JPS58214792A - Rotary heat accumulating type heat exchanger - Google Patents

Rotary heat accumulating type heat exchanger

Info

Publication number
JPS58214792A
JPS58214792A JP9758282A JP9758282A JPS58214792A JP S58214792 A JPS58214792 A JP S58214792A JP 9758282 A JP9758282 A JP 9758282A JP 9758282 A JP9758282 A JP 9758282A JP S58214792 A JPS58214792 A JP S58214792A
Authority
JP
Japan
Prior art keywords
elastic body
core
plastic layer
heat exchanger
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9758282A
Other languages
Japanese (ja)
Other versions
JPS629838B2 (en
Inventor
Masashi Sasaki
佐々木 正史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9758282A priority Critical patent/JPS58214792A/en
Publication of JPS58214792A publication Critical patent/JPS58214792A/en
Publication of JPS629838B2 publication Critical patent/JPS629838B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/04Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Gears, Cams (AREA)

Abstract

PURPOSE:To protect an elastic body while preventing a core from being damaged due to the heat insulating effect of a plastic layer by a method wherein a plastic layer with further excellent heat resistance is laid between the elastic body and the core. CONSTITUTION:A plastic layer 20 with excellent heat resistance is formed along the periphery of a core 1 and an elastic body 22 is laid between the core 1 and a ring gear 3 through the intermediary of the plastic layer 20, therefore even if the ambient temperature along the periphery of the core 1 rises up to nearly 400 deg.C, the heat value conducted to the elastic body 22 is reduced by the heat insulating effect of the plastic layer 20 restraining the temperature rise of the elastic body 20 restraining the temperature rise of the elastic body 22 and extending the service life of said elastic body 22. On the other hand, the ventilating holes 23 pierced on the border of the elastic body 22 and the plastic layer 20 effectively accelerate the evaporation of a rubber hardener in the forming process providing said elastic body 22 and plastic layer 20 around said holes 23 with cooling effect due to the air on the low temperature atmospheric side passing through said ventilating holes 23.

Description

【発明の詳細な説明】 本発明は回転蓄熱式熱交換器に関し、特にその回転蓄熱
体を構成するノ・ニカム形状のコアと駆動装置のりング
ギャとの間に設けた弾性体が高温雰囲気で劣化するのを
防止するように図ったものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotary heat storage type heat exchanger, and in particular, the elastic body provided between the no-nikum-shaped core constituting the rotary heat storage body and the ring gear of the drive device deteriorates in a high-temperature atmosphere. It is designed to prevent this from happening.

第1図は従来の回転蓄熱式熱交換器の一例を示す(自動
車工学全書 第g巻第7章3項参照)。
Figure 1 shows an example of a conventional rotary regenerative heat exchanger (see Automotive Engineering Complete Book, Volume G, Chapter 7, Section 3).

ここで、/は円筒形状をなす蓄熱体(以下でコアという
)であり、コア/の軸心/A方向には多数の流路/Bが
ノ・ニカム形状に構成され、コア/の外周には弾性体2
を介してリングギア3が同心に装着さnていて、図示さ
nない駆動装置にエリリングギア3を駆動し、以てコア
/を軸心/Aの回りに回転させる。グお工び!は図示し
ない圧縮機にエリ圧縮さルた比較的低温な空気の流入お
よび流出通路、6お工び7は、ガスタービンからの高温
なガスの流入および流出通路であり、低温側を流れる流
体と高温側を流扛る流体との間の混交を防止するために
シール装置とが、また高温側からリングギア3お工び弾
性体コを保護するためにンール装v9が、コア/とケー
シング10との間に設けらrていて、これらのシール装
置!お工び9は、そrぞnの位置で、コア/の両面に設
けた摺動面で摺動する工うに構成されている。なお、/
/は流入通路グと流出通路!とを分離しているシール装
置である。
Here, / is a cylindrical heat storage body (hereinafter referred to as core), and a large number of flow channels /B are configured in a no-nikum shape in the axis /A direction of core /, and on the outer periphery of core / is elastic body 2
A ring gear 3 is mounted concentrically through the ring gear 3, and the ring gear 3 is driven by a drive device (not shown) to rotate the core around the axis A. Good work! 6 and 7 are inflow and outflow passages for relatively low-temperature air compressed by a compressor (not shown), and 7 are inflow and outflow passages for high-temperature gas from the gas turbine. A seal device is provided to prevent mixing with the fluid flowing on the high temperature side, and a ring gear V9 is provided to protect the ring gear 3 and the elastic body from the high temperature side. These sealing devices are provided between the The tool 9 is configured to slide on sliding surfaces provided on both sides of the core at the respective positions. In addition,/
/ is an inflow passage and an outflow passage! This is a sealing device that separates the

このように構成された回転蓄熱式熱交換器にあっては、
高温流体が流入通路gから回転するコア/の流路/Bを
経て流出通路7へと導か扛る際にコア/を加熱し、この
加熱さnたコア/の部位が、流入通路グおよび流出通路
jの設けらnでいる側にまで回転してきたところで、コ
ア/に蓄えら荘だ熱が流路/Bを通り抜ける低温流体を
加熱する。
In the rotary regenerative heat exchanger configured in this way,
When the high-temperature fluid is led from the inflow passage g to the outflow passage 7 through the flow path B of the rotating core, the core is heated, and this heated portion of the core is connected to the inflow passage g and the outflow passage. When the passage j has rotated to the side n where it is provided, the intense heat stored in the core heats the low-temperature fluid passing through the passage /B.

而して、このような作用の繰返しによって高温流体と低
温流体との間に熱交換が行われる。
By repeating such actions, heat exchange is performed between the high temperature fluid and the low temperature fluid.

第2図はこのような回転蓄熱式熱交換器における回転体
の構成を示し、本例は弾性体2をゴム系、例えばシリコ
ーンゴム等のエラストマに、Jニジ形成したもので、こ
のエラストマの弾性体コを介してコア/とリングギヤ3
とを接続する構造とすることにより、エン)/の急な加
減速時に直接コア/に衝撃が加わるのを緩衝し、以てそ
の破損を防止している。
Figure 2 shows the configuration of the rotating body in such a rotary regenerative heat exchanger. In this example, the elastic body 2 is made of rubber, such as an elastomer such as silicone rubber, and is formed with a J-shaped groove. Core/and ring gear 3 through body
This structure connects the core to the core to buffer the impact directly applied to the core during sudden acceleration or deceleration of the engine, thereby preventing damage to the core.

しかしながら、このような従来の回転式熱交換器におい
ては、高温雰囲気にさらさnるコア/の外周に沿って弾
性体コが直接取付けらrた構造となっているため、近年
のガスタービ/のように圧縮機出口圧力の高圧化やター
ビンに供給される燃焼ガス温度の高温化が図られてくる
と、コア/の置かnる雰囲気温度が総体的に高めらnて
、耐熱性があるとはいうものの弾性体が劣化する。
However, such conventional rotary heat exchangers have a structure in which the elastic body is directly attached along the outer periphery of the core, which is exposed to a high-temperature atmosphere. As the pressure at the outlet of the compressor increases and the temperature of the combustion gas supplied to the turbine increases, the overall temperature of the atmosphere in which the core is placed increases, making it difficult to maintain heat resistance. However, the elastic body deteriorates.

すなわち、自動車用ガスタービンエンジンの場合を例に
とると、サイクル効率を高めるために、各国ではサイク
ル最高温度を7300℃以上とする高温化が進められて
おり、かかる場合には熱交換器入口での燃焼ガス温度も
また1000℃を超える状態となり、また、圧縮機出口
の空気温度、すなわち熱交換器に流入する空気温度も2
θO℃〜2jθ℃とかなり高くなる。こnに対して、シ
リコーンゴム系の耐熱ゴムの耐熱温度は2夕Q・〜30
θ℃であり、コア/と弾性体コとの接合部近傍ではその
温度が900℃以上となるので、弾性体λが熱劣化する
ものであり、また、更に耐熱性の優nたプラスチックは
あるがかかるプラスチックは弾性に乏しく、このような
弾性体コとして用いるには、そのコア/とリングギヤ3
との間の熱膨張差や駆動衝撃力を吸収しきnないという
欠点がある。
In other words, taking the case of automobile gas turbine engines as an example, in order to increase cycle efficiency, the maximum cycle temperature is being raised to 7,300°C or higher in various countries, and in such cases, the temperature at the heat exchanger inlet is increased. The temperature of the combustion gas of
It becomes quite high at θO°C to 2jθ°C. On the other hand, the heat-resistant temperature of silicone rubber-based heat-resistant rubber is 2 to 30 minutes.
θ℃, and the temperature near the joint between the core and the elastic body is 900℃ or more, so the elastic body λ deteriorates due to heat, and there are plastics that have even better heat resistance. Such plastics have poor elasticity, and in order to be used as such an elastic body, the core/ring gear 3
It has the disadvantage that it cannot absorb the difference in thermal expansion between the two and the driving impact force.

本発明の目的は、上述した欠点を除去し、弾性体とコア
との間に更に耐熱性の優れたプラスチック層を介装し、
このプラスチック層の断熱効果に、!:9弾性体を保護
してコアの破損を防止することのできる回転蓄熱式熱交
換器を提供することにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, further interpose a plastic layer with excellent heat resistance between the elastic body and the core,
The insulation effect of this plastic layer! :9 An object of the present invention is to provide a rotary regenerative heat exchanger capable of protecting an elastic body and preventing damage to a core.

以下に、図面に基づいて本発明の詳細な説明する。The present invention will be described in detail below based on the drawings.

第3図は本発明の一実施例を示し、ここでコθはコア/
の外周面に沿って設けた耐熱性のプラスチック層であり
、このようなプラスチック層コθの形成にあたっては、
例えばその外径に合わせた鋳込み型を設けておき、この
型に耐熱性の俊才またグラスチックの成形材料を充填す
ることにエリコア/と一体化し2接合されたプラスチッ
クの層とすることができる。更にまた、コア/の軸心/
Aと同心となるようにり/グギャ3を上述したプラスチ
ック層20の外周部に配置し、リングギヤ3の内周面と
グラスチック層!θの外周面との間にシリコーンゴム等
の弾性体22を流し込むことにより、リングギヤ32弾
性体22.プラスチック層20お裏びコア/を一体化し
回転蓄熱体を構成することができる。
FIG. 3 shows an embodiment of the present invention, where θ is the core/
It is a heat-resistant plastic layer provided along the outer circumferential surface of the plastic layer.
For example, a casting mold corresponding to the outside diameter is provided, and this mold is filled with a heat-resistant or plastic molding material, which is then integrated with Elicor to form two bonded plastic layers. Furthermore, the axis of the core/
A/Gugya 3 is arranged on the outer periphery of the plastic layer 20 mentioned above so that it is concentric with A, and the inner periphery of the ring gear 3 and the plastic layer! By pouring the elastic body 22 such as silicone rubber between the outer peripheral surface of the ring gear 32 and the outer peripheral surface of the ring gear 32, the elastic body 22. A rotating heat storage body can be constructed by integrating the plastic layer 20 and the back core.

なお、この工うな成形工程では、ゴムの種類やプラスチ
ックの種類如何によって接着のだめのプライマ塗付処理
やゴム硬化のための加熱処理が必要である。また、本例
では、弾性体、22のプラスチック層20との境界近傍
に貫通孔23を設けたが、この貫通孔23により−に述
の成形工程におけるゴム硬化剤の発散を効果的に助長さ
せることができるのみならず、低温雰囲気側の空気がこ
の貫通孔、23を流通することによって、この孔23近
傍の弾性体、22やプラスチック層コθを冷却する効果
が得られる。
In addition, in this precise molding step, depending on the type of rubber or plastic, a primer application process for adhesion and a heat treatment for curing the rubber are required. Further, in this example, a through hole 23 is provided near the boundary between the elastic body 22 and the plastic layer 20, and this through hole 23 effectively promotes the release of the rubber curing agent in the molding process described in -. Not only this, but also the effect of cooling the elastic body 22 and the plastic layer θ in the vicinity of the hole 23 can be obtained by allowing air from the low-temperature atmosphere side to flow through the through hole 23.

第9図は本発明の他の実施例を示し、ここで、プラスチ
ック層20は等間隔に設けた半径方向のスリット2グを
有する。またグラスチック層コθの外周部の形状および
弾性体22の内周部の形状を互いに噛合する歯型コθA
お工び、2コAに形成する。その他の構成についてはw
f、3図の例と変わらない。このように構成した回転蓄
熱体にあっては、プラスチック層20にスリット、2り
を設けたことにより、コア/が熱応力のために変形して
もスリン)、241iCよってその分が吸収されて拘束
されないので、コア/の破損を防止することができる。
FIG. 9 shows another embodiment of the invention in which the plastic layer 20 has equally spaced radial slits 2. In addition, a toothed shape θA that meshes the shape of the outer peripheral part of the plastic layer θ and the shape of the inner peripheral part of the elastic body 22 with each other.
Process and form into 2 pieces A. For other configurations lol
f, same as the example in Figure 3. In the rotating heat storage body configured in this way, by providing the slits in the plastic layer 20, even if the core deforms due to thermal stress, the deformation is absorbed by the 241iC. Since it is not constrained, damage to the core can be prevented.

なお、セラミックス・コア/には通例、ある温度範囲で
温度が上昇するとそnにつれて収縮する例えばLAS 
(!Jチウム・アルミニウム・シリケート)等の材料が
用いられていることがあり、スリット2りの隙間を設定
するにあたっては、コア/の材料とプラスチック材料と
のそれぞれの熱膨張率を予め考慮しておく必要がある。
In addition, ceramic cores usually shrink as the temperature rises within a certain temperature range, such as LAS.
(! J thium aluminum silicate), etc., and when setting the gap between the slits, the coefficient of thermal expansion of the core material and the plastic material must be considered in advance. It is necessary to keep it.

更にまた、プラスチック層2oと弾性体22とは歯型2
θAお工びJ、2Aにより互いに噛合した形に形成しで
あるので、リングギヤ3がら弾性体nを介してプラスチ
ック層−〇にトルクが伝達される際、単に弾性体ムとプ
ラスチック層2θとの間の接着力のみならず、歯型20
Aと2.2人との間で接柱的な伝達がなされる。従って
弾性体22とプラスチック層2゜との間の境界層でトル
クの変動によりすべりが生じて剥離するのを防止するこ
とができる。
Furthermore, the plastic layer 2o and the elastic body 22 have a tooth pattern 2.
Since θA machining J and 2A are formed in a shape that meshes with each other, when torque is transmitted from the ring gear 3 to the plastic layer -0 via the elastic body n, the elastic body M and the plastic layer 2θ are simply connected. Not only the adhesive strength between the teeth but also the tooth shape 20
There is a tangential communication between A and 2.2 people. Therefore, it is possible to prevent the boundary layer between the elastic body 22 and the plastic layer 2° from slipping and peeling due to torque fluctuations.

第!図は第9図に示す例に加えて、弾性体22を装着し
た状態でリングギヤ3をプラスチック層を付したコア/
から着脱自在としたものである。そこで、本例ではリン
グギヤ3および弾性体nが軸方向に離脱するのを防止す
るためにグラスチック層λOにリテーナ部−〇Bを設け
る。またリテーナ部20Bが設けられない側への離脱防
止については、図示はしないが、例えば押え材等を設け
ればよい。
No.! In addition to the example shown in FIG. 9, the figure shows the ring gear 3 with the elastic body 22 attached to the core with the plastic layer attached.
It can be attached and detached freely. Therefore, in this example, a retainer portion -0B is provided in the plastic layer λO in order to prevent the ring gear 3 and the elastic body n from coming off in the axial direction. Further, although not shown in the drawings, for example, a presser member or the like may be provided to prevent the retainer portion 20B from separating to the side where the retainer portion 20B is not provided.

なお、弾性体、22とプラスチック層2oとの間、すな
わち歯型2.2人と、2oAとの間を着脱自在とするた
めには弾性体2.?の成形時に予め歯型コθAK離型剤
を塗布しておけばよく、このように形成することにエリ
、容易に双方間を軸方向に外すことができる。
Note that in order to make the connection between the elastic body 22 and the plastic layer 2o, that is, between the tooth mold 2.2 and the 2oA, detachable, the elastic body 2. ? It is sufficient to apply a θAK mold release agent to the tooth mold in advance during molding, and the advantage of forming the tooth mold in this way is that the two can be easily removed in the axial direction.

以上説明してきたように、本発明にょ扛ば、コアの外周
面に沿って耐熱性の優nたプラスチック層を形成し、こ
のグラスチック層を介してり/グギャとの間に弾性体を
介装して回転蓄熱体を構成したので、コアの外周部近傍
の温度がグθθ℃に近い高温となってもプラスチック層
の断熱効果にょジ弾性体に伝導さnる熱量が低減されて
弾性体が高温化するのが抑制され、弾性体の耐用寿命を
延命させることができる。
As explained above, according to the present invention, a highly heat-resistant plastic layer is formed along the outer peripheral surface of the core, and an elastic body is interposed between the plastic layer and the plastic layer. Since the rotary heat storage body is constructed using a rotating heat storage body, even if the temperature near the outer periphery of the core reaches a high temperature close to θθ℃, the amount of heat conducted to the elastic body is reduced due to the heat insulating effect of the plastic layer. It is possible to suppress the rise in temperature of the elastic body and extend the useful life of the elastic body.

また、弾性体にコアの半径方向の変形を吸収するように
したスリットを設けるようにすれば、熱応力によりコア
が破損するのが防止でき、更に弾性体とグラスチック層
との境界面を歯型に形成することによりこれらの接合面
でのすべりや剥離を防止することができる。更にまた、
このように歯型に形成した境界面で弾性体およびリング
ギヤとプラスチック層を付したコアとの間を着脱自在と
すnば、コアやり/グギャの取り替えや修理等が容易と
なり、補、修理の節減に役立つ。
Additionally, if the elastic body is provided with slits that absorb the deformation of the core in the radial direction, it is possible to prevent the core from being damaged due to thermal stress. By forming it into a mold, it is possible to prevent slipping and peeling at these bonding surfaces. Furthermore,
If the elastic body and ring gear and the core with the plastic layer can be attached and detached using the tooth-shaped interface, it will be easy to replace or repair the core spear/guya. Helps save money.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の回転蓄熱式熱交換器の構成の一例を示す
断面図、第2図はその回転蓄熱体の構成の一例を示す部
分平面図、第3図は本発明回転蓄熱式熱交換器の回転蓄
熱体の構成の一例を示す部分平面図、第9図は本発明の
他の実施例による回転蓄熱体の構成を示す部分平面図、
第!図は本発明の更に他の実施例による回転蓄熱体の構
成を示す断面図である。 /・・・コア、       /A・・・軸心、/B・
・・流路、      コ、2コ・・・弾性体、3・・
・す/グギャ、    り、乙・・・流入通路、夕、7
・・・流出通路、   J’、 9. /ハ・・シール
装置、/θ・・・ケーシング、   −〇・・・プラス
チック層、コθA、コ、2A・・・歯型、   20B
・・・リテーナ部、23・・・貫通孔、     24
t・・・スリット。 特許出願人 日産自動車株式会社 代理人 弁理士 谷   義 −覇h
FIG. 1 is a sectional view showing an example of the configuration of a conventional rotary regenerative heat exchanger, FIG. 2 is a partial plan view showing an example of the configuration of the rotary regenerator, and FIG. 3 is a rotary regenerative heat exchanger of the present invention. FIG. 9 is a partial plan view showing an example of the configuration of the rotating heat storage body of the device; FIG. 9 is a partial plan view showing the configuration of the rotating heat storage body according to another embodiment of the present invention;
No.! The figure is a sectional view showing the structure of a rotating heat storage body according to still another embodiment of the present invention. /...Core, /A...Axis center, /B.
...Flow path, C, 2...Elastic body, 3...
・Su/gugya, ri, otsu...inflow passage, evening, 7
...outflow passage, J', 9. /C...Seal device, /θ...Casing, -〇...Plastic layer, θA, C, 2A...Tooth shape, 20B
... Retainer part, 23 ... Through hole, 24
t...slit. Patent Applicant Nissan Motor Co., Ltd. Agent Patent Attorney Yoshi Tani - Hah

Claims (1)

【特許請求の範囲】 1)円筒型をなすハニカム形状のコアに軸心と平行な流
路を形成し、該コアの外周面に弾性体を介して前記軸心
と同心にリングギヤ金取付けて、該リングギヤにエリ前
記コアを前記軸心の回りに回転駆動する回転蓄熱体を有
する回転蓄熱式熱交換器において、前記コアの外周面と
前記弾性体との間に耐熱プラスチック製の環状層を設け
たことを特徴とする回転蓄熱式熱交換器。 2、特許請求の範囲第1項記載の回転蓄熱式熱交換器に
おいて、前記耐熱プラスチック製の環状層の周方向等分
位置に、前記コアの外周面から前記弾性体の内周面に達
する均等なスリットを設けたことを特徴とする回転蓄熱
式熱交換器。 3)特許請求の範囲第1項または第2項に記載の回転蓄
熱式熱交換器において、前記耐熱プラスチック製の環状
層と前記弾性体とは互いに歯型形状とした境界層を有す
ることを特徴とする回転蓄熱式熱交換器。
[Scope of Claims] 1) A flow path parallel to the axis is formed in a cylindrical honeycomb-shaped core, and a ring gear is attached to the outer peripheral surface of the core concentrically with the axis via an elastic body, In the rotary heat storage type heat exchanger having a rotary heat storage body for rotationally driving the core around the axis in the ring gear, an annular layer made of heat-resistant plastic is provided between the outer peripheral surface of the core and the elastic body. A rotating regenerative heat exchanger characterized by: 2. In the rotary regenerative heat exchanger according to claim 1, the annular layer made of heat-resistant plastic is distributed at equal positions in the circumferential direction from the outer circumferential surface of the core to the inner circumferential surface of the elastic body. A rotary regenerative heat exchanger characterized by having a slit. 3) The rotary regenerative heat exchanger according to claim 1 or 2, wherein the annular layer made of heat-resistant plastic and the elastic body each have a tooth-shaped boundary layer. Rotating regenerative heat exchanger.
JP9758282A 1982-06-09 1982-06-09 Rotary heat accumulating type heat exchanger Granted JPS58214792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9758282A JPS58214792A (en) 1982-06-09 1982-06-09 Rotary heat accumulating type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9758282A JPS58214792A (en) 1982-06-09 1982-06-09 Rotary heat accumulating type heat exchanger

Publications (2)

Publication Number Publication Date
JPS58214792A true JPS58214792A (en) 1983-12-14
JPS629838B2 JPS629838B2 (en) 1987-03-03

Family

ID=14196232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9758282A Granted JPS58214792A (en) 1982-06-09 1982-06-09 Rotary heat accumulating type heat exchanger

Country Status (1)

Country Link
JP (1) JPS58214792A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489359A (en) * 1977-12-23 1979-07-16 Ford Motor Co Production assembly method of rotary heat exchanger
JPS55119921A (en) * 1979-03-05 1980-09-16 Ford Motor Co Drive gear for ceramic heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489359A (en) * 1977-12-23 1979-07-16 Ford Motor Co Production assembly method of rotary heat exchanger
JPS55119921A (en) * 1979-03-05 1980-09-16 Ford Motor Co Drive gear for ceramic heat exchanger

Also Published As

Publication number Publication date
JPS629838B2 (en) 1987-03-03

Similar Documents

Publication Publication Date Title
US6200092B1 (en) Ceramic turbine nozzle
ES2718129T3 (en) Insulation device for a thermal gas turbine and a thermal gas turbine with this structure
CN109642651A (en) Rotor load-bearing part component
GB2154286A (en) Hollow laminated airfoil
JP2006037950A (en) Hybrid turbine blade and method related to the turbine blade
JPS58214792A (en) Rotary heat accumulating type heat exchanger
US4151873A (en) Regenerator for gas turbine engine
JPH0141840B2 (en)
US4269262A (en) Elastic mounting structure for ceramic regenerator core
JPH04234600A (en) Rotor for pressure wave machine
JP2005140001A (en) Supercharger
JP3570622B2 (en) Rotary adsorber rotor
JP2012531330A (en) Improved apparatus for holding a tread band during tire retreading
JPH0645179Y2 (en) Rotary heat storage type heat exchanger
JPS58205088A (en) Rotating and heat accumulating type heat exchanger
US3939902A (en) Heat exchanger rim and hub with L-shaped cross-section
JPH06129248A (en) Manufacture of catalytic converter
Lewakowski Regenerator for gas turbine engine
CA1130272A (en) Drive system for a ceramic regenerator
JPH058258U (en) Rotary heat storage type heat exchanger
JP3674867B2 (en) Rotor for rotary adsorption machine
WO2010070555A1 (en) Rotary regenerator for gas-turbine
JPS6228393B2 (en)
JPH0450437Y2 (en)
JPH04129666U (en) Core of rotating regenerative heat exchanger