地絡事故に対
して中性線の非接地端に設けた強制接地用しゃ断器D(
、CBを投入させ、この非接地端に生ずる電位を除去す
ることにより地絡事故点へ・の続流をしゃ断するので、
両極とも停止せずに片極のみを停止して健全極を運転継
続できる。In this way, the forced earthing breaker D (
, by turning on CB and removing the potential generated at this non-grounded terminal, the follow-on current to the ground fault point is cut off.
It is possible to stop only one pole without stopping both poles and continue operating the healthy pole.
また、変換回路の事故であっても接地事故でないアーム
短絡の如き事故では不必要に強制接地を行なって両端接
地としないため、大地帰路電流が流れることによるへい
害も最小にとどめることができる。In addition, in the case of an accident such as an arm short circuit that is not a grounding fault even if it is a fault in the conversion circuit, forced grounding is not performed unnecessarily and both ends are not grounded, so damage caused by the flow of earth return current can be minimized.
又、強制接地用しゃ断器CBを投入して事故極を停止す
るが、分流を事故極からDC−CBへ転流すれば短時間
接地を除去できるのでこれによっても大地帰路電流を短
時間におさえることが出来るメリットがある。In addition, the forced grounding circuit breaker CB is turned on to stop the fault pole, but if the shunt current is diverted from the fault pole to DC-CB, the ground can be removed for a short time, so this also suppresses the earth return current to a short time. There is an advantage that it can be done.
尚、上記実施例では地絡発生と同時に強制接地用しゃ断
器CBを投入したが、大地帰路電流を時間的に多少長く
許容できるならば、交流しゃ断器が開放された後に分流
があることを検出して強制接地用しゃ断器CBを投入す
ることも可能である。In the above embodiment, the forced grounding breaker CB was turned on at the same time as the ground fault occurred, but if the earth return current can be tolerated for a somewhat longer period of time, it is possible to detect the presence of a shunt after the AC breaker is opened. It is also possible to insert a forced grounding circuit breaker CB.
又、第3図に於いて強制接地用しゃ断器CBの投入条件
となるアントゲ−1−ANDlの入力条件として鎖線で
示す様に短絡事故検出出力51DAを加えることも可能
である。Further, in FIG. 3, it is also possible to add the short circuit fault detection output 51DA as shown by the chain line as the input condition of the ant game-1-ANDl, which is the closing condition for the forced grounding circuit breaker CB.
以上のように本発明によれば、両端に交流を直流に変換
又は逆変換する変換器を設け、この間を両極運転できる
ように直流線路により連係し、かつこの直流線路のうち
中性線路の一端を接地した電力系統に於て、片極側が事
故発生により運転停止した場合に、これが地絡事故であ
れば、中性線路の非接地端に設けた強性接地用開閉器を
投入し、中性線路の非接地端に生じる電位を除去するよ
うにしたので、この電位による地線事故点への分流を有
効に防止でき、この分流を除去するため健全極を運転停
止させることはなく、健全極による片極運転を継続でき
る。As described above, according to the present invention, converters for converting alternating current into direct current or inversely converting are provided at both ends, and these are linked by a direct current line so as to be able to perform bipolar operation, and one end of the neutral line of this direct current line In a power system that is grounded, if one pole side is stopped due to an accident, if this is a ground fault, a strong earthing switch installed at the ungrounded end of the neutral line is turned on, and the neutral line is grounded. Since the potential generated at the ungrounded end of the ground line is removed, it is possible to effectively prevent current from being shunted to the ground wire fault point due to this potential. Unipolar operation can be continued.
第1図は本発明による電力系統の制御方法及び装置を説
明するための回路図、第2図及び第3図は本発明の制御
部の一実施例を示す回路図である。
B1〜B4・・・・・・変換器、Ll、L2.L3・・
・・・・直流線路、L2・・・・・・中性線路、CB・
・・・・・強制接地用開閉器、87DG・・・・・・地
絡事故検出出力、ANDl・・・・・・接地開閉器投入
用アンドゲート。FIG. 1 is a circuit diagram for explaining a power system control method and apparatus according to the present invention, and FIGS. 2 and 3 are circuit diagrams showing an embodiment of a control section of the present invention. B1 to B4...Converter, Ll, L2. L3...
...DC line, L2...neutral line, CB.
... Forced grounding switch, 87DG... Ground fault detection output, ANDl... AND gate for closing the grounding switch.
Claims (1)
え、この間を直流線路により両極運転できるように連係
し、更に前記直流線路のうち中性線路の一端を接地した
電力系統の片極側に地絡事故が発生した際、この事故極
側の運転を停止すると共に前記中性線路の非接地端を強
制接地することを特徴とする直流線路を含む電力系統の
制御方法。 2 両端に交流を直流に変換又は逆変換する変換器を備
え、この間を直流線路により両極運転できるように連係
し、更に前記直流線路のうち中性線路の一端を接地した
電力系統を制御するものに於て、前記変換器の陽極側電
流と陰極側電流とを比較しこの差が所定値を越えると出
力を生じる地絡事故検出装置と、この装置による地絡事
故検出信号及び前記変換器に対し電力系統の他極側か運
転中であることを条件に動作し前記中性線の非接地端に
設けた接地用開閉器に投入指令を与えるアンドゲートと
を備えたことを特徴とする電力系統の制御装置。[Scope of Claims] 1. A converter for converting alternating current into direct current or inversely converting it is provided at both ends, and these are connected to each other so that bipolar operation can be performed by a direct current line, and one end of a neutral line of said direct current line is grounded. Control of a power system including a DC line, characterized in that when a ground fault occurs on one pole side of the power system, operation on the fault side is stopped and the ungrounded end of the neutral line is forcibly grounded. Method. 2 A power system that is equipped with a converter that converts alternating current to direct current or inversely converts alternating current to direct current, which is connected to enable bipolar operation by a direct current line, and furthermore, one end of the neutral line of the said direct current line is grounded. a ground fault detection device that compares the anode side current and the cathode side current of the converter and generates an output when the difference exceeds a predetermined value; and a ground fault detection signal from this device and a ground fault detection signal sent to the converter. and an AND gate that operates on the condition that the other pole side of the power system is in operation and gives a closing command to a grounding switch provided at the non-grounded end of the neutral wire. System control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP50117648A JPS5821497B2 (en) | 1975-10-01 | 1975-10-01 | Denryokukeito no Seigiyohouhou Oyobi Souchi |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP50117648A JPS5821497B2 (en) | 1975-10-01 | 1975-10-01 | Denryokukeito no Seigiyohouhou Oyobi Souchi |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5242234A JPS5242234A (en) | 1977-04-01 |
JPS5821497B2 true JPS5821497B2 (en) | 1983-04-30 |
Family
ID=14716871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50117648A Expired JPS5821497B2 (en) | 1975-10-01 | 1975-10-01 | Denryokukeito no Seigiyohouhou Oyobi Souchi |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5821497B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6285115U (en) * | 1985-11-12 | 1987-05-30 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7177799B2 (en) * | 2020-03-17 | 2022-11-24 | 北海道電力株式会社 | power converter |
-
1975
- 1975-10-01 JP JP50117648A patent/JPS5821497B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6285115U (en) * | 1985-11-12 | 1987-05-30 |
Also Published As
Publication number | Publication date |
---|---|
JPS5242234A (en) | 1977-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104953568B (en) | A kind of fault protecting method of flexible direct current power transmission system | |
EP0316203B1 (en) | Protective relay | |
CN113054679B (en) | Direct-current side earth fault control method and control device for high-voltage direct-current transmission system | |
CN110970879B (en) | Method and device for controlling valve area ground fault of extra-high voltage direct current low-side converter | |
US3968419A (en) | Direct current transmission and method of operating the same | |
CN110829390B (en) | 110kV wire break protection method for measuring load side voltage and matching with spare power automatic switching | |
CN111682515B (en) | Method for reducing operation risk of large grounding current in extra-high voltage direct current station | |
CN110661239B (en) | Method for reclosing single-pole grounding fault of flexible direct-current power grid | |
US4819119A (en) | Faulted phase selector for single pole tripping and reclosing schemes | |
JPS5821497B2 (en) | Denryokukeito no Seigiyohouhou Oyobi Souchi | |
CN114825276B (en) | Current transformer protection system and method for penetrating in-phase traction power supply system | |
CN113054678B (en) | Extra-high voltage direct current high-end converter valve area ground fault control method and control device | |
CN114784760A (en) | Circuit breaker failure protection method, medium and system | |
JP2008160910A (en) | Protective relay device | |
JPS6011533B2 (en) | DC power transmission protection device | |
RU2779147C1 (en) | Arc overvoltage protection device for single-phase earth fault | |
CN109004531A (en) | A kind of neutral resistance complexes | |
JP2773808B2 (en) | Earthing transformer protection relay | |
JPS62104433A (en) | Control of distributed electric source | |
CN115632383A (en) | Method and device for judging and protecting stealing tripping of grounding switch of hybrid alternating current filter | |
CN115642573A (en) | Method and system for judging and protecting mixed alternating current filter bypass switch failure | |
JP2916148B2 (en) | Line selection relay | |
JPS6242448B2 (en) | ||
JPS605727A (en) | Defect current breaking system | |
SU1169072A1 (en) | Device for short-circuit protection of three-phase reactor |