JPS58213627A - Preparation of a-type zeolite - Google Patents

Preparation of a-type zeolite

Info

Publication number
JPS58213627A
JPS58213627A JP9404782A JP9404782A JPS58213627A JP S58213627 A JPS58213627 A JP S58213627A JP 9404782 A JP9404782 A JP 9404782A JP 9404782 A JP9404782 A JP 9404782A JP S58213627 A JPS58213627 A JP S58213627A
Authority
JP
Japan
Prior art keywords
aqueous solution
zeolite
gel
sodium silicate
sodium aluminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9404782A
Other languages
Japanese (ja)
Other versions
JPS63370B2 (en
Inventor
Takeo Shimada
島田 武夫
Sukeyuki Kishioka
岸岡 佑之
Genichi Sato
源一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP9404782A priority Critical patent/JPS58213627A/en
Publication of JPS58213627A publication Critical patent/JPS58213627A/en
Publication of JPS63370B2 publication Critical patent/JPS63370B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Detergent Compositions (AREA)

Abstract

PURPOSE:To prepare A-type zeolite consisting of uniform crystal particles having highly round edges, in high efficiency, by reacting an aqueous solution of sodium silicate with an aqueous solution of sodium aluminate under specific reaction condition. CONSTITUTION:A-type zeolite is prepared by the reaction of an aqueous solution of sodium silicate with an aqueous solution of sodium aluminate. The aqueous solution of sodium silicate is made to react continuously and instantaneously with the aqueous solution of sodium aluminate in a tubular reactor under the mixing flow of the flow rate of >=2m/sec, and the resultant gel is aged and crystallized by one or more procedures to give forced diffusion state and selected from high-speed agitation, ultrasonic vibration, shearing force and wet pulverization. A-type zeolite consisting of uniform crystal particles having highly round edges can be prepared in high efficiency by this process.

Description

【発明の詳細な説明】 本発明は均一性で粒子表面が丸みのある結晶粒子から成
るAmゼオライトの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing Am zeolite consisting of crystal grains with uniformity and rounded particle surfaces.

従来より、ゼオライト(結晶性アルミノ珪酸ナトリウム
)がイオン交換能を有することは・知られており、最近
ではこれを利用した洗剤用ビルダーとしての用途開発が
進められている。一般式〔(1,θ±O,コ) Na2
.Oe AJ、 OB ・(2,o±04)S10゜・
(0〜t)H,o)で表わされるA型ゼオライトもその
ようなゼ、オライドの一種であるが、その製造は、一般
には各成分の溶液を混合して非晶質アルミノ珪酸塩ゲル
(以下単に「ゲル」と言う)を析出させ、これを結晶化
させる方法に拠っている。
It has been known for a long time that zeolite (crystalline sodium aluminosilicate) has ion exchange ability, and recently progress has been made in the development of applications utilizing this as detergent builders. General formula [(1, θ±O, K) Na2
.. Oe AJ, OB ・(2,o±04)S10゜・
A-type zeolite represented by (0~t)H,o) is also a type of zeolite, but its production is generally done by mixing solutions of each component to form an amorphous aluminosilicate gel ( The method is based on a method in which a gel (hereinafter simply referred to as "gel") is precipitated and then crystallized.

ゼオライトの生成は、原料液濃度、モル比(810x 
/AJt OB )、ゲル生成方法、熟成温度、熟成時
間等の多数の因子によって左右される為、用途に従って
これ等の因子を種々組み合わせた製造法が数多く提案さ
れている。
The production of zeolite depends on the raw material liquid concentration, molar ratio (810x
/AJt OB ), gel formation method, aging temperature, aging time, etc., and many manufacturing methods have been proposed in which various combinations of these factors are used depending on the application.

A型ゼオライトは、元来等軸晶系に属する結晶であるた
め、その粒子形状は典型的な立方体になり易く、従来の
製造法によるものは大部分が角ばったサイコロ状の結晶
粒子から成っている。
Type A zeolite is a crystal that originally belongs to the equiaxed crystal system, so its particle shape tends to be a typical cube, and those produced by conventional methods are mostly composed of angular, dice-shaped crystal particles. There is.

しかしながら、一般に角ばった結晶粒子から成るAmゼ
オライトは球状ないし丸みのある結晶粒子から成るAl
lゼオライトに比して純度や種々の性能が劣るために、
なるべく球状に近い丸みのある結晶粒子から成るAmゼ
オライトの製造法の確立が望まれている。とくに、洗剤
ビルダー用の場合には、角ばった結゛晶粒子のAmゼオ
ライトは1次凝集による組粒を形成し易く洗濯に際して
衣類への沈着が顕著であるという欠点があり、その根本
的な改善が望まれている。
However, Am zeolite, which generally consists of angular crystal particles, is different from Al zeolite, which consists of spherical or rounded crystal particles.
l Because it is inferior in purity and various performances compared to zeolite,
It is desired to establish a method for producing Am zeolite, which consists of rounded crystal particles as close to spherical as possible. In particular, when used as a detergent builder, Am zeolite, which has angular crystalline particles, has the drawback of easily forming aggregate particles due to primary aggregation, which causes significant deposits on clothing during washing, and fundamental improvements are needed. is desired.

また、均一性のある一次粒子は好ましい粒子特性として
種々の使用分野で望まれている。
Further, uniform primary particles are desired in various fields of use as desirable particle properties.

本発明者らは珪酸ジーダ水溶液とアルミン酸ソーダ水溶
液とを反応させてアルミノ珪酸塩ゲルを生成させたのち
、骸ゲルを熟成して結晶化させることによりAfilゼ
オライトを製造させる方法について各種の実験・研究を
重ねた結果、珪酸ソーダ水溶液とアルミン酸ソーダ水溶
液との反応を特定の条件下で行なうことによって著しく
丸みのめ2均−な結晶粒子から成るAM、ゼオライトが
能率的に得られることを見出し本発明を完成させた。
The present inventors conducted various experiments on a method of producing Afil zeolite by reacting an aqueous solution of Zyda silicate and an aqueous solution of sodium aluminate to produce an aluminosilicate gel, and then aging and crystallizing the skeleton gel. As a result of repeated research, it was discovered that by reacting an aqueous solution of sodium silicate and an aqueous sodium aluminate solution under specific conditions, AM and zeolite consisting of significantly rounded and uniform crystal particles could be efficiently obtained. The present invention has been completed.

すなわち、本発明は珪酸ソーダ水溶液とアルミン酸ソー
ダ水溶液とを反応させてアルミノ珪酸塩ゲルを生成させ
たのち、該ゲルを熟成して結晶化させることによりAm
ゼオライトを製造する方法において、珪酸ソーダ水溶液
とアルミン酸ソーダ水溶液とを輸送配管内で平均流速コ
?!1/秒以上の流速を有する混合流のもとて連続的、
瞬間的に反応させ、得られたゲルを結晶化させることを
特徴とするAmゼオライトの製法である。本発明者らは
先にA型ゼオライトの製法において、珪酸ソーダ水溶液
とアルミン酸ソーダ水溶液とをバックミキシングのない
状態で連続的に混合を行わせ、ゲルを得る方法を提案し
た(特開昭jA−1941を号)。そして、その混合反
応を行う混合装置としてはスタティックミキサーのよう
な管状静的混合装置、遠心ポンプ等を利用できることを
開示した。しかし、本発明者らはその後の検討の結果、
上記のような特別な混合装置を用いなくとも、珪酸ソー
ダ水溶液とアルミン酸ソーダ水溶液との混合を、何らの
混合装置を装備しない液体または気体輸送用の普通の管
内で連続的、瞬間的に行うと瀝によりゲルを生成させ、
該ゲルを引きつづく結晶化を経て、均一性で粒子表面が
丸みのある結晶粒子よりなる大型ゼオライトが得られる
ことを見出した。すなわち、本発明は均一性で粒子表面
が丸みのある結晶粒子よりなるAmゼオライトの製法に
詔いて、珪酸ソーダ水溶液とアルミン酸ソーダ水溶液と
を、混合装置を装備しない配管内に、両液が合体後の管
内(以下「混合帯」と言う)の混合物の平均流速がJm
/秒となるように、同時に連続的に注入し、瞬間的にゲ
ルを生成させた後、該ゲルを結晶化させることをq#徴
とするAllゼオライトの製法である。本発明にかかる
ゲルの生成条件下では、珪酸ソーダ水溶液とアルミン酸
ソーダ水溶液との混合が、連続的、瞬間的、1完結的に
行われる。このような状態のもとでは良好な混合状態が
得られて均質なゲルが生成し、引きつづく結晶化を経て
得られるA型ゼオライト粒子は均一性で粒子表面が丸み
のある結晶粒子となる。
That is, in the present invention, an aluminosilicate gel is produced by reacting a sodium silicate aqueous solution and a sodium aluminate aqueous solution, and then the gel is aged and crystallized to produce Am.
In the method for producing zeolite, the average flow velocity of a sodium silicate aqueous solution and a sodium aluminate aqueous solution is adjusted in a transportation pipe. ! very continuous under a mixed flow with a flow rate of 1/s or more;
This is a method for producing Am zeolite, which is characterized by instantaneous reaction and crystallization of the resulting gel. The present inventors previously proposed a method for producing A-type zeolite by continuously mixing a sodium silicate aqueous solution and a sodium aluminate aqueous solution without back-mixing to obtain a gel (Japanese Patent Application Laid-Open No. -1941). It was also disclosed that a tubular static mixing device such as a static mixer, a centrifugal pump, etc. can be used as a mixing device for carrying out the mixing reaction. However, as a result of subsequent studies, the inventors found that
Even without using a special mixing device as mentioned above, a sodium silicate aqueous solution and a sodium aluminate aqueous solution can be mixed continuously and instantaneously in an ordinary pipe for transporting liquid or gas without any mixing device. to produce a gel by
It has been found that by successive crystallization of the gel, a large zeolite consisting of crystal grains with uniformity and rounded particle surfaces can be obtained. That is, the present invention addresses the manufacturing method of Am zeolite, which consists of crystal grains with uniformity and rounded particle surfaces, by combining a sodium silicate aqueous solution and a sodium aluminate aqueous solution in a pipe that is not equipped with a mixing device. The average flow velocity of the mixture in the latter pipe (hereinafter referred to as "mixing zone") is Jm
This is a method for producing All zeolite in which the q# characteristic is to simultaneously and continuously inject the zeolite at the same time so as to instantaneously generate a gel, and then crystallize the gel. Under the conditions for producing the gel according to the present invention, the sodium silicate aqueous solution and the sodium aluminate aqueous solution are mixed continuously, instantaneously, and in one complete manner. Under such conditions, a good mixing state is obtained and a homogeneous gel is produced, and the A-type zeolite particles obtained through continued crystallization become crystal particles with uniformity and rounded particle surfaces.

本発明の製法で重要な要件の1つとして、珪酸ソーダ水
溶液とアルミン酸ソーダ水溶液とを混合して非晶質のア
ルミノ珪酸塩ゲルを得る反応におけるゲルの調製方法が
ある。本発明にかかる製法で使用する原料は珪酸ソーダ
水溶液とアルミン酸ソーダ水溶液であり、その濃度は、
次に示す範囲が好適である。
One of the important requirements in the production method of the present invention is a gel preparation method in the reaction of mixing a sodium silicate aqueous solution and a sodium aluminate aqueous solution to obtain an amorphous aluminosilicate gel. The raw materials used in the manufacturing method of the present invention are a sodium silicate aqueous solution and a sodium aluminate aqueous solution, and their concentrations are:
The following ranges are suitable.

珪酸ソーダ水溶液: Nano   s−二〇%810
、   !−20チ アルミン酸ソーダ水溶液:  Na、O,j〜コ0%A
j、Ojl   コ〜20% 珪酸ソーダ水溶液およびアルミン酸ソーダ水溶液は同時
に連続的に混合帯に注入されるが、この時、混合帯にお
ける平均流速−m/*以上の状態に保ち、均質なゲルを
調製する点に本発明方法の第1の特徴がある。このゲル
調製に用いる原料珪酸ソーダ水溶液およびアルミン酸ソ
ーダ水溶液の温度は特に限定する必要はないが、混合帯
の温度が比較的低い場合は生成するゲルの粘度が高くな
り、良好な混合状態を得ることが困難であり、また温度
が比較的高い場合はゲルの生成速度が速くなり、不均質
なゲルが得られ易い。従って、混合帯の反応温度は!θ
℃〜100℃、好ましくは&j’C〜デ0℃となるよう
に原料水溶液の温度を調整することが望ましい。また、
混合帯に詔けるゲル組成物のモル比(810,/Aut
os)はo、s−1,j、好ましくはt、o−1,Oと
なるように原料水溶液の注雄量を調節することが重要で
ある。仁のモル比が前記範囲より外れる場合は生成する
ゲルが不均質となり、これを結晶化して均一性で粒子表
面が丸みのあるAllゼオライト粒子を効率的に製造す
ることは困難である。更に、混合帯において良好な混合
状態を得るためには原料水溶液の量的なバランスを好適
に調整することが重要である。例えば、原料水溶液の濃
度が一方が比較的高く、他方が比較的低い場合、混合帯
におけるモル比(810,/AちOs )を前記好適範
囲に維持するためには、両液の注入流量に大きな差が生
じ、その結果混合帯で良好な混合状態を得ることがより
困難となる。実験結果によれば、珪酸ソーダ水溶液およ
びアルミン酸ソーダ水溶液の流量比(体積比)は0.2
〜/、jの範囲が好適で、この範囲になるよう番こそれ
ぞれの水溶液の濃度を調整することが望ましい。
Sodium silicate aqueous solution: Nano s-20% 810
, ! -20 Sodium thialuminate aqueous solution: Na, O, j ~ 0% A
j, Ojl ~20% Sodium silicate aqueous solution and sodium aluminate aqueous solution are simultaneously and continuously injected into the mixing zone, but at this time, the average flow rate in the mixing zone is kept at a state of -m/* or higher to form a homogeneous gel. The first feature of the method of the present invention is the preparation. The temperature of the raw material sodium silicate aqueous solution and sodium aluminate aqueous solution used for this gel preparation does not need to be particularly limited, but if the temperature of the mixing zone is relatively low, the viscosity of the gel produced will be high and a good mixing state will be obtained. In addition, when the temperature is relatively high, the gel formation rate increases, and a heterogeneous gel is likely to be obtained. Therefore, the reaction temperature in the mixing zone is! θ
It is desirable to adjust the temperature of the raw material aqueous solution so that it is from 100°C to 100°C, preferably from &j'C to 0°C. Also,
The molar ratio of the gel composition that can be applied to the mixing zone (810,/Aut
It is important to adjust the amount of the raw material aqueous solution poured so that os) becomes o, s-1,j, preferably t, o-1,0. If the molar ratio of the kernels is outside the above range, the resulting gel will be heterogeneous, and it will be difficult to crystallize it and efficiently produce All-I zeolite particles with uniformity and rounded particle surfaces. Furthermore, in order to obtain a good mixing state in the mixing zone, it is important to suitably adjust the quantitative balance of the raw material aqueous solution. For example, when the concentrations of the raw material aqueous solutions are relatively high on one side and relatively low on the other, in order to maintain the molar ratio (810, /A and Os) in the mixing zone within the above-mentioned preferred range, it is necessary to adjust the injection flow rates of both solutions. A large difference occurs, making it more difficult to obtain good mixing in the mixing zone. According to the experimental results, the flow rate ratio (volume ratio) of the sodium silicate aqueous solution and the sodium aluminate aqueous solution is 0.2.
A range of ~/, j is preferred, and it is desirable to adjust the concentration of each aqueous solution to fall within this range.

珪酸ソーダ水溶液およびアルミン酸ソーダ水溶液を同時
に、連続的に混合帯に注入し均質なゲルを生成せしむる
本発明にかかるゲルの調製方法に詔いては、混合装置と
して動的および静的混合手段を備えた装置は必要とせず
、原料溶液の注入速度を調節することのみによって珪酸
ソーダ水溶液とアルミン酸ソーダ水溶液との連続的で、
瞬間的、かつ完結的な混合状態を達成することができ、
均質なゲルを得ることが可能である。本°発明方法にお
ける混合帯の装置としては一般市販の液体または気体輸
送用管(パイプ)を用いることができる。珪酸ソーダ水
溶液およびアルミン酸ソーダ水溶液は、Y字管、T型継
手等を用いる配管中順番こより合体し、混合帯を経てゲ
ルを生成し、結晶化のための装置に装入される。本発明
にかかるゲルの調製方法において、混合帯内のゲル組成
物の平均流速はコfn/秒に維持する条件が不可欠であ
る。平均流速−m/秒以下では混合帯での混合効果が不
十分で、生成するゲルが不均質なものとなる。平均流速
はJWL/秒以上で大きい程混合の効果は向上するが、
装置的に原料供給ポンプや配管材料に特別の機材を必要
とするため、適宜選択すればよい。また、混合帯の通過
時間は特に限定されないが、実験結果によれば、数秒間
という非常に短かい時間で艮好な混合状態が得られるこ
とが判明した。通過時間を10秒間以上としてもそれに
見合った混合効果の向上は認められない。
In the gel preparation method according to the present invention, in which an aqueous sodium silicate solution and an aqueous sodium aluminate solution are simultaneously and continuously injected into a mixing zone to produce a homogeneous gel, dynamic and static mixing means are used as a mixing device. There is no need for equipment equipped with this, and by simply adjusting the injection rate of the raw material solution, the sodium silicate aqueous solution and the sodium aluminate aqueous solution can be continuously mixed.
Instant and complete mixing can be achieved,
It is possible to obtain homogeneous gels. As the mixing zone device in the method of the present invention, commercially available pipes for transporting liquid or gas can be used. The aqueous sodium silicate solution and the aqueous sodium aluminate solution are sequentially combined in piping using a Y-shaped tube, a T-shaped joint, etc., pass through a mixing zone, form a gel, and are charged into an apparatus for crystallization. In the gel preparation method according to the present invention, it is essential to maintain the average flow rate of the gel composition in the mixing zone at fn/sec. If the average flow rate is less than -m/sec, the mixing effect in the mixing zone will be insufficient and the resulting gel will be non-uniform. The greater the average flow velocity is JWL/sec or higher, the better the mixing effect will be.
Since special equipment is required for the raw material supply pump and piping materials, it may be selected appropriately. Further, although the time for passing through the mixing zone is not particularly limited, experimental results have shown that a good mixing state can be obtained in a very short time of several seconds. Even if the passing time was increased to 10 seconds or more, no commensurate improvement in the mixing effect was observed.

更に、通過時間を比較的長くしても平均流速がJ m 
7秒以下では均質なゲルが得られない。混合否に使用す
る配管材料としては一般市販の配電材料をその11使用
することができる。しかしながら、混合帯で生成するゲ
ルは非常に粘稠であり、混合帯管内に付着して閉塞の原
因となりやすい。このゲルの付着性が配管材料によって
若干の差があることが判明した。鋼管、ステンレス管は
比較的付着が生じやすく、ポリ塩ビニール管、ポリプロ
ピレン管、クロロブレンゴムライニング管等には付着し
にくいことが判明した。
Furthermore, even if the passage time is relatively long, the average flow velocity is J m
If the time is 7 seconds or less, a homogeneous gel cannot be obtained. As the piping material used for mixing, general commercially available power distribution materials can be used. However, the gel produced in the mixing zone is very viscous and tends to adhere to the inside of the mixing zone tube and cause blockage. It was found that the adhesion of this gel differed slightly depending on the piping material. It was found that steel pipes and stainless steel pipes are relatively prone to adhesion, while polyvinyl chloride pipes, polypropylene pipes, chloroprene rubber-lined pipes, etc. are less likely to adhere.

A型ゼオライトの製造においては、原料溶液である珪酸
ソーダ水溶液およびアルミン酸ソーダ水溶液の混合によ
るゲルの調製方法がA型ゼオライトの品質に大きく影響
するため、混合方法に関して従来より多く、の方法が提
案されている。しかし、そのほとんどが混合時に外部よ
り強力な攪拌力や剪断力等を作用7.させる内容のも。
In the production of A-type zeolite, the gel preparation method by mixing the raw material solutions of sodium silicate aqueous solution and sodium aluminate aqueous solution greatly affects the quality of A-type zeolite. has been done. However, most of them apply strong stirring force, shearing force, etc. from the outside during mixing.7. Also the contents.

のである。本発明方法では、このような外部よりの混合
操作あるいは混合を促進するような静的装置を全く必要
とせず、流体自体の流れの特質より発生する混合作用に
より均質なゲルを得る混合効果が達成される。
It is. The method of the present invention does not require such an external mixing operation or a static device that promotes mixing, and achieves a mixing effect that yields a homogeneous gel by the mixing action generated by the flow characteristics of the fluid itself. be done.

かくして、得られるゲルは、そのtt直・ちに結晶化さ
せるために熟成を行う。この結晶化のための熟成はゲル
を攪拌その他適当な拡散手段にて行われる。また、必要
によっては強制的拡散状態に詔いて行うことが好ましい
場合が多い。
The gel thus obtained is subjected to aging in order to immediately crystallize it. This ripening for crystallization is carried out by stirring the gel or other suitable diffusion means. Furthermore, it is often preferable to force the diffusion state if necessary.

なお、ここで強制的拡散状態というのは、通常の攪拌混
合以外の方法で粒子を激しくあるいは強制的に分散させ
ることであって、例えば回転数11000rp以上の高
速攪拌、超音波振動、剪断力または湿式粉砕などの操作
があげられる。
Note that the forced diffusion state here refers to violently or forcibly dispersing particles by a method other than normal stirring and mixing, such as high-speed stirring at a rotation speed of 11,000 rpm or more, ultrasonic vibration, shearing force, or Examples include operations such as wet grinding.

かかる強制的拡散状態はゲルの熟成による結晶化に要す
る全時間を通じて維持されてよいことは勿論であるが、
その時間の一時期に該状態が維持されてもよい。またこ
の強制的拡散を与える操作を通常の攪拌混合の中に組込
まれていてもよい。この間の熟成条件はその採るべき操
作詔よび反も条件によって一様でないが、一般的には3
0℃〜tSO℃ において1時間〜io時間の範囲が適
当である。この場合温度が低いと結晶化時間は長くなり
、また粒子も小さくなる傾向がある。結晶化が終了した
ゼオライトスラリーは一過により母液を分離除去し、常
法により洗浄したのち、必要に応じて乾燥、粉砕して製
品とする。一方、この工程で分離される母液は苛性ソー
ダを主成分とする水溶液であり、本発明においてはこの
母液を原料系へ、要すれば濃縮して循環的に再使用する
ことができる。すなわちアルミン酸ソーダ水溶液または
/および珪酸ソーダ水溶液の調製用液として使用できる
Of course, such a forced diffusion state may be maintained throughout the entire time required for crystallization due to aging of the gel;
The state may be maintained for a certain period of time. Further, the operation for providing this forced diffusion may be incorporated into normal stirring and mixing. The ripening conditions during this period vary depending on the operating instructions and reaction conditions to be adopted, but generally 3.
A range of 1 hour to io hours at 0°C to tSO°C is suitable. In this case, when the temperature is low, the crystallization time becomes longer and the particles tend to become smaller. After crystallization, the zeolite slurry is passed through to separate and remove the mother liquor, washed by a conventional method, and then, if necessary, dried and pulverized to produce a product. On the other hand, the mother liquor separated in this step is an aqueous solution containing caustic soda as a main component, and in the present invention, this mother liquor can be reused cyclically in the raw material system, if necessary by concentrating it. That is, it can be used as a liquid for preparing a sodium aluminate aqueous solution and/or a sodium silicate aqueous solution.

本発明にかかる方法で製造されるAMゼオライトは丸み
のある表面がなめらかな結晶粒子でその平均粒径はO,
Sないしjμであり、しかも粒度分布の幅が狭く実質的
に均一なものである。
AM zeolite produced by the method according to the present invention has crystal grains with rounded and smooth surfaces, and the average particle size is O,
S to jμ, and the particle size distribution is narrow and substantially uniform.

また電子顕微鏡写真で個々の結晶粒子を観察すると、何
れも鋭い頂点や稜線がなく球状ないし著しく丸みを帯び
た粒子状態であると同時に粒度分布が極めて均一なもの
であることが認められる。
Furthermore, when individual crystal particles are observed using electron micrographs, it is observed that they are all spherical or extremely rounded particles without sharp apexes or ridge lines, and at the same time, the particle size distribution is extremely uniform.

本発明にかかる丸みのある結晶粒子から成るAllゼオ
ライトは一般に純度が高く、イオン交換能力の点でも優
れてセリ、さらに珪酸ソーダや界面活性剤などの水溶液
中での分散性や懸濁安定性に優れているので洗剤用ビル
ダーとして最適であり、とくに「洗剤用ゼオライトスラ
リー」(%開昭jグー6す04L、その他)メ調製のた
めのA重ゼオライトとして効果的に利用することができ
る。
The All-Al zeolite made of rounded crystal particles according to the present invention generally has high purity and is excellent in ion exchange ability, and has excellent dispersibility and suspension stability in aqueous solutions such as seri, sodium silicate, and surfactants. Because of its excellent properties, it is most suitable as a builder for detergents, and can be particularly effectively used as A-heavy zeolite for the preparation of "zeolite slurry for detergents" (% Kaisho J Gu 6S04L, etc.).

以上の如く、本発明によるA型ゼオライトは顕著な丸み
をもった結晶粒子から成り、且つ粒度分布が均一で種々
の優れた特性を備えている。
As described above, the type A zeolite according to the present invention is composed of crystal grains with remarkable roundness, has a uniform particle size distribution, and has various excellent properties.

また、製造工程は連続式反応にもとづくととも暑こ母液
を循環して利用することができ、装置がコンパクトでエ
ネルギー消費も少なく、短かい反応および熟成時間で能
率よく一定品質の製品が得られる等工業的に価値の高い
ものである。
In addition, the manufacturing process is based on a continuous reaction system, and the hot mother liquor can be circulated and used.The equipment is compact and consumes little energy, and products of constant quality can be efficiently obtained with short reaction and aging times. It is of high industrial value.

以下、実施例により具体的に説明する。Hereinafter, this will be explained in detail using examples.

実施例1 市販の珪酸ソーダ溶液をカセインーダ溶液で希釈してN
a、Of、コ重量%、SiO,t、2重Jlチの珪酸ソ
ーダ水溶液を調製した。市販の水酸化アルミニウムをカ
セイソーダ溶液で溶解し、Na、OJr、9重1にチ、
Ai、O,5,7重量%のアルミン酸ソーダ水溶液を調
製した。両液を7θ℃に加熱し、ポンプを経由して同時
に連続的に混合帯のモル比(S10□/A’zOa )
が/、9になるように混合帯に注入し、アルミノ珪酸塩
ゲルを得た。この際混合帯の配管はJISK−4?4!
/による呼び径コOの硬質駒ニール管で、混合帯での平
均流速は、7..7m/秒、混合帯通過時間は約(il
、7秒であった。
Example 1 Commercially available sodium silicate solution was diluted with caseinida solution and N
An aqueous sodium silicate solution containing a, Of, cowt%, SiO, t, and double Jl was prepared. Commercially available aluminum hydroxide was dissolved in caustic soda solution, and Na, OJr, 9 parts, 1 part,
A sodium aluminate aqueous solution containing 5.7% by weight of Ai and O was prepared. Both liquids were heated to 7θ℃, and the molar ratio of the mixing zone (S10□/A'zOa) was adjusted simultaneously via a pump.
The mixture was poured into the mixing zone so that the ratio was 9/2 to obtain an aluminosilicate gel. At this time, the piping of the mixing zone is JISK-4?4!
The average flow velocity in the mixing zone is 7. .. 7 m/s, the mixed zone passage time is approximately (il
, 7 seconds.

このようにして得られたゲルを攪拌機を備えた容器に採
り適度の攪拌のもとてgo℃でコ時間加熱すると結晶化
したゼオライトの微粒子とアルカリ溶液とからなる流動
性に富むスラリーが得られた。このスラリー中のゼオラ
イトを濾過、洗浄して母液から分離したのち、乾燥粉砕
して、Xa回折、電子顕微鏡観察、コールタ−カウンタ
ー法粒度分布測定等を行い、物質内容、粒子の形状、粒
度分布、Caイオン交換能などを測定したところ第1表
に示す結果が得られた。
When the gel thus obtained is placed in a container equipped with a stirrer and heated at 0°C for an hour with moderate stirring, a highly fluid slurry consisting of crystallized zeolite fine particles and an alkaline solution is obtained. Ta. The zeolite in this slurry is separated from the mother liquor by filtration and washing, then dried and ground, and subjected to Xa diffraction, electron microscopy, Coulter Counter method particle size distribution measurement, etc. to determine the substance content, particle shape, particle size distribution, etc. The results shown in Table 1 were obtained by measuring the Ca ion exchange capacity and the like.

得られたゼオライトの電子顕微鏡写真(倍率5ooo倍
)を第1図に示すが、ゼオライトは一〜3μの粒径を有
する立方体の角がとれ丸みをもった結晶で極めて粒度分
布のシャープな均一粒子から成っている。更に粒子1つ
1つが他の粒子と離れて存在しており、二次凝集はみら
れず分散性の良いことがうかがわれる。
An electron micrograph (magnification: 500x) of the obtained zeolite is shown in Figure 1. The zeolite is a cubic crystal with a particle size of 1 to 3 μm, rounded corners, and uniform particles with an extremely sharp particle size distribution. It consists of Furthermore, each particle existed separately from other particles, and no secondary aggregation was observed, indicating good dispersibility.

実施例コ 実施例1と同じ原料を用い、同様の操作によりゲルを生
成させた。該ゲルを超音波発振機を備えた容器に採り、
超音波振動(JjKI(I)のらとに80℃で2時間加
熱し、結晶化したゼオライトの微粒子とアルカリ溶液と
からなる流動性に富むスラリーが得られた。次後の操作
は実施例1と同じであり1分析結果を第1表に示すが、
実施例1とほぼ同等の性状、性能を有するAllゼオラ
イトが得られた。
Example Using the same raw materials as in Example 1, a gel was produced by the same operations. The gel is placed in a container equipped with an ultrasonic oscillator,
Heating at 80°C for 2 hours under ultrasonic vibration (JjKI(I)) produced a highly fluid slurry consisting of crystallized zeolite fine particles and an alkaline solution.The subsequent operations were as described in Example 1. The results of one analysis are shown in Table 1.
All-Al zeolite having properties and performance almost equivalent to those of Example 1 was obtained.

実施例3 実施例Iと同じ原料を用い、同様の操作により、ゼオラ
イト結晶粒子を得た、但し、混合帯の配管はJI8に一
694I/ による呼び径#0の硬質塩化ビニール管で
、混合帯での平均流速はコ、J m 7秒、混合帯の通
過時間は約1秒で6つ得られたゼオライトの分析結果を
第1表に示すが、実施例1とほぼ同等の性状、性能を有
するA臘ゼオライトが得られた。
Example 3 Using the same raw materials as in Example I, zeolite crystal particles were obtained by the same operation, except that the piping for the mixing zone was a hard vinyl chloride pipe with a nominal diameter #0 according to JI8-1694I/. Table 1 shows the analysis results of the six zeolites obtained. A zeolite having the following properties was obtained.

比較例 実施例1と同じ原料を用い同様の操作によりゼオライト
結晶粒子を得た。但し混合帯での平均流速は、i、am
7秒、混合帯の褥過時間は約10秒であった。1%られ
たゼオラ・イトの分析結果を第1表、電子顕微鏡写真を
第一図に示す。
Comparative Example Zeolite crystal particles were obtained using the same raw materials and the same operations as in Example 1. However, the average flow velocity in the mixing zone is i, am
7 seconds, and the soaking time of the mixed zone was about 10 seconds. The analysis results of the 1% zeolaite are shown in Table 1, and the electron micrograph is shown in Figure 1.

得られたゼオライトは粒度分布がブロートチCaイオン
交換能も実施例1で得られたゼオライトより劣っている
。電子顕微鏡観察(倍率1000倍)では粒子が不均一
で、二次凝集していることが分る。
The obtained zeolite has a broad particle size distribution and is inferior to the zeolite obtained in Example 1 in terms of Ca ion exchange ability. Electron microscopy (1000x magnification) reveals that the particles are non-uniform and are secondary agglomerated.

第  l  表 ※コS℃における塩化カルシウム水溶液(濃度3001
90 aO/J )にゼオライトを[Nano @Aj
2o、 −5io、]として/f/JLの濃度に添加し
てis分間攪拌し、液中のカルシウム濃度を測定して求
めた。
Table l *Calcium chloride aqueous solution at S℃ (concentration 3001
90 aO/J) with zeolite [Nano @Aj
2o, -5io,] to a concentration of /f/JL, stirred for is minutes, and measured the calcium concentration in the liquid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明により得られたゼオライトの電子顕微鏡
写真、第一図は比較例で得られたゼオライトの環子顕微
鏡写真である。 特許出願人 日本化学工業株式会社 し+−,−’4−.il
FIG. 1 is an electron micrograph of a zeolite obtained according to the present invention, and FIG. 1 is a ring micrograph of a zeolite obtained in a comparative example. Patent applicant Nihon Kagaku Kogyo Co., Ltd. +-, -'4-. il

Claims (1)

【特許請求の範囲】 法において、珪酸ソーダ水溶液とアルミン酸ソーダ水溶
液とを管状反応器を用いてコm/秒以上の流速を有する
混合流のもとて連続的に反応させてアルミノ珪酸塩ゲル
を得、得られたゲルを熟成し結晶化させることを特徴と
するAfiゼオライトの製法。 ユ 珪酸ソーダ水溶液とアルミン酸ソーダ水溶液とをモ
ル比(Sin、/AJ、 0. )がo、sないしコ、
5の範囲で反応させることを特徴とする特許請求の範囲
第1項記載のA型ゼオライトの製法。 3 珪酸ソーダ水溶液とアルミン酸ソーダ水溶液との反
応を行う管状反応器がポリ塩化ビニール製であることを
特徴とする特許請求の範囲第7項または第1項記載のA
mゼオライトの製法。 病 ゲルの熟成は高速攪拌、超音波振動、剪断力又は湿
式粉砕のいずれか少なくとも1種の強制的拡散状態を与
える操作で行われることを特徴とする特許請求の範囲第
1項記載のA派ゼオライトの製法。 よ 強制的拡散状態はゲルが熟成して結晶化する全期間
であることを特徴とする特許請求の範囲第1又は5項記
載のA型ゼオライトの製法。 五 強制的拡散状態はゲルが熟成して結晶化する期間の
一部でおることを特徴とする特許請求の範囲第1又はS
項記載のAmゼオライトの製法。 ! ゲルの熟成による結晶化は攪拌混合と強制的拡散状
態とによって行われることを特徴とする特許請求の範囲
第1項、第ダ項、第5項またはj1!61記載のAmゼ
オライトの製法。
[Claims] In the method, an aluminosilicate gel is produced by continuously reacting a sodium silicate aqueous solution and a sodium aluminate aqueous solution using a tubular reactor under a mixed flow having a flow rate of com/sec or more. A method for producing Afi zeolite, which is characterized by aging and crystallizing the gel obtained. The molar ratio (Sin, /AJ, 0.) of the sodium silicate aqueous solution and the sodium aluminate aqueous solution is o, s or co,
5. The method for producing A-type zeolite according to claim 1, wherein the reaction is carried out in a range of 5. 3. A according to claim 7 or 1, wherein the tubular reactor for reacting the sodium silicate aqueous solution and the sodium aluminate aqueous solution is made of polyvinyl chloride.
Manufacturing method of m-zeolite. Group A according to claim 1, wherein the gel is matured by an operation that provides a forced diffusion state of at least one of high-speed stirring, ultrasonic vibration, shearing force, and wet grinding. Zeolite manufacturing method. The method for producing type A zeolite according to claim 1 or 5, wherein the forced diffusion state is the entire period during which the gel matures and crystallizes. (v) Claim 1 or S characterized in that the forced diffusion state occurs during a part of the period during which the gel matures and crystallizes.
The method for producing Am zeolite described in Section 1. ! The method for producing Am zeolite according to claim 1, d, 5 or j1!61, characterized in that crystallization by aging of the gel is carried out by stirring and mixing and forced diffusion.
JP9404782A 1982-06-03 1982-06-03 Preparation of a-type zeolite Granted JPS58213627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9404782A JPS58213627A (en) 1982-06-03 1982-06-03 Preparation of a-type zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9404782A JPS58213627A (en) 1982-06-03 1982-06-03 Preparation of a-type zeolite

Publications (2)

Publication Number Publication Date
JPS58213627A true JPS58213627A (en) 1983-12-12
JPS63370B2 JPS63370B2 (en) 1988-01-06

Family

ID=14099642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9404782A Granted JPS58213627A (en) 1982-06-03 1982-06-03 Preparation of a-type zeolite

Country Status (1)

Country Link
JP (1) JPS58213627A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528201B2 (en) 2004-12-22 2009-05-05 Exxonmobil Chemical Patents Inc. Synthesis of silicoaluminophosphate molecular sieves
CN104071816A (en) * 2013-03-29 2014-10-01 中国科学院过程工程研究所 Method for improving crystallization of sodium aluminate by ultrasonic field

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528201B2 (en) 2004-12-22 2009-05-05 Exxonmobil Chemical Patents Inc. Synthesis of silicoaluminophosphate molecular sieves
CN104071816A (en) * 2013-03-29 2014-10-01 中国科学院过程工程研究所 Method for improving crystallization of sodium aluminate by ultrasonic field

Also Published As

Publication number Publication date
JPS63370B2 (en) 1988-01-06

Similar Documents

Publication Publication Date Title
EP0922673B1 (en) Low-silica faujasite type zeolite and method for producing the same
JP2003528022A (en) Process for the production of zeolites and zeolitic mixtures with enhanced cation exchange properties, the products produced thereby, and surfactant compositions formulated with them
CN105883849B (en) The synthetic method of the molecular sieves of ZSM 5 of morphology controllable
US2588853A (en) Method of producing silica powder
US4213874A (en) Synthetic amorphous sodium aluminosilicate base exchange materials
US4244835A (en) Method of dispersing alpha alumina monohydrate
JPS5953215B2 (en) Method for producing alkali metal silicates
JPS59227715A (en) Preparation of zeolite of high silica faujasite type
US4275048A (en) Process for the preparation of fine droplet-reacted aluminosilicates of the smallest particle size
JPS6324929B2 (en)
JPH0497908A (en) Production of zeolite
CN113666380A (en) Preparation method of spherical silicon dioxide
JPS58213627A (en) Preparation of a-type zeolite
WO2007061073A1 (en) Crossed-disk-, hamburger- or disk-shaped vaterite type calcium carbonate and process for producing the same
JPS6116725B2 (en)
JPS6163526A (en) Preparation of spherical basic magnesium carbonate
JP2618021B2 (en) Method for synthesizing true spherical pentasil type zeolite powder
JPS6345115A (en) Production of calcium silicate
JPS6049130B2 (en) Manufacturing method of A-type zeolite
WO1993017963A1 (en) Preparation of granular alkali metal borate compositions
CN105585029B (en) A kind of ZSM 35 molecular sieves of hollow accumulation shape and preparation method thereof
JP3269616B2 (en) Manufacturing method of mononuclear detergent particles
JP4346152B2 (en) Gas hydrate manufacturing method
JPS5954620A (en) Preparation of zeolite
CN112110454A (en) Microwave-assisted synthesis method for rapidly synthesizing SSZ-13 molecular sieve