JPS58214119A - Zoom lens capable of ultra-closeup photography - Google Patents

Zoom lens capable of ultra-closeup photography

Info

Publication number
JPS58214119A
JPS58214119A JP57097370A JP9737082A JPS58214119A JP S58214119 A JPS58214119 A JP S58214119A JP 57097370 A JP57097370 A JP 57097370A JP 9737082 A JP9737082 A JP 9737082A JP S58214119 A JPS58214119 A JP S58214119A
Authority
JP
Japan
Prior art keywords
group
lens
lens group
positive
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57097370A
Other languages
Japanese (ja)
Other versions
JPS6153697B2 (en
Inventor
Yasuhiro Aono
青野 康廣
Koichi Matsumoto
宏一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP57097370A priority Critical patent/JPS58214119A/en
Priority to US06/500,395 priority patent/US4591244A/en
Publication of JPS58214119A publication Critical patent/JPS58214119A/en
Publication of JPS6153697B2 publication Critical patent/JPS6153697B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144109Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +--+

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To ensure the ultra-closeup photogaphy with good image forming performance, by forming a relay lens with a front group and a rear group, forming the rear group with positive and negative lens groups along with the lenses preceding the positive lens group formed into an afocal system as a whole and shifting forward the positive lens group. CONSTITUTION:A focusing lens group G1 having positive refractive power, a variable magnification lens group G2 having negative refractive power, a compensator group G3 of negative refractive power and a relay lens group G4 consisting of front and rear groups G41 and G42 are set successively from the side of a subject. The group G42 contains a negative lens group GN and a positive lens group GP from the side of the subject, and the lenses preceding the group GP are formed into an afocal system as a whole. Then the group GP is set close to the front lens system along the optical axis as shown in the figure. Thus the ultra-closeup shooting is carried out over the entire zooming range. In this case, no variation is virtually produced for the spherical aberration owing to the shift of the group GP along with reduced variations of other aberrations.

Description

【発明の詳細な説明】 本発明は超近接撮影が可能なズームレンズ、特に大口径
かつ高変倍率を有するカラービデオカメラ用ズームレン
ズに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a zoom lens capable of extremely close-up photography, and particularly to a zoom lens for a color video camera having a large aperture and a high variable magnification.

通常の至近距離よシもさらにレンズに近接した物体の撮
影を行う超近接撮影方式に関しては、従来より (1〕リレ一レンズ群より前方のレンズ群を一体に移動
させる方式、 (2)変倍レンズ群、像面位置補正レンズ群のいずれか
一方または両方を移動させる方式、 (5)リレーレンズ群の前群を移動させる方式等が公知
である。(りに関するものとしては特開昭51−526
35号、特開昭50−65919号公報がある。(2)
に関するものとしては特開昭51−2459号、特公昭
50−23814号公報、特開昭49−55852号公
報がある。これらの2方式は、いずれも変倍レンズ群を
リレーレンズ群に対して移動させるために収差変動が大
きく超近接撮影時における良好な結像性能が望めなかっ
た。しかも通常、絞り位置はリレーレンズ群中またはリ
レーレンズ群の直前に置かれているため、上述の(1)
 、 (2)の方式による超近接撮影時に入射瞳の位置
が変動する。したがって広角側で超近接撮影を行うとき
入射瞳が像側に移動するため、最大像高の主光虜が最前
レンズ面を通過する位置が光軸から一層離れ、十分な周
辺光量を確保するために前方レンズの口径の増大を招く
という欠点が生じる。さらに(1)の方式では合焦のた
めに可動機構を有する合焦レンズ群とズーミングのため
に可動機構を有するレンズ群を一体として移動させる機
構を別にもうけなければならず、機構的に複雑にならざ
るを得ない。(2)の方式では変倍のためのカム溝の延
長上に超近接撮影時にレンズ群を移動させるための溝を
もうけることにより機構的に複雑になることはさけられ
るが、超近接撮影は広角端または望遠端に限られてしま
う。ズーミング全域で超近接撮影を可能にするためには
(1)の方式と同様、機構的に複雑になり、しかもズー
ミング時には必要がない超近接撮影の為のiiJ動スペ
ースを設定しなければならず、レンズ系全体が大型化し
てしまう。
Regarding the ultra-close-up shooting method, which takes pictures of objects even closer to the lens than the normal close-up distance, conventional approaches include (1) a method in which the lens group in front of the relay lens group is moved together; (2) variable magnification; A method of moving one or both of the lens group and the image plane position correction lens group, and (5) a method of moving the front group of the relay lens group are well known. 526
No. 35 and Japanese Unexamined Patent Publication No. 50-65919. (2)
Related publications include JP-A-51-2459, JP-B-50-23814, and JP-A-49-55852. In both of these two systems, since the variable magnification lens group is moved relative to the relay lens group, aberration fluctuations are large, and good imaging performance during extremely close-up photography cannot be expected. Moreover, since the aperture position is usually placed in the relay lens group or just in front of the relay lens group, the above (1)
, The position of the entrance pupil changes during ultra-close-up photography using the method (2). Therefore, when performing super close-up photography on the wide-angle side, the entrance pupil moves toward the image side, so the position where the principal light at the maximum image height passes through the foremost lens surface is further away from the optical axis, ensuring sufficient peripheral light intensity. However, this method has the disadvantage of increasing the aperture of the front lens. Furthermore, in method (1), it is necessary to provide a separate mechanism to move the focusing lens group with a movable mechanism for focusing and the lens group with a movable mechanism for zooming as one, making it mechanically complex. I have no choice but to do so. In method (2), mechanical complexity can be avoided by creating a groove for moving the lens group during ultra-close-up photography on the extension of the cam groove for zooming, but ultra-close-up photography is It is limited to the extreme or telephoto end. In order to enable extremely close-up photography over the entire zooming range, it becomes mechanically complex, similar to method (1), and furthermore, it is necessary to set up a movement space for extremely close-up photography that is not necessary during zooming. , the entire lens system becomes larger.

また、一般にカラービデオカメラ用ズームレンズでは射
出瞳を像面から十分遠い位置に置かねばならず、これを
満足するようにリレーレンズ群のパワー配置を決めると
リレーレンズ前群の屈折力がリレーレンズ後群の屈折力
よシもはるかに大きくなる。しかもリレーレンズの前方
に位置する変倍および補正レンズ系が発散系である場合
が多く、このためリレーレンズ前群のレンズ口径は後群
に比べて大きくなる。かようなパワー配置のズームレン
ズにおいて(3)の方式により超近接撮影を行うと、そ
の前後の光束が強い発散および収斂状態になっている屈
折力の大きいレンズ群を移動させるため、収差変動が大
きく良好な結像性能を維持することができない。また大
きなレンズ群を移動するので機構的な精度の点でも不利
である。(幻の方式により近接撮影を行うズームレンズ
としては特公昭48−52587号公報が知られている
が、ここに開示されている例はズーム比2.5倍、Fナ
ンバー1.8の6mシネカメラ用のズームレンズであり
、極めて小さな変倍率のものに過ぎない。
In addition, in general, in zoom lenses for color video cameras, the exit pupil must be placed sufficiently far from the image plane, and if the power arrangement of the relay lens group is determined to satisfy this requirement, the refractive power of the front group of the relay lens will be The refractive power of the rear group will also be much larger. Moreover, the variable power and correction lens system located in front of the relay lens is often a diverging system, and therefore the lens aperture of the front group of the relay lens is larger than that of the rear group. When ultra-close-up photography is performed using method (3) with a zoom lens with such a power arrangement, aberration fluctuations occur because the lens group with large refractive power is moved so that the light flux in front and behind it is in a state of strong divergence and convergence. Large and good imaging performance cannot be maintained. Furthermore, since a large lens group is moved, it is disadvantageous in terms of mechanical precision. (Japanese Patent Publication No. 48-52587 is known as a zoom lens that performs close-up photography using a phantom method, but the example disclosed here is a 6m cine camera with a zoom ratio of 2.5 times and an F number of 1.8. It is a zoom lens for use in the field of photography, and has only an extremely small magnification ratio.

本発明の目的は通常撮影時のみならず、超近接撮影時に
も良好な結像性能を有し、機構的にも簡単であり、ズー
ミング全域にわたって超近接撮影可能なズームレンズを
゛提供することである。
An object of the present invention is to provide a zoom lens that has good imaging performance not only during normal shooting but also during super close-up shooting, is mechanically simple, and is capable of super-close shooting over the entire zooming range. be.

本発明は物体側より順に正の屈折力を持つ合焦レンズ群
(G1)、負の屈折力を持つ変倍レンズ群(G2)、負
の屈折力をもつ像面位置補正レンズ群(Gs)、および
前群(G111)と後群(Gu)とを有するリレーレン
ズ群(Gll)からなるズームレンズにおいて、リレー
レンズ後群(G□)は物体側より順に負レンズ群(GN
)、正レンズ群(Gp )から成シ、該正レンズ群(O
p)より前方のレンズ全体はほぼアフォーカル系になる
ように構成され、該正レンズ群(GP)をこれより前方
のレンズ系に対して光軸に清って相対的に接近させるこ
とにより、ズーミング全域にわたって超近接撮影を行う
ものである。リレーレンズ後群(G%t)の負レンズ群
(GN)と正レンズ群(Gp)の間が平行光束系に近い
状態のため、正レンズ群(Gp)の移動に伴う球面収差
の変動はほとんどない。
The present invention includes, in order from the object side, a focusing lens group (G1) with positive refractive power, a variable magnification lens group (G2) with negative refractive power, and an image plane position correction lens group (Gs) with negative refractive power. , and a relay lens group (Gll) having a front group (G111) and a rear group (Gu), the relay lens rear group (G□) is connected to a negative lens group (GN
), the positive lens group (Gp ), and the positive lens group (O
p) The entire lens in front of this is configured to be almost an afocal system, and by bringing the positive lens group (GP) relatively close to the lens system in front of this with respect to the optical axis, It performs extremely close-up photography over the entire zooming range. Since the state between the negative lens group (GN) and positive lens group (Gp) of the relay lens rear group (G%t) is close to a parallel beam system, the fluctuation of spherical aberration due to the movement of the positive lens group (Gp) is rare.

また移動量はわずかであるため、非点収差、歪曲収差の
変動も小さく、射出瞳位置の変動も問題ない。しかも広
角端よシ望遠端まで任意の状態で超近接撮影ができ、ズ
ーミングの状態により撮影距離を調節できるので、たと
えばカメラに近い位置にいる人物とカメラから離れた人
物の対談風景の撮影において、離れた人物は合焦レンズ
群(G1)により合焦し、手前の人物はリレーレンズ後
群中の正レンズ群(Gp )により合焦し、リレーレン
ズ後群中の正レンズ群(op )を瞬時に移動させるこ
とにより両者のピントを切換える所謂ピント送りの撮影
テクニックが可能になる。
Furthermore, since the amount of movement is small, fluctuations in astigmatism and distortion are also small, and fluctuations in the exit pupil position are not a problem. What's more, you can take very close-up shots in any position from the wide-angle end to the telephoto end, and you can adjust the shooting distance depending on the zooming state. A distant person is focused by the focusing lens group (G1), a person in the foreground is focused by the positive lens group (Gp) in the rear relay lens group, and a positive lens group (op) in the rear relay lens group is focused. Instantaneous movement enables a so-called focus shifting photography technique in which the focus of the two is switched.

上記のごとき本発明の基本構成において、望遠端におけ
るレンズ系全体の焦点距離をfl・、リレーレンズ後#
 (G、、 )の焦点距離を’42、リレーレンズ後群
(G、)中の負レンズ群(GN)と正レンズ群CGP)
とのレンズ面間隔を馬 、正レンズ群CGp)の焦点距
離をtp 。
In the basic configuration of the present invention as described above, the focal length of the entire lens system at the telephoto end is fl·, and after the relay lens #
The focal length of (G, , ) is '42, negative lens group (GN) and positive lens group CGP in the relay lens rear group (G, ))
The distance between the lens surfaces and the lens surface is , and the focal length of the positive lens group CGp is tp.

正レンズ群(Gp)の後側主点よυ像面までの距離をB
とすると、以下の条件を満足することが肝要である。
The distance from the rear principal point of the positive lens group (Gp) to the υ image plane is B
Therefore, it is important to satisfy the following conditions.

p p 0.7 < −< 1.5    C5ン条件(1)は
射出瞳を像面より十分遠方に置くというカラービデオカ
メラ用レンズ特有の要請に応えるものである。条件(1
)の上限、下限いずれを越えても射出瞳が1象面に近づ
きすぎ、カラーシェーディングの原因となる。
p p 0.7 < - < 1.5 The C5 condition (1) satisfies the specific requirement for lenses for color video cameras that the exit pupil is placed sufficiently far from the image plane. Condition (1
) Exceeding either the upper or lower limit causes the exit pupil to approach one quadrant surface too much, causing color shading.

さらに下限を越えるとリレーレンズ後群(()Jを適切
なパワー配置によシ負レンズ群(GN)と正レンズ群(
Gp )とに分割することが困難となる。
Furthermore, if the lower limit is exceeded, the relay lens rear group (()
Gp).

条件(2)はリレーレンズ後群CG、t )中の正レン
ズ群(GP)を移動するための可動スペースを確保する
ための条件であり、下限を越えると超近接撮影距離を十
分短くし、かつ撮影倍率を大きくすることが不可能にな
る。上限を越えると必要以上にバックフォーカスが長く
なり、したがってレンズ全長が長くなる。
Condition (2) is a condition for securing a movable space for moving the positive lens group (GP) in the relay lens rear group CG, t), and if the lower limit is exceeded, the ultra-close shooting distance will be sufficiently shortened. Moreover, it becomes impossible to increase the photographing magnification. If the upper limit is exceeded, the back focus will become longer than necessary, and the overall length of the lens will therefore become longer.

また軸外光束が正レンズ群を通る位置が光軸からはなれ
、正レンズ群の口径が大きくなってしまう。
Further, the position where the off-axis light beam passes through the positive lens group is away from the optical axis, and the aperture of the positive lens group becomes large.

条件(3)はリレーレンズ後群(0,2)中の正レンズ
群(GP)よシ前方のレンズ系全体を7フオーカル系に
近い状態に保持するための条件である。下限を越えると
該正レンズ群より前方のレンズ系が強い発散系になり、
上限を越えると強い収斂系となり、いずれの場合も球面
収差、コマ収差、像面彎曲の変動が大きくなり、通常撮
影時および超近接撮影時の両方の場合に良好な結除性能
を維持することが困難になる。
Condition (3) is a condition for maintaining the entire lens system in front of the positive lens group (GP) in the rear group (0, 2) of the relay lens in a state close to a 7-focal system. When the lower limit is exceeded, the lens system in front of the positive lens group becomes a strongly divergent system,
When the upper limit is exceeded, the lens becomes a strongly convergent system, and in either case, fluctuations in spherical aberration, coma aberration, and field curvature become large, and good focusing performance is maintained both during normal shooting and during ultra-close shooting. becomes difficult.

上記のごとき構成において、リレーレンズ後U#CG*
t)中の負レンズ群(GN)は、像面側により曲率の強
い面を向けた負レンズで構成し、正レンズ群(Gp)は
2枚の両凸レンズまたは1枚の両凸レンズと1枚の貼り
合せレンズから構成することが望ましい。このように構
成することにより、結像性能を良好に保ちつつ容易に上
記の条件(1)〜(5)を満足することができる。
In the above configuration, after the relay lens U#CG*
The negative lens group (GN) in t) consists of a negative lens with a surface with a stronger curvature facing toward the image plane, and the positive lens group (Gp) consists of two biconvex lenses or one biconvex lens and one biconvex lens. It is desirable that the lens be constructed from a laminated lens. With this configuration, the above conditions (1) to (5) can be easily satisfied while maintaining good imaging performance.

以下に本発明の実施例について説明する。Examples of the present invention will be described below.

表1に矛1実施例の構成諸元を示す。6表に共通である
が、表中左端のNo、は物体側からの順序を示す。矛1
図は矛1実施例の広角端での無限遠物体の撮影状態のレ
ンズ断面図である。J・2図は本発明の方式による広角
端での超近接撮影時のレンズFυ1面図である。リレー
レンズ後!洋の正レンズ群CGp)を′物体側に1.5
u移動させたとき広角端(f = 9.65麿)、中1
iJJ (f = 34.5 xm )、望遠端(f=
12!L50)各々の位i性での超近接撮影時のレンズ
矛1面より物体までの距離Sおよび撮影培率βは以下の
如くである。
Table 1 shows the structural specifications of the first embodiment. Common to all 6 tables, the No. at the left end of the table indicates the order from the object side. spear 1
The figure is a cross-sectional view of the lens of the first embodiment in the state of photographing an object at infinity at the wide-angle end. Figure J.2 is a plan view of the lens Fυ during extremely close-up photography at the wide-angle end according to the method of the present invention. After the relay lens! Western positive lens group CGp) 1.5 on the object side
When moved by u, wide-angle end (f = 9.65mm), middle 1
iJJ (f = 34.5 xm), telephoto end (f =
12! L50) The distance S from the surface of the lens to the object and the photographing magnification β during extremely close-up photography at each position i are as follows.

牙3図は広角端における、また牙4図は望遠端における
無限遠撮影時の収差図、3・5図は広角端における超近
接撮影時の収差図を示す。
Figure 3 shows aberrations at the wide-angle end, Figure 4 shows aberrations at the telephoto end when shooting at infinity, and Figures 3 and 5 show aberrations at the wide-angle end when shooting at very close range.

fT 1)4 − =  0.197 P P −=L1.848 尚、比較のために、リレーレンズ前群(G4.)を像側
に移動させることによって超近接撮影を行なう場合を示
す。リレーレンズ前群(04,)の移#址を1.5關と
した場合、各ズーミング位置におりる1w点距離Sおよ
び倍率βは以下の通シである。
fT 1)4 - = 0.197 P P - = L1.848 For comparison, a case will be shown in which very close-up photography is performed by moving the relay lens front group (G4.) to the image side. When the displacement of the front relay lens group (04,) is 1.5 degrees, the 1w point distance S and the magnification β at each zooming position are as follows.

第6図に広角端におけるこの方式による超近接撮影状態
での諸収差図を示す。収差図中8phは球面収差、As
tは非点収差、 Disは歪曲収差を表わし2球面収差
図中には破線で正弦条件も併記した。但し2図示した収
差図はレンズと撮像面との間に置かれたストライプフィ
ルタ、フェースプレートおよび高周波カットフィルタ等
の各種平行平面板を考慮して補正された状態を示してい
る(次の実施例についても同様)。上記の数値及び図面
に示されているように2両方式と本同じ移動量でほぼ同
程度の撮影距離2倍率が確保されるが。
FIG. 6 shows various aberration diagrams in a very close-up photographing state using this method at the wide-angle end. 8ph in the aberration diagram is spherical aberration, As
t stands for astigmatism, Dis stands for distortion, and the sine condition is also shown with a broken line in the two-spherical aberration diagram. However, the aberration diagrams shown in Figure 2 show the state that has been corrected by taking into consideration various parallel plane plates such as a stripe filter, a face plate, and a high frequency cut filter placed between the lens and the imaging surface (see the following example). (The same applies to) As shown in the above numerical values and drawings, almost the same photographic distance doubling ratio can be secured with the same amount of movement as with the two-way type.

収差変動時た球面収差、歪面収差の変動が本発明による
ものの方が著しく少ない。
The variations in spherical aberration and distorted aberration caused by variations in aberrations are significantly smaller in the case of the present invention.

表2に第2実施例の構成諸元を示す。第7図は第2実施
例の広角端での無限遠物体の撮影状態のレンズ断面図で
ある。第8図は本発明の方式による広角端での超近接撮
影時のレンズ断面図である。リレーレンズ後群の正レン
ズ群を物体側に2.5鶴移動させたとき、広角端(r=
11.74i!jI)を中間(f=32.48 ) 、
望遠端(r=s92u)各々の位置での超近接撮影時の
レンズ第1面より物体までの距離゛S及び撮影倍率βは
以下の如くである。
Table 2 shows the structural specifications of the second embodiment. FIG. 7 is a cross-sectional view of the lens of the second embodiment in the state of photographing an object at infinity at the wide-angle end. FIG. 8 is a cross-sectional view of the lens during extremely close-up photography at the wide-angle end according to the method of the present invention. When the positive lens group of the rear relay lens group is moved 2.5 degrees toward the object side, the wide-angle end (r=
11.74i! jI) to intermediate (f=32.48),
The distance ゛S from the first surface of the lens to the object and the photographing magnification β during extremely close-up photography at each position at the telephoto end (r=s92u) are as follows.

第9図は広角端における。また第10図は望遠端におけ
る無限遠撮影時の収差図、第11図は広角端における超
近接撮影時の収差図を示す。
Figure 9 is at the wide-angle end. Further, FIG. 10 shows an aberration diagram when photographing at infinity at the telephoto end, and FIG. 11 shows an aberration diagram when photographing at a very close distance at the wide-angle end.

f42 −  =  0.E190 T 4 =0.185 P P −=  0.976 本実施例においても、比較のため、リレーレンズ前群(
G4.)をW側に6.20移動させて超近接撮影を行な
う場合を示す。このとき各ズーミング位置における物点
距離S及び倍率βは以下の通9である。
f42 − = 0. E190 T 4 =0.185 P P -= 0.976 Also in this example, for comparison, the relay lens front group (
G4. ) is moved 6.20 degrees to the W side to perform super close-up photography. At this time, the object point distance S and magnification β at each zooming position are as follows.

上記の数値が示すように本発明による方式の方が少ない
移動量で同程度の撮影距離を確保でき、しかも撮影倍率
も大きくとることができる。
As shown by the above numerical values, the method according to the present invention can secure the same photographing distance with a smaller amount of movement, and can also achieve a larger photographing magnification.

矛12図はリレーレンズ前群(G41 )の移動による
超近接撮影時の収差図である。矛11図、矛12図を比
較して明らかなように、本発明による方式の方が収差変
動特に像面彎曲、歪曲収差の変動を著しく小さくするこ
とができる。
Figure 12 is an aberration diagram during extremely close-up photography due to the movement of the relay lens front group (G41). As is clear from a comparison of Figures 11 and 12, the system according to the present invention can significantly reduce aberration fluctuations, particularly field curvature and distortion aberrations.

尚、一般に超近接撮影時においては、最大像高の主光線
が最前レンズ面を切る位置は、撮影倍率が小さいほど光
軸がら遠くなり前方レンズの口径を太きくしなければな
らないが、上記実施例では超近接撮影時の物体距離が短
いとともに撮影倍率が大きくなっているため、前方レン
ズの口径を十分に小さく保つことが6丁能となっている
In addition, in general, during ultra-close-up photography, the position where the principal ray of maximum image height cuts through the front lens surface is farther away from the optical axis as the photography magnification decreases, and the aperture of the front lens must be made thicker. Because the object distance during ultra-close shooting is short and the magnification is high, the 6-lens lens is designed to keep the aperture of the front lens sufficiently small.

以上の如く、本発明によれば、リレーレンズ後群を負レ
ンズ群と正レンズ群に分割し、該正レンズ群の前方レン
ズ系をほぼアフォーカル系に近い状態に構成し、該正レ
ンズ群を物体側に微小量移動させることにより、通常撮
影時、超近接撮影時いずれにおいても良好な結像性能を
有し、簡単な操作によりズーミング全域にわたって超近
接撮影可能な大口径高変倍率ズームレンズを実現するこ
とができる。
As described above, according to the present invention, the rear relay lens group is divided into a negative lens group and a positive lens group, the front lens system of the positive lens group is configured to be almost an afocal system, and the positive lens group This large-diameter, high-variable-magnification zoom lens has good imaging performance in both normal shooting and ultra-close-up shooting by moving the lens a minute amount toward the object side, and enables ultra-close-up shooting over the entire zooming range with simple operations. can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

矛1図は矛1実施例の広角端での無限遠物体の撮影状態
のレンズ断面図、 矛2図は本発明の方式による広角端での超近接撮影時の
レンズ断面図、 矛3図は広角端における無限遠撮影時の諸収差図、 矛4図は望遠端における無限遠撮影時の諸収差図、 J’ 5図は広角端における超近接撮影時の諸収差図、 矛6図は本発明の方式による広角端での超近接撮影状態
での諸収社図、 牙7図は矛2実施例の広角端での無限遠物体の撮影状態
のレンズ断面図、 矛8図は本発明の方式による広角端での超近接撮影時の
レンズ@面図、 牙9図は広角端における無限遠撮影時の諸収差図、 矛10図は望遠端における無限遠撮影時の諸収差図、 矛11図は広角端における超近接撮影時の諸収差図、 矛12図はリレーレンズ前群の移動による超近接撮影時
の諸収差図である。 〔主要部分の符号の説明〕 合焦レンズ群 −−−−−−−−−−−−−−−−==
−−−−−−−−−G。 変倍レンズ群 −−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−G2像面位置補正レンズ群
 −−−−−−−−−−−−−−−−−−−−G。 リレーレンズ群 −−−−−−−−−−−−−−−一’
−−−−−−−−−−−−G。
Figure 1 is a cross-sectional view of the lens in the photographing state of an object at infinity at the wide-angle end using the embodiment of Figure 1. Figure 2 is a cross-sectional view of the lens during extremely close-up photography at the wide-angle end using the method of the present invention. Diagrams of various aberrations when shooting at infinity at the wide-angle end, Figure 4 is a diagram of various aberrations when photographing at infinity at the telephoto end, Figure J' 5 is a diagram of various aberrations when shooting at extremely close-up at the wide-angle end, Figure 6 is a diagram of the book Figure 7 is a cross-sectional view of the lens in the state of photographing an object at infinity at the wide-angle end of the second embodiment; Figure 9 shows various aberrations when shooting at infinity at the wide-angle end. Figure 10 shows various aberrations when shooting at infinity at the telephoto end. Figure 11 The figure shows various aberrations during very close-up shooting at the wide-angle end, and Figure 12 shows various aberrations during very close-up shooting due to the movement of the front group of the relay lens. [Explanation of symbols of main parts] Focusing lens group −−−−−−−−−−−−−−−−==
----------G. Variable magnification lens group −−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−G2 image plane position correction lens group −−−−−−−−−−−−−−−−−−−−G. Relay lens group −−−−−−−−−−−−−−−1'
−−−−−−−−−−−G.

Claims (1)

【特許請求の範囲】[Claims] 物体側より+1に正の屈折力を有する合焦レンズ群、負
の屈折力を有する変倍レンズ群、負の屈折力を有する像
面位置補正レンズ群、正の屈折力を有するリレーレンズ
前群および正の屈折力を有するリレーレンズ後群より構
成されるズームレンズにおいて、該リレーレンズ後群を
物体側よシ順に負レンズ群と正レンズ群とで構成し、無
限遠から所定の近距離までの物体に合焦する際には前記
合焦レンズ群の移動により合焦を行い、該所定の近距静
よりも近距離の物体に合焦する際には前記リレーレンズ
後群中の前記正レンズ群をそれより前方のレンズ系に対
して相対的に光軸方向に旧って移動することによシ合焦
を行うことを特徴とする超近接撮影可能なズームレンズ
From the object side: +1 focusing lens group with positive refractive power, variable magnification lens group with negative refractive power, image plane position correction lens group with negative refractive power, relay lens front group with positive refractive power and a zoom lens composed of a relay lens rear group having positive refractive power, the relay lens rear group is composed of a negative lens group and a positive lens group in order from the object side, and the relay lens rear group is composed of a negative lens group and a positive lens group in order from the object side. When focusing on an object, focusing is performed by moving the focusing lens group, and when focusing on an object at a shorter distance than the predetermined short distance, the positive lens in the rear relay lens group A zoom lens capable of extremely close-up photography, characterized in that focusing is achieved by moving a group in the optical axis direction relative to a lens system in front of it.
JP57097370A 1982-06-07 1982-06-07 Zoom lens capable of ultra-closeup photography Granted JPS58214119A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57097370A JPS58214119A (en) 1982-06-07 1982-06-07 Zoom lens capable of ultra-closeup photography
US06/500,395 US4591244A (en) 1982-06-07 1983-06-02 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57097370A JPS58214119A (en) 1982-06-07 1982-06-07 Zoom lens capable of ultra-closeup photography

Publications (2)

Publication Number Publication Date
JPS58214119A true JPS58214119A (en) 1983-12-13
JPS6153697B2 JPS6153697B2 (en) 1986-11-19

Family

ID=14190617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57097370A Granted JPS58214119A (en) 1982-06-07 1982-06-07 Zoom lens capable of ultra-closeup photography

Country Status (1)

Country Link
JP (1) JPS58214119A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3507591A1 (en) * 1984-03-02 1985-09-12 Olympus Optical Co., Ltd., Tokio/Tokyo VARIO LENS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3507591A1 (en) * 1984-03-02 1985-09-12 Olympus Optical Co., Ltd., Tokio/Tokyo VARIO LENS

Also Published As

Publication number Publication date
JPS6153697B2 (en) 1986-11-19

Similar Documents

Publication Publication Date Title
US5675439A (en) Zoom lens
JPH09325274A (en) Zoom lens
JPH0356609B2 (en)
JPH07261083A (en) Zoom lens
JPS63292106A (en) Variable power lens
JP2558138B2 (en) Zoom lens
JPH03200909A (en) Large-aperture intermediate telephoto lens
JPH08201697A (en) Zoom lens
US4204747A (en) Method of focussing in a photographic lens system
JPH0358088B2 (en)
US9746649B2 (en) Zoom lens and imaging apparatus
JP2903473B2 (en) Compact high-magnification zoom lens
US4124274A (en) Zoom lens having closeup focusing control
JPS5832365B2 (en) zoom lens couch
JPS6242252B2 (en)
JP3003226B2 (en) Zoom lens
JPS5979212A (en) Zoom lens using synthetic resin material
JPH0644097B2 (en) Variable magnification optical system
JP3007680B2 (en) Afocal variable power optical system
JPH07159687A (en) Optical system of amphibious camera
US3481664A (en) Large aperture and wide angle zoom lens system
JPS58214119A (en) Zoom lens capable of ultra-closeup photography
JPH0146045B2 (en)
JP3097919B2 (en) Attachment lens
JPH07281093A (en) Simplified wide angle zoom lens