JPS58213275A - Automatic pretreatment of radioactive iodine in cooling water of nuclear reactor - Google Patents

Automatic pretreatment of radioactive iodine in cooling water of nuclear reactor

Info

Publication number
JPS58213275A
JPS58213275A JP57095683A JP9568382A JPS58213275A JP S58213275 A JPS58213275 A JP S58213275A JP 57095683 A JP57095683 A JP 57095683A JP 9568382 A JP9568382 A JP 9568382A JP S58213275 A JPS58213275 A JP S58213275A
Authority
JP
Japan
Prior art keywords
tank
stirring
liquid
water
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57095683A
Other languages
Japanese (ja)
Inventor
Kazuo Murakami
一男 村上
Yoshiyuki Yuasa
湯浅 嘉之
Eiki Kobayashi
栄樹 小林
Kazuo Fukase
深瀬 一男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Tokyo Shibaura Electric Co Ltd
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Genshiryoku Jigyo KK, Tokyo Shibaura Electric Co Ltd, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP57095683A priority Critical patent/JPS58213275A/en
Publication of JPS58213275A publication Critical patent/JPS58213275A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/02Devices or arrangements for monitoring coolant or moderator
    • G21C17/022Devices or arrangements for monitoring coolant or moderator for monitoring liquid coolants or moderators
    • G21C17/0225Chemical surface treatment, e.g. corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To decrease the operation amount and the radiation exposure amount of an operator, by putting a sample liquid from a nuclear reactor cooling water into a tank and providing processes, etc. for adding an aqueous iodine carrier solution and sodium hypochlorite to the sample and for jetting a gas into the liquid for agitation. CONSTITUTION:The sample water is transferred to the first stirring tank 12 from a sample water tank 4, then the aqueous iodine carrier solution and NaClO are poured therein and stirred together with the sample water. Here, the transfer and injection of the aqueous iodine carrier solution and NaClO are performed by opening a solenoid valve V attached at these tanks 5, 6 by a signal from a microcomputer and simultaneously by compressing and transferring the liquid in the tank to the tank 12 by supplying the compressed gas into each tank from a gas supplying unit 13. Since a pretreatment using solvent extraction is performed automatically by this invention, the labor of operator and the radiation exposure amount of the operator can be decreased.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は原子炉冷N1水やシツピング水中に含まれる極
低14度の放射性よう素を測定するための試料作製法と
して好適する改良された自動前処理方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides an improved automated sample preparation method suitable for measuring extremely low 14 degree radioactive iodine contained in reactor cold N1 water and shipping water. Regarding a pretreatment method.

[発明の技術的背景とその問題点] 原子炉においで、その冷却水中(シツピング水を含む)
に含まれる放射性よう素の存在を知り、その閤を測定づ
ることは、次の理由により極めて重要である。すなわち
原子炉の炉心に装架される多数の燃料棒のうち健全で、
ない燃料棒があるとき、例えば燃料被覆管にピンホール
その他の破損があるときは、燃焼状態にある燃料から放
射性ガスの漏洩が生じる。特に放射性ガスのうち放射性
よう素の存在は燃料棒の破損の情報源と考えられ放射性
よう素置の多少は破損の程度を知る目安となるものであ
る。
[Technical background of the invention and its problems] In a nuclear reactor, its cooling water (including shipping water)
It is extremely important to know the presence of radioactive iodine contained in the water and to measure its content for the following reasons. In other words, among the many fuel rods installed in the core of a nuclear reactor, healthy fuel rods are
When there are missing fuel rods, such as pinholes or other breaks in the fuel cladding, radioactive gas leaks from the burning fuel. In particular, the presence of radioactive iodine among radioactive gases is considered to be a source of information on fuel rod damage, and the amount of radioactive iodine can be used as an indicator of the extent of damage.

従って原子炉冷却水中の放射性よう素の測定は、原子炉
を設置する原子力発電所では、保守管理業務の一環とし
て定期的に行われでいる。
Therefore, measurements of radioactive iodine in reactor cooling water are regularly carried out as part of maintenance management work at nuclear power plants where nuclear reactors are installed.

tiIi割性よう素を含んだ測定用試料の調整には、ま
ず前処理を行なう必要があるが、この前処理法により放
射性よう素定量下限(mci/IIIβ)はGO検出器
によるガンマ線スペクトロメhりでは、採取した冷u1
水をそのまま測定するときはほぼ10−5、採取した冷
却水をイオン交換ベーパあるいはイオン交換カラムに通
水してよう素を分離測定するときはほぼ10−5〜10
−6、溶媒抽出法によりよう素を分離測定づるときはほ
ぼ10−7〜10−8である。
To prepare a measurement sample containing tiIi cleavable iodine, it is first necessary to perform pretreatment, but this pretreatment method allows the lower limit of radioactive iodine quantification (mci/IIIβ) to be determined by gamma ray spectrometry using a GO detector. Now, the collected cold u1
Approximately 10-5 when measuring water as it is, approximately 10-5 to 10 when separating and measuring iodine by passing the collected cooling water through an ion exchange vapor or ion exchange column.
-6, when iodine is separated and measured by solvent extraction method, it is approximately 10-7 to 10-8.

前述したように燃料棒破損の有無とその程麿を知るには
、燃料棒を冷却した原子炉冷却水中に含まれる極低?1
度の放射性よう素を測定しなければならないから、前処
理方法としては、溶媒抽出法を用いることが必然的に要
請される。
As mentioned above, in order to know if fuel rods are damaged and to what extent, extremely low levels of water contained in the reactor cooling water that cooled the fuel rods must be detected. 1
Since the amount of radioactive iodine must be measured, it is necessary to use a solvent extraction method as a pretreatment method.

従来、この溶媒抽出作業は採取した試料を作業」 者が実験室において手作業で行なっていたが、このやり
方では測定に時間がかかり、かつ測定に従事する作業者
の放射線被曝も増大覆るという問題があった。
Conventionally, this solvent extraction work was carried out manually in the laboratory by a person working on the collected sample, but this method took time to measure and also increased the radiation exposure of the workers involved in the measurement. was there.

このような問題を解決りるため、本出願人は放射性よう
素の自動化された前処理方法を開発し先に特許出願した
く特願昭5/1−115711)。
In order to solve these problems, the present applicant has developed an automated pretreatment method for radioactive iodine and has previously filed a patent application (Japanese Patent Application No. 5/1-115711).

しかしながらこの発明の方法では、試料とこれに加えた
各種試薬との接触を促進させるための攪拌をマグネチッ
クスターラあるいはシリンダ型分離膜の細孔を通った気
泡により行なっているため、攪拌効果が充分でないとい
う欠点があった。
However, in the method of this invention, stirring is performed using a magnetic stirrer or air bubbles passing through the pores of a cylindrical separation membrane to promote contact between the sample and various reagents added to it, so the stirring effect is sufficient. There was a drawback that it was not.

すなわち攪拌タンクと分離タンクを別個に設ける場合に
は、攪拌タンクにおいてマグネチックスターラによる機
械的撹拌を行ない、攪拌と分離を一つのタンクで行なう
場合にはシリンダ形状の分離膜に空気を送り込み、その
細孔を通過した空気法により攪拌を行なっているが、前
者の方法では攪拌効果が少なく、また後者の方法では充
分な攪拌効果を得るに必要な空気圧では分離膜が損傷を
受けてしまうため、いずれの方法でも充分な攪拌効果が
得られなかった。
In other words, when a stirring tank and a separation tank are provided separately, mechanical stirring is performed using a magnetic stirrer in the stirring tank, and when stirring and separation are performed in one tank, air is sent through a cylindrical separation membrane. Stirring is performed by air passing through pores, but the former method has little stirring effect, and the latter method damages the separation membrane with the air pressure required to obtain a sufficient stirring effect. A sufficient stirring effect could not be obtained in either method.

従って、特に水相と有機相である四塩化炭素相どの接触
が充分ではなく、放射性よう素の四塩化炭素相への抽出
移行および四塩化炭素相から水相への再抽出が完全には
行われないという欠点かあつ Iこ 。
Therefore, the contact between the aqueous phase and the organic carbon tetrachloride phase is not sufficient, and the extraction transfer of radioactive iodine to the carbon tetrachloride phase and the re-extraction from the carbon tetrachloride phase to the aqueous phase are not complete. The drawback is that it doesn't work.

また、試薬が処理中の液の移送をポンプ等を用いて行な
っているため、ポンプ内部に液が残留しやすく、収率の
低下や汚染が生じやすいばかりでなく、多数のポンプの
保守修理に多くの時間がかかるという問題があった。
In addition, since the liquid being processed by the reagent is transferred using a pump, etc., the liquid tends to remain inside the pump, which not only tends to reduce yield and cause contamination, but also requires maintenance and repair of many pumps. The problem was that it took a lot of time.

さらに第1図に示すように、シリンダ型分Il膜1を用
いて攪拌を行なう後者の方法では、攪拌タンク2の底部
すなわち分離膜支持部3の近傍に四塩化炭素相a等が残
留し、これが収率の低下および汚染の原因となるという
欠点があった。
Furthermore, as shown in FIG. 1, in the latter method in which stirring is performed using a cylinder-type Il membrane 1, carbon tetrachloride phase a and the like remain at the bottom of the stirring tank 2, that is, near the separation membrane support part 3. This had the disadvantage of causing a decrease in yield and contamination.

[発明の目的] 本発明はこれらの欠点を解消し、収率の低下やM 1l
)i性よう素による汚染のない改良された自動前処理方
法を提供することを目的とする。
[Objective of the invention] The present invention eliminates these drawbacks and reduces the yield loss and M 1l
) The aim is to provide an improved automatic pretreatment method free of contamination by ionic iodine.

し発明の概要] 1Jなわち本発明は、原子炉冷却水より載置した試料を
タンクに入れ、これによう素担体水溶液と次亜塩素酸プ
1−リウムを加え液中にガスを噴出さけることにより攪
拌する工程と、前記タンク中の攪拌された液に四塩化炭
素、塩酸ヒドロキシルアミンおよび硝酸を加えて再びガ
スを噴出さけることにより攪拌する工程と、攪拌された
前記液をフィルター状の分離膜に通し四塩化炭素相を分
離さける工程と、分離した四塩化炭素相を別のタンクに
移しこれに亜硫酸J−t−リウムあるいは亜硫酸水素ナ
トリウムと水を加え攪拌する]工程と、前記攪拌された
液をフィルター状の分離膜に通し水相を分離させる工程
とからなることを特徴とする原子炉冷却水中の放射性よ
う素の自動前処理方法である。
[Summary of the Invention] 1J In other words, the present invention involves placing a sample placed above reactor cooling water into a tank, adding an iodine carrier aqueous solution and prium hypochlorite to the tank, and blowing out gas into the liquid. a step of stirring by adding carbon tetrachloride, hydroxylamine hydrochloride, and nitric acid to the stirred liquid in the tank and stirring by blowing out gas again; and a step of separating the stirred liquid by using a filter. passing through a membrane to avoid separating the carbon tetrachloride phase, transferring the separated carbon tetrachloride phase to another tank, adding J-t-lium sulfite or sodium hydrogen sulfite and water and stirring], and This is an automatic pretreatment method for radioactive iodine in reactor cooling water, which is characterized by the step of passing the liquid through a filter-like separation membrane to separate the aqueous phase.

[発明の実施例] 以下本発明の実施例について図面に基づき詳細に説明す
る。
[Embodiments of the Invention] Examples of the present invention will be described in detail below based on the drawings.

第2図は本発明の前処理方法を説明するブロック図であ
る。
FIG. 2 is a block diagram illustrating the preprocessing method of the present invention.

本発明の方法においては、以下に述べる工程を経て前処
理が11なわれる。、41お、これらのスデツプはすべ
(V−イク11−」ンピー1−夕によって自動的に制御
され、リベCのタンクや装置の動作状態等はブラウン管
に表示される。
In the method of the present invention, 11 pretreatments are performed through the steps described below. , 41, these stages are automatically controlled by the V-Ike 11-P1-Y, and the operational status of the Libe C tank and equipment is displayed on the cathode ray tube.

(1)まず、原子炉冷7JI水から採取されたl−11
2、I O”−1103−1IO4−の種々のイオン優
形態の故用竹よう素を含んだ試料水のタンク4  Kl
のようなJ、う索IO体水溶液タンク5、次亜塩素II
 )゛)−リウlz (N a CJ20 )タンク6
、四塩化炭素(CCl2)タンク7、塩酸ヒドロキシル
アミン(N +−120Ll・l−1cIタンク8.6
肖酸(HNO3)タンク9.!lN!硫酸水素ツートリ
ウム(NallSO3)タンク1−0および純水タンク
11を準備りる。
(1) First, l-11 collected from reactor cold 7JI water
2. Tank 4 of sample water containing various ion-dominant forms of used bamboo iodine of IO"-1103-1IO4-
Like J, IO body aqueous solution tank 5, hypochlorite II
)゛)-Riu lz (Na CJ20) Tank 6
, carbon tetrachloride (CCl2) tank 7, hydroxylamine hydrochloride (N+-120Ll/l-1cI tank 8.6
HNO3 tank9. ! lN! A zatorium hydrogen sulfate (NallSO3) tank 1-0 and a pure water tank 11 are prepared.

(2)試fit水タンク4から試r1水を第1攪拌タン
ク12に移送した後、これによう素担体水溶液とNaC
J20を一1人した1艷試Y+1水とに攪拌りる。
(2) After transferring the test r1 water from the test fit water tank 4 to the first stirring tank 12, add the iodine carrier aqueous solution and NaC
Stir J20 with 1 ship trial Y + 1 water.

ここでよう素1!1体水溶液およびNa C10の移送
注入はン!クロニ1ンピコータからの信号によりこれら
のタンク5.6に取付けられた電磁弁Vを開放すると同
時に、ガス供給装置13から加圧したガスを各タンク内
に送り込/Vでタンク内の液を第1攪拌タンク12まで
加圧移送することにより行なわれる。
Here, transfer injection of iodine 1!1 aqueous solution and Na C10 is done! At the same time, the solenoid valves V attached to these tanks 5 and 6 are opened in response to a signal from the Croni 1 pump coater, and at the same time pressurized gas is sent into each tank from the gas supply device 13. 1 stirring tank 12 under pressure.

以後の試薬の移送注入についてもづべてこの方法により
行なわれる。
The subsequent transfer and injection of reagents is also carried out in this manner.

次に第1の撹拌タンク12内に、四塩化炭素タンク7、
Nト1201−1・I−I CAタンク8および(−I
NO3タンク9から四塩化炭素、N I−120I−I
・HCβおよびHN Oxを加圧注入し充分に攪拌して
、12とした放射性よう素を四塩化炭素相に抽出づる。
Next, in the first stirring tank 12, a carbon tetrachloride tank 7,
Nt1201-1・I-I CA tank 8 and (-I
Carbon tetrachloride from NO3 tank 9, N I-120I-I
- Inject HCβ and HN Ox under pressure and stir thoroughly to extract radioactive iodine (12) into the carbon tetrachloride phase.

この攪拌は水相と四塩化炭素相との接触面積をeきるだ
番)多く覆るため、前工dガス供給装置13から加圧し
たガスをガラスフィルタを通して液中に噴出さVること
により、あるいは1アジエツトポンプ(AJP)を用い
てガスを噴出さけることにより行なう。なお、前記Na
CJ20をd−人した後の攪拌および以後の工程におけ
る攪拌は、すべて前述のように液中にガスを噴出させる
ことにより行なわれる。
In order to cover a large amount of the contact area between the aqueous phase and the carbon tetrachloride phase during this stirring, pressurized gas from the gas supply device 13 is injected into the liquid through a glass filter. Alternatively, this can be carried out by blowing out gas using a single jet pump (AJP). In addition, the above Na
The stirring after the CJ20 is heated and the stirring in the subsequent steps are all performed by jetting gas into the liquid as described above.

(:IN!lγ終r後、第1攪拌タンク12内の液を第
1分離タンク1/Iに加L1移送し、フィルター状の分
離膜を通しく一右機相ぐある四塩化炭素相を分#1さU
る。分#1膜としCは市販の溶媒抽出弁#1膜、例えば
商品名PパルタXとしで知られるポリデトラノルJ [
:]、l−1−レン製の1膜を使用覆る。以後の分11
111 ’I稈におい(はづべにの分1llll膜が用
いられる。
(:IN!lγ After completion of r, the liquid in the first stirring tank 12 is transferred to the first separation tank 1/I, and a certain carbon tetrachloride phase is removed through the filter-like separation membrane. Minute #1
Ru. #1 membrane and C are commercially available solvent extraction valve #1 membranes, such as Polydetranol J [known under the trade name P Palta X].
: ], 1 membrane made of 1-1-lene is used and covered. subsequent minutes 11
111 'I culm odor (1 lllll membrane is used for hazubeni).

(/I)分−目Qを透過した四塩化炭素相は第2ffi
拌クンク1巳)に溶出づる。第1分前タンク1/l内に
残−)た水相は毛細管を用い(水相廃液タンク16に移
送りる。
The carbon tetrachloride phase that has passed through the (/I) minute Q is the second ffi
The mixture is eluted after stirring. The aqueous phase remaining in the tank 1/l before the first minute is transferred to the aqueous phase waste liquid tank 16 using a capillary tube.

(5))第2撹拌タンク15 t’は分till L、
た四塩化炭素相の洗浄を行なう。1なわら前述したN 
ti 2011・IICJ2タンク8およびHN 03
タンク9からNlI2011・It CnおよびII 
N O3を第2攪拌タンク1F)に加[+移送し攪拌を
f−jな−ノだ後、液を第2分館タンク17に加圧移送
しここでノイルター状の分断膜を通し−(四塩化炭素相
を分離さけ、分前しlこ四塩化炭素相を第3nt拌タン
ク18に溶出させる。第2分離タンク17内番、二残留
しIご水相は、前記4」−程と同様に毛細管を用いC水
相PfP、液タンク16に移送する。
(5)) Second stirring tank 15 t' is minutes till L,
Wash the carbon tetrachloride phase. 1, the aforementioned N
ti 2011・IICJ2 Tank 8 and HN 03
NlI2011・It Cn and II from tank 9
After adding and transferring N O3 to the second stirring tank 1F) and stirring with a Avoid separating the carbon chloride phase, and elute the carbon tetrachloride phase into the third stirring tank 18.Inside the second separation tank 17, the remaining aqueous phase is the same as in step 4 above. Then, the C aqueous phase PfP is transferred to the liquid tank 16 using a capillary tube.

なJメ、この洗浄[稈は試料水のt!I状等にJ、−)
’Cは省くことができる。
J Me, this washing [culm is sample water! J, -)
'C can be omitted.

(6)四塩化炭素相の移送された8r!3撹拌タンク1
8にNaH8O3タンク10および純水タンク11から
Nall5O:+ど純水を加1(移送しC攪拌し、同時
によう累をよう素イΔン(1−)どしく水相に逆抽出り
る。
(6) Transported 8r of carbon tetrachloride phase! 3 stirring tank 1
Add Nall5O:+ pure water from NaH8O3 tank 10 and pure water tank 11 to 8 and stir it.

(7〉第33攪拌タンク1B内の液をリベーC第3分離
タンク19に加圧移送゛し、フィルター状の分離膜を通
し−C分離し・Iこ四塩化炭素相を有機相廃液タンク(
図示Uず)に移送し廃棄する。
(7) The liquid in the 33rd stirring tank 1B is transferred under pressure to the 3rd separation tank 19 of Rebe C, and -C is separated through a filter-like separation membrane.The carbon tetrachloride phase is transferred to the organic phase waste liquid tank (
Transfer to a storage facility (not shown in the figure) and dispose of it.

(8)第1分離タンク1/Iに残留した水引を毛細管に
より試料容器20に移送し測定用試料を得る。
(8) Transfer the mizuhiki remaining in the first separation tank 1/I to the sample container 20 through a capillary tube to obtain a measurement sample.

(9)測定用試料から一定量を回収率測定器21に分取
し、比色法あるいはよう素イAン電極法によりよう素担
体の温度を測定し収:IPビ粋出りる。
(9) A certain amount of the sample for measurement is collected into the recovery rate measuring device 21, and the temperature of the iodine carrier is measured by the colorimetric method or the iodine electrode method, and the temperature of the iodine carrier is determined.

<’i に 、 J、つ17. i’ A ンffi 
+41θ、を用いる場合【よ、試fil容”?:< 2
 (1%での、Lま回収捧2測定器21としく使用CI
イ)ことかCさる。
<'i ni , J, tsu17. i'A nffi
When using +41θ, [Test file size”?: < 2
(At 1%, use CI as L and 2 measuring instruments 21
B) Kotoka C monkey.

(’I O)最後に前述のシスーノ18全体をa?7!
づるため試旧水とにう県1u体水溶液を添加I!ずに、
前記(2)−・(8)の43作を(Jなう。このとき1
qられる試才zlは試t’l容器20に移送ぜず廃棄す
る。
('I O) Finally, the entire Cisno 18 mentioned above is a? 7!
Add a prefecture 1U body aqueous solution to the sample water to make it! Zuni,
The 43 works of (2) - (8) above (J now. At this time 1
The tested sample zl is discarded without being transferred to the sample t'l container 20.

次に本発明C用いるlit 11’ a’3 J、び分
断タンクの形状おJ、びWri造を図面に阜づいηさら
に訂細に説明りる。
Next, the shape and structure of the split tank used in the present invention C will be explained in more detail with reference to the drawings.

第3図43よび第4図は図中22で示される@理タンク
の構造を説明づるための断面図である。第33図におい
ては、攪拌タンク22内の1・部に)’ fjk向(ノ
ー(ガラス−ノイルタ23が設(]られ、ガスン1人?
〜24から加圧FJ人されたガスがガラスノイルタ’t
2 :1の紳1孔を通過しF1ノに向かつ(−噴出し、
攪拌タンク22の底部に溜つIこ液をも効率よく攪拌・
Jることが0さる構造とならている。
FIGS. 3 and 4 are cross-sectional views for explaining the structure of the storage tank indicated by 22 in the figures. In FIG. 33, a glass-noir tank 23 is installed in one part of the stirring tank 22, and one gas tank is installed.
The gas that was pressurized from ~24 to the glass noilter't
2:1 passing through the 1st hole and heading towards F1 (-spout,
The liquid collected at the bottom of the stirring tank 22 can also be efficiently stirred and
It has a structure where J is 0.

」、tJ、ガス2重人管24の間11端十部25は半球
状あるいは円鉗状になつCおり、イの上部に液が留まり
にくい構造とな−)Cいる。
'', tJ, 11 ends 25 between the double gas tubes 24 are hemispherical or cylindrical, and have a structure that prevents liquid from remaining in the upper part of the gas pipes 24.

さらに攪1゛I′をf? −II L/ 1.:場合に
は、この部分が刀ス溜となり、液が万ノスノイルタ23
から侵入づるのを防ぐ4’を用4りる。
Further stir 1゛I' to f? -II L/1. : In this case, this part will become a sword reservoir and the liquid will flow out.
Use 4' to prevent intrusion.

第4図においCは、攪拌タンク22内の上部に挿入され
たガスン1入菅24の先端にΔJ r’ 26が設りら
れ、△J I)26により吸引しlこガスを液中に噴出
させること&l J、り攪拌りるように構成され(いる
。また、攪拌を停止1シlこ場合には、△J r)26
部分がガス溜となり、液がガス汗人管24内に侵入りる
のを防ぐダJ宋がある。
In Fig. 4, C indicates that a ΔJ r' 26 is provided at the tip of the gas tube 24 inserted into the upper part of the stirring tank 22, and the gas is sucked by the ΔJ I) 26 and ejected into the liquid. It is configured to stir & l J, and the agitation is stopped (in this case, △J r) 26
There is a part that acts as a gas reservoir and prevents liquid from entering the gas tube 24.

さCうに第33図ajJ、び第4図に示づ攪拌タンク2
2におい(は、1一部に毛細管状の試薬注入室27が設
(Jられており、?1人液昂を微調整覆ることが(゛き
る構造と’ec〜)(いる。また試薬台入管27の先端
部は試薬の管壁への付着もできるだl少くづるため先細
の円ε1を状に形成されている。
Stirring tank 2 shown in Figure 33 and Figure 4
2. There is a capillary-like reagent injection chamber 27 in a part of the body, and there is a structure that allows fine adjustment of human fluid flow. The tip of the entry tube 27 is formed in the shape of a tapered circle ε1 in order to minimize adhesion of the reagent to the tube wall.

以上のにうに第6’図A3よび第4図に示す11マタン
クは、シール8(−分からの漏洩が問題となる外部から
の駆動軸を用いない内部攪拌の方法が採られ、しから攪
1’r Bl枯の内部に液が【、1とんと残留しない横
積ど/、−L −” ’lいるのC1よう累抽出収串の
低l・を(/1くことが’e7い。
As described above, the 11-meter tank shown in Fig. 6'A3 and Fig. 4 uses an internal stirring method that does not use an external drive shaft where leakage from the seal 8 (-) is a problem. 'r It is impossible for the liquid to remain inside the drying tank, so that the cumulative extraction yield is low (/1).

第5図は図中28(小される分断タンクの東部の構造を
説明づるI、:ダ)の断面図Cある。
FIG. 5 is a cross-sectional view C of 28 (I, : DA) which explains the structure of the eastern part of the divided tank which is to be reduced in size.

第5)図に、!3いCは漏1状の分断タンク28内のl
・部にノイルター状の分111膜29が股GJられ、そ
の端縁部は断面−1の7望のバツニtン30で押えら1
シ(いる。従つ(分11i1929の接液面全体が分離
N9としくイj効に作用りるだ(]でなく、分離膜29
の 部1.−1液が残留することが41い。また断面コ
の字fi11のバラ1−ン30の作用にJ、す5>前設
29の横り向1)s tらの液の漏洩が防止され、収牢
よくイjl相ど水相を分1illりることかCさる。
5) In the figure! 3C is the l in the leaky divided tank 28.
・A Noirter-like membrane 29 is attached to the crotch GJ, and its edge is pressed down with a 7-inch punch 30 with a cross section of -1.
Therefore, the entire wetted surface of 11i1929 acts effectively as separation N9, but the separation membrane 29
Part 1. -1 liquid may remain. In addition, the action of the rose 1-30 having a U-shaped cross section fi11 prevents the liquid from leaking in the horizontal direction of the front 29, allowing the aqueous phase to be contained in a well-contained manner. It's going to take 1ill a minute or C.

さらにこの分離タンク28に、I3いU G、L、分l
11膜291一部に排水用毛細管31がその間L1端を
膜表面に近接さけて設けられ、水圧と表面張力にJ、り
分離され、分離膜−1−に残留する水相を吸い上げ移送
りる11式が採られている。従つ(移送ボン1等の輸送
a器を使用する必要が4Tり、収率向上および汚染の回
避を図ることがCきる。
Furthermore, in this separation tank 28, I3 U G, L, min.
11 A drainage capillary 31 is provided in a part of the membrane 291 with the L1 end kept away from the membrane surface, and the aqueous phase separated by water pressure and surface tension and remaining in the separation membrane -1- is sucked up and transferred. Type 11 has been adopted. Therefore, it is necessary to use a transport device such as the transport bomb 1 (4T), and it is possible to improve the yield and avoid contamination.

ま1.:、さらに+JI水川し用管31←二連結される
47F水ラインには自動開閉りる弁(同車t!f)が設
Gノられ、分離された水相のみがIJ+水ラインに流れ
るように構成され(いる。
1. In addition, an automatically open/close valve (t!f on the same vehicle) is installed on the 47F water line that connects the +JI Mizukawa service pipe 31←, so that only the separated water phase flows to the IJ + water line. It is composed of (is).

なお、第5)図中32μ液H入管、ご3C3は空気抜ぎ
管、34は分断された右様相の移送管を承り。
In addition, 5) In the figure, 32μ liquid H inlet tube, 3C3 is the air vent tube, and 34 is the divided transfer tube shown on the right.

[弁明の効果1 以上説明し/、: J、うに本発明によれば、原子か冷
7JI水中に含まれる放Q4t’lよう素の測定用試料
を得るための溶媒抽出にJ、る前処理を自動的にf−7
なうのC1作業者の作11′1被暉線吊を低減づること
ができるばかりCなく、回収率のばらつきを、作業者の
個人差によるばらつきに比べ大幅に減少さμることがぐ
ぎる。
[Effect of Defense 1 As explained above/: J. Sea urchin According to the present invention, J. Pretreatment for solvent extraction to obtain a sample for measurement of Q4t'l iodine contained in cold 7JI water. automatically f-7
Not only is it possible to reduce the number of damaged wires caused by workers, but it is also possible to significantly reduce the variation in recovery rate compared to the variation due to individual differences among workers. .

まlこ本発明におい(は、各−[稈ぐの使用器具への液
の残留が略よどlυどなく、極め(高い収率で前処理を
行なうことが′C″きる。
In the present invention, almost no liquid remains in the equipment used for each culm, making it possible to carry out pretreatment with extremely high yields.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の分離タンクの構造を説明する図、第2図
は本北明の 実施例を説明りるIこめの71’Jツク図
、第3図、V3よび第4図1.L A発明の実施例で使
用される攪拌タンクの構造を説明するための断面図、第
(〕図は本発明の実施例で使用される分離タンクの要部
の構造を説明りるlこめの断面図(・ある。
Figure 1 is a diagram explaining the structure of a conventional separation tank, Figure 2 is a 71'J diagram of I-Kome explaining the embodiment of Akira Honkita, Figures 3, V3 and 4 are 1. A cross-sectional view for explaining the structure of a stirring tank used in the embodiments of the invention; Cross-sectional view (・Yes.

Claims (1)

【特許請求の範囲】[Claims] (1)原子炉冷却水より載置した試料をタンクに入れ、
これによう素担体水溶液と次亜塩素酸ナトリウムを加え
液中にガスを噴出させることにより攪拌する工程と、前
記タンク中の攪拌された液に四塩化炭素、塩酸ヒドロキ
シルアミンおよび硝酸を加えて再び前記工程と同様にガ
スを噴出させることにより攪拌づる工程と、攪拌された
前記液をフィルター状の分離膜に通し四塩化炭素相を分
離させる工程と、分離した四塩化炭素相を別のタンクに
移しこれに亜硫酸ナトリウムあるいは亜硫酸水素ナトリ
ウムと水を加えガスを噴出させることにより攪拌づる工
程と、前記攪拌された液をフィルター状の分離膜に通し
水相を分離させる工程とからなることを特徴とする原子
炉冷却水中のM剣性よう素の自動前処理方法。
(1) Put the sample placed in the reactor cooling water into the tank,
There is a step of adding an aqueous iodine carrier solution and sodium hypochlorite and stirring by blowing gas into the solution, and adding carbon tetrachloride, hydroxylamine hydrochloride, and nitric acid to the stirred solution in the tank, and then adding it again. Similar to the previous step, there is a step of stirring by blowing out gas, a step of passing the stirred liquid through a filter-like separation membrane to separate the carbon tetrachloride phase, and a step of transferring the separated carbon tetrachloride phase to another tank. It is characterized by comprising a step of adding sodium sulfite or sodium hydrogen sulfite and water to the mixture and stirring by blowing out gas, and a step of passing the stirred liquid through a filter-like separation membrane to separate the aqueous phase. Automatic pretreatment method for M-sulfur iodine in nuclear reactor cooling water.
JP57095683A 1982-06-04 1982-06-04 Automatic pretreatment of radioactive iodine in cooling water of nuclear reactor Pending JPS58213275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57095683A JPS58213275A (en) 1982-06-04 1982-06-04 Automatic pretreatment of radioactive iodine in cooling water of nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57095683A JPS58213275A (en) 1982-06-04 1982-06-04 Automatic pretreatment of radioactive iodine in cooling water of nuclear reactor

Publications (1)

Publication Number Publication Date
JPS58213275A true JPS58213275A (en) 1983-12-12

Family

ID=14144288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57095683A Pending JPS58213275A (en) 1982-06-04 1982-06-04 Automatic pretreatment of radioactive iodine in cooling water of nuclear reactor

Country Status (1)

Country Link
JP (1) JPS58213275A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178375A (en) * 1984-02-24 1985-09-12 Nippon Atom Ind Group Co Ltd Radioactive iodine monitor of nuclear reactor cooling water
JPS6125085A (en) * 1984-07-13 1986-02-03 Nippon Atom Ind Group Co Ltd Automatic measuring apparatus for radioactive iodine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178375A (en) * 1984-02-24 1985-09-12 Nippon Atom Ind Group Co Ltd Radioactive iodine monitor of nuclear reactor cooling water
JPS6125085A (en) * 1984-07-13 1986-02-03 Nippon Atom Ind Group Co Ltd Automatic measuring apparatus for radioactive iodine

Similar Documents

Publication Publication Date Title
DE2231976B2 (en) Process for the production of high-purity, radioactive molybdenum-99 fission product
US5208165A (en) Method for testing the soluble contents of nuclear reactor coolant water
DE102013109168A1 (en) Analyzer for determining the chemical oxygen demand of a fluid sample
CN112808324A (en) Dynamic regenerating device for hydrogen type cation exchange resin column and operation method thereof
CN103344981B (en) The method for testing and detecting of the testing inspection Nuclear power plants degassing tower degasification factor and device
CN110426477A (en) The simulator of Zero-valent Iron hydrodynamic seepage pressure
JPS58213275A (en) Automatic pretreatment of radioactive iodine in cooling water of nuclear reactor
Trujillo et al. Chemical analysis and sampling techniques for geothermal fluids and gases at the Fenton Hill Laboratory
CN111640520A (en) Device and method for adjusting valence states of neptunium and plutonium in hot chamber
CN206348273U (en) A kind of equipment for detecting air formaldehyde concentration
CN107589101A (en) Online oil-polluted water detection means based on ultraviolet fluorescence method
US4446097A (en) Post accident analysis
CN206583645U (en) A kind of total phosphorus on-line detector in situ
CN112808325A (en) Hydrogen type cation exchange resin regeneration device and operation method thereof
JPS6033076A (en) Automatic pretreating device for radioactive iodine in cooling water for nuclear reactor
US5164160A (en) Installation to carry out continuous measurements in real time of masses of metals in an acid solution and to measure the acidity of this solution
CN113866242B (en) A flow-through cell for iodine-containing liquid return circuit online analysis of quality of water
CN2188767Y (en) Sensing device for testing sodium ion in liquor
Shuping et al. Low-level counting of environmental krypton-85 by liquid scintillation
CN216484545U (en) System for detecting corrosion rate of metal in normal-temperature aqueous solution
JPH0311722Y2 (en)
CN217586872U (en) Seawater silicate on-line measuring device
CN107192786A (en) The enrichment preparation facilities and its method of gas in a kind of water body
Cairns et al. A conceptual design study of a low throughput reprocessing facility for nuclear fuel
JPS60178375A (en) Radioactive iodine monitor of nuclear reactor cooling water