JPS58213226A - Mtf measuring apparatus - Google Patents

Mtf measuring apparatus

Info

Publication number
JPS58213226A
JPS58213226A JP9716282A JP9716282A JPS58213226A JP S58213226 A JPS58213226 A JP S58213226A JP 9716282 A JP9716282 A JP 9716282A JP 9716282 A JP9716282 A JP 9716282A JP S58213226 A JPS58213226 A JP S58213226A
Authority
JP
Japan
Prior art keywords
solid
state image
image sensor
mtf
minimum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9716282A
Other languages
Japanese (ja)
Inventor
Mitsuki Sagane
砂金 光記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP9716282A priority Critical patent/JPS58213226A/en
Publication of JPS58213226A publication Critical patent/JPS58213226A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0292Testing optical properties of objectives by measuring the optical modulation transfer function

Abstract

PURPOSE:To miniaturize an apparatus and to reduce the cost of the apparatus, by using a self-scanning type solid image pickup element satisfying each prescribed condition of a space of a photoelement and the effective photodetecting face. CONSTITUTION:Plural photoelements are arranged in a straight line on a self- scanning type solid image pickup element 21 as a photodetecting element. A space DELTAl of this photoelement is established so as to satisfy the expression-1 by a cut-off frequency UC, a measured maximum frequency UM and a projection minimum scale factor mmin. Further, the effective photodetecting face of the element 21 is the maximum object height at least and is the minimum object height from an image point of the maximum projection scale factor and then, the section to the image point of the minimum projection scale factor is included. By such formation, the calculation processing of Fourier transformation is simplified and also, the number of the element 21 is decreased. Accordingly, the apparatus is miniaturized and its cost is reduced.

Description

【発明の詳細な説明】 本発明は自己走査型固体撮像素子を用いたMTF測定装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an MTF measuring device using a self-scanning solid-state image sensor.

写真レンズ等のMTFを測定する装置においては20〜
50倍の有限距離で物体を拡大投影して測定する必要が
ある。これは一般に写真レンズ等の結像性能が遠路#I
K対して優れていて近距離になる程低下してくるため、
1m〜2m程度の近距離での結像性能が最も重要視され
ているからである。
For devices that measure MTF of photographic lenses, etc., 20~
It is necessary to measure the object by enlarging it and projecting it at a finite distance of 50 times. This generally means that the imaging performance of photographic lenses, etc. is a long way #I.
It is superior to K and decreases as the distance gets closer, so
This is because imaging performance at a short distance of about 1 m to 2 m is most important.

MTFの測定方法には種々の方法があるが、写、真レン
ズの様な投影倍率が高い被検レンズのMTF測定では一
般に数μm〜20μm程度の極細なスリットを用い、そ
の被検レンズによる拡大像の幅方向光強度分布を受光器
で受光してこの受光器の走査により時系列信号とし、こ
れを離散的にフーリエ変換することによってMTF t
z求める方法が用いられる。
There are various methods for measuring MTF, but when measuring the MTF of a test lens with a high projection magnification such as a photographic or true lens, an extremely thin slit of several μm to 20 μm is generally used, and the magnification by the test lens is The light intensity distribution in the width direction of the image is received by a light receiver, and the light receiver is scanned to generate a time series signal, which is then discretely Fourier transformed to obtain MTF t.
A method of determining z is used.

ここで使用される受光器は単一の受光面を有するもので
あってもよいが、その様な場合には測定点の各々に対し
て機械的走査が必要となるため、測定速度が遅くなるば
かりか操作性が悪くなり機構も複雑になるという欠点が
ある。そこでこの欠点を除くため、ファクシミリ、光学
的文字読取装置等の読取スキャナに使用される電荷結合
素子、フォトダイオードアレイ、バケソトプリゲードデ
バイス等の自己走査型固体撮像素子が利用されている。
The receiver used here may have a single receiving surface, but in such a case mechanical scanning is required for each measurement point, which slows down the measurement speed. Moreover, there are disadvantages in that the operability is poor and the mechanism is complicated. In order to eliminate this drawback, self-scanning solid-state imaging devices such as charge-coupled devices, photodiode arrays, and bucket-loaded devices used in scanners such as facsimile machines and optical character reading devices have been used.

これらの固体撮像素子はフォトエレメントの大きさが高
解像性の要求で非常に小さく、例えば現在市販されてい
る電荷結合素子ではフォトエレメント間隔が13μm程
度である。
These solid-state imaging devices have photo elements that are extremely small in size due to the requirement for high resolution; for example, in currently commercially available charge-coupled devices, the photo element spacing is about 13 μm.

従来のMTF測定装置ではこの様なフォトエレメントが
極めて小さい固体撮像素子を用いてMTF Y測定して
いるため、測定点の各々に対して固体撮像素子が用いら
れ、装置が大型化するとともに複雑化しコストアップの
要因となっていた。また投影倍率又は測定点が異なった
場合には固体撮像素子を個々に走査しなければならない
ので、装置が複雑化し、セツティングに要する時間が長
くて操作性が悪かった。
Conventional MTF measurement equipment uses solid-state imaging devices with extremely small photo elements to measure MTF Y, so a solid-state imaging device is used for each measurement point, making the equipment larger and more complex. This was a factor in increasing costs. Furthermore, if the projection magnification or measurement point is different, the solid-state image pickup device must be scanned individually, which makes the device complicated, takes a long time to set up, and has poor operability.

本発明は上記のような欠点を改善し、装置の小型化及び
コストダウン、操作性の向上を計ったMTF測定装置を
提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an MTF measurement device that improves the above-mentioned drawbacks, reduces device size and cost, and improves operability.

以下図面を参照しながら本発明について実施例をあげて
説明する。
The present invention will be described below by way of examples with reference to the drawings.

最近ファクシミリ等では固体撮像素子のフォトエレメン
ト間隔を100μm程度としてこれにレンズアレイ等の
光学系を組合せることにより小型化を図った所謂等倍ス
キャナが実用化され始めている。
Recently, in facsimiles and the like, so-called 1-magnification scanners have begun to be put into practical use, in which the photoelement spacing of a solid-state image sensor is set to about 100 μm, and miniaturization is achieved by combining this with an optical system such as a lens array.

本発明の実施例はこの様な等倍スキャナに使用される、
フォトエレメント間隔の大きい固体撮像素子を用いたも
のである。
Embodiments of the present invention are used in such a full-size scanner,
This uses a solid-state image sensor with large photoelement spacing.

ところで離散的フーリエ変換の特質について簡単に述べ
るとご第1図(a)に示すようにスリット像が連続信号
の場合にはMTFも連続信号として対応した形で表わさ
れる。一方、第1図(blのようにスリット像をΔlの
間隔でサンプリングした場合MTFは1/Δlの周期で
繰り返して変換されることになり、第1図(e)のよう
にサンプリング間隔Δlが大きい場合(アンダーサンプ
リングの場合)にはMTFの高周波部分が重畳されて表
わされ、この周波数領域においてMTF誤差(これをエ
リアジング誤差と呼ぶ)が大きくなる。逆に第1図(C
)のようにサンプリング間隔を小さくした場合MTF誤
差は伴なわないが、フーリエ変換の計算処理が膨大とな
って計算速度が遅くなるばかりかメモリ容量が大きく。
By the way, to briefly describe the characteristics of the discrete Fourier transform, as shown in FIG. 1(a), when the slit image is a continuous signal, the MTF is also represented in a corresponding form as a continuous signal. On the other hand, if the slit image is sampled at an interval of Δl as shown in Figure 1(bl), the MTF will be converted repeatedly at a period of 1/Δl, and as shown in Figure 1(e), the sampling interval Δl will be If it is large (in the case of undersampling), the high frequency part of the MTF is superimposed and expressed, and the MTF error (this is called an aliasing error) becomes large in this frequency domain.On the contrary, as shown in Figure 1 (C
), when the sampling interval is made small, no MTF error occurs, but the Fourier transform calculation process becomes enormous, which not only slows down the calculation speed but also requires a large memory capacity.

なり、コストアップの原因となる。つまり離散的フーリ
エ変換を行う場合にはサンプリング間隔を必要最小限に
決める必要があり、この間隔でスリット像のサンプリン
グを行うことにより第1図(d)のように被検レンズの
カットオフ周波数Ucまでエリアジング誤差がないMT
Fを測定することができる。このサンプリングはナイキ
ストサンプリングと呼び、そのサンプリング間隔Δl(
1/Atはナイキスト周波数と呼ぶ)は被検レンズの投
影倍率をmとすれば Δl  =−− 2U。
This causes an increase in costs. In other words, when performing discrete Fourier transform, it is necessary to determine the sampling interval to the minimum necessary, and by sampling the slit image at this interval, the cutoff frequency Uc of the test lens is MT with no aliasing error up to
F can be measured. This sampling is called Nyquist sampling, and its sampling interval Δl(
1/At is called the Nyquist frequency) is Δl =--2U, where m is the projection magnification of the lens to be tested.

で与えられる。しかし写真レンズでは被検レンズのカッ
トオフ周波数U0は200 c/sw 〜300 c/
mであり、写真フィルムの解像性能及び人間の解像性能
からMTF測定装置に要求される空間周波数はせいぜい
1oo c/MM、程度で充分である。従って実質的に
アンダサンプリングであったとしても、MTF測定装置
に要求される最大空間周波数をU、とすると、UMぐU
oであるからU、までエリアジング誤差がないことがM
TF測定装置の条件となる。
is given by However, for photographic lenses, the cutoff frequency U0 of the tested lens is 200 c/sw to 300 c/sw.
m, and from the resolution performance of photographic film and the resolution performance of humans, it is sufficient that the spatial frequency required of the MTF measuring device is at most 1oo c/MM. Therefore, even if it is substantially undersampled, if the maximum spatial frequency required for the MTF measuring device is U, then UM
It is M that there is no aliasing error from o to U.
This is a condition for the TF measuring device.

第2図はその関係を表わしており、サンプリング間隔(
固体撮像素子のフォトエレメント間隔)Δlは 2Uo2kUM UM 但しに:実数 の両式を満足すればよい。投影倍率が変化する場合には
その最小倍率をmmよ。とすると、Δlは20o2 k
UM 2U。
Figure 2 shows this relationship and shows the sampling interval (
The photoelement spacing of the solid-state image sensor) Δl is 2Uo2kUM UM However, it is sufficient if both real number expressions are satisfied. If the projection magnification changes, the minimum magnification is mm. Then, Δl is 20o2 k
UM2U.

の両式を満足すれ・ば充分である。It is sufficient if both equations are satisfied.

第6図は自己走査型固体撮像素子の構成例暑示し、Δl
はfl> (2+式又は(31(41式によって定まる
。この固体撮像素子は直線状に配列された複数Nのフォ
トエレメント11、フォトゲート12、チャンネルスト
ップ13を有し、有効受光長lはΔ/XNで与えられる
Figure 6 shows an example of the configuration of a self-scanning solid-state image sensor, Δl
is determined by the formula fl> (2+ or (31). /XN.

第4図及び第5図は本発明の各実施例における光学系を
示し、第6図はそのチャート、被検レンズ、フィルム面
の関係を示す。チャート14には所定の物体高、アジマ
ス角に対応したスリット151へ156が形成されてお
り、ランプ16によりオプチカルファイバ1フヲ介して
照射される。タンジエンンヤル方向を向いたスリット1
5〜15 の像は被3 検レンズ18、結像ミラー19.20を介して、ラジア
ル方向に平行に設置された自己走査型固体撮像素子上に
垂直に投影される。この固体撮像素子はΔlが(31(
41”式を満足するものであり、第4図の例では1個2
1であるが、第5図の例では2個214,212である
。ミラー19.20は上下に移動可能であり、投影倍率
に応じて上下方向の位置調整が行なわれる。
4 and 5 show the optical system in each embodiment of the present invention, and FIG. 6 shows the chart thereof, the relationship between the lens to be tested and the film surface. A slit 156 is formed in the chart 14 to correspond to a predetermined object height and azimuth angle, and the lamp 16 illuminates the slit 156 through the optical fiber 1. Slit 1 facing the tanjiennyar direction
Images 5 to 15 are projected perpendicularly onto a self-scanning solid-state image sensor installed parallel to the radial direction via the inspection lens 18 and the imaging mirror 19.20. This solid-state image sensor has Δl (31(
41”, and in the example shown in Figure 4, 1 piece 2
1, but in the example of FIG. 5, there are two 214 and 212. The mirrors 19 and 20 are vertically movable, and their positions are adjusted in the vertical direction according to the projection magnification.

被検レンズ18はマウント部22に簡単に設置され、回
転リング23によって任意に回転させることが可能とな
っていてフィルム・面24に対応して測定点の同心円方
向のMTFが測定可能となっている。固体撮像素子21
又は214,212は取付基板25に固定され、この取
付基板25は固体撮像素子21又は211゜21□のフ
ォトエレメント配列方向に対して等速度でモータ等によ
り走査することが可能となっている。ま゛た固体撮像素
子21又は214,212は図示しないが駆動回路によ
り駆動され、その出力信号が信号処理回路で処理されて
MTFが求められる。
The lens to be tested 18 is easily installed on the mount 22 and can be rotated arbitrarily by the rotation ring 23, making it possible to measure the MTF in the concentric direction of the measurement point corresponding to the film/surface 24. There is. Solid-state image sensor 21
Alternatively, 214 and 212 are fixed to a mounting board 25, and this mounting board 25 can be scanned by a motor or the like at a constant speed in the direction in which the solid-state image sensor 21 or the photo elements are arranged at 211° and 21□. The solid-state image sensor 21 or 214, 212 is driven by a drive circuit (not shown), and its output signal is processed by a signal processing circuit to obtain the MTF.

この様に構成されたMTF測定装置においてはラジアル
方向のMTF y、6測定する場合はタンジェンシャル
方向のスリット151〜153が固体撮像素子21又は
211,212にそのフォトエレメント配列方向と垂直
に投影された時に取付基板25の走査が停止し、スリッ
ト像の幅方向(ラジアル方向)の光強度分布が固体撮像
素子21又は211,212で測定されて信号処理回路
で−Hメモリに格納されてからフーリエ変換されMTF
が求められる。一方、クンジェンシャル方向のMTFを
測定する場合はラジアル方向のスリット154〜156
が固体撮像素子21又は211゜212vcフオト工レ
メント配列方向と平行に投影され、その幅方向(タンジ
ェンシャル方向)の光強度分布が取付基板25のモータ
等による等速走査で固体撮像素子21又は211,21
2により測定されて信号処理回路で−Hメモリに格納さ
れてからフーリエ変換されMTFが求められる。
In the MTF measuring device configured in this way, when measuring MTF y,6 in the radial direction, the slits 151 to 153 in the tangential direction are projected onto the solid-state image sensor 21 or 211, 212 perpendicularly to the direction in which the photo elements are arranged. When the scanning of the mounting board 25 is stopped, the light intensity distribution in the width direction (radial direction) of the slit image is measured by the solid-state image sensor 21 or 211, 212, and stored in the -H memory by the signal processing circuit. Converted MTF
is required. On the other hand, when measuring the MTF in the Kunjential direction, the slits 154 to 156 in the radial direction
is projected parallel to the array direction of the solid-state image sensor 21 or 211°212vc photo element, and the light intensity distribution in the width direction (tangential direction) is scanned at a constant speed by a motor or the like of the mounting board 25. ,21
2, is stored in a -H memory by a signal processing circuit, and then subjected to Fourier transformation to obtain the MTF.

第7図は上記MTF測定装置の最小物体高Pnl工。。FIG. 7 shows the minimum object height Pnl of the above MTF measuring device. .

最大物体高PIIlax及び最小投影倍率ml1lよ。Maximum object height PIIlax and minimum projection magnification ml1l.

、最大投影倍率mmaxに対する投影面における像点の
関係を示す図であり、図中R8は光軸、R4は最小倍率
・最小像高の像点、R2は最大倍率・最大像高の像点で
ある。固体撮像素子の有効受光長l−Δ/XNはこの関
係によって決定されている。即ち第4図の例では固体撮
像素子21は有効受光長lが” mmax ” Pma
x す満足するようにフォトエレメント数が決定され、従っ
て仮りにチャート14の変換で物体高が変化したとして
も又は投影倍率が変化したとしても任意の像高に対する
MTFを求めることが可能である。
, is a diagram showing the relationship of the image point on the projection plane with respect to the maximum projection magnification mmax, in which R8 is the optical axis, R4 is the image point at the minimum magnification and minimum image height, and R2 is the image point at the maximum magnification and maximum image height. be. The effective light receiving length l-Δ/XN of the solid-state image sensor is determined by this relationship. That is, in the example of FIG. 4, the effective light receiving length l of the solid-state image sensor 21 is "mmax" Pma
The number of photo elements is determined so as to satisfy x. Therefore, even if the object height changes due to the conversion of the chart 14 or the projection magnification changes, it is possible to obtain the MTF for any image height.

また第5図の例では固体撮像素子212は有効受光長l
が 1>m  *P−m@P max    max       mxn    m
inを満足するようにフォトエレメント数が決定され、
従ってチャートの交換又は倍率の変化があっても軸外の
スリット像が常に固体撮像素子21□の有効受光面に投
影されてMTFが測定される。
In the example shown in FIG. 5, the solid-state image sensor 212 has an effective light receiving length l.
is 1>m *P-m@P max max mxn m
The number of photo elements is determined to satisfy in,
Therefore, even if the chart is replaced or the magnification is changed, the off-axis slit image is always projected onto the effective light receiving surface of the solid-state image sensor 21□, and the MTF is measured.

タンジェンシャル方向のMTFを測定する場合取付基板
25の走査速度は固体撮像素子の蓄積時間によって決定
されるが、取付基板の走査に用いられるステッピングモ
ータの駆動パルス周波数は固体撮像素子の蓄積パルス周
波数よりも短くなければならない(周期で言えば長くな
げればならない)。
When measuring the MTF in the tangential direction, the scanning speed of the mounting board 25 is determined by the storage time of the solid-state image sensor, but the drive pulse frequency of the stepping motor used to scan the mounting board is determined by the storage pulse frequency of the solid-state image sensor. It also has to be short (in terms of cycle, it has to be long).

ここでタンジェンシャル方向のMTFを測定する場合取
付基板25を走査することから測定時間が長くなるので
はないかという@念が生ずるが、スリット像の光強度分
布を求めるのに必要な走査距離はせいぜい10m/m〜
20 m/in程度で充分であるが固体撮像素子を用い
た従来のMTF測定装置とほぼ同程度の時間で測定かり
能であり、使用する固体撮像素子の数も軸上のものを軸
外のものと別個に設けたとしても2個であり、しかも変
倍時又はチャート変換時に固体撮像素子を移動させる必
要が皆無であり操作性が大幅に向上して実質的に測定時
間が速くなる。また固体撮像素子の数が大幅に低減され
たことから固体撮像素子の駆動回路が簡単になり、その
制御も非常に容易になるため大幅なコストダウンが可能
である。
When measuring the MTF in the tangential direction, it may take a long time to scan the mounting board 25, but the scanning distance required to obtain the light intensity distribution of the slit image is At most 10m/m~
Approximately 20 m/in is sufficient, but it is possible to measure in about the same time as a conventional MTF measuring device using solid-state image sensors, and the number of solid-state image sensors used can also be increased from on-axis to off-axis. Even if they are provided separately, there are only two solid-state imaging devices, and there is no need to move the solid-state imaging device when changing the magnification or converting the chart, which greatly improves operability and substantially shortens the measurement time. Furthermore, since the number of solid-state image sensors is significantly reduced, the drive circuit for the solid-state image sensors becomes simple, and its control becomes extremely easy, resulting in a significant cost reduction.

以上のように本発明によれば固体撮像素子のフォトエレ
メント間隔Δlを 2002kUM20M としたので、エリアジング誤差がなく、Δlが比較的大
きくてフーリエ変換の計算処理が簡単でコストダウンを
計ることができる。更に固体撮像素子の有光受光面が少
なくとも最犬物体高で最大投影倍率の像点から最小物体
高で最大投影倍率の像点までの区間を含むようにしたの
で、固体撮像素子の数を低減させることができて装置の
小型化及びコストダウンを計ることができ、かつ変倍時
又はチャート交換時にも固体撮像素子を移動させる必要
がなくなって操作性が向上する。
As described above, according to the present invention, since the photoelement spacing Δl of the solid-state image sensor is set to 2002kUM20M, there is no aliasing error, Δl is relatively large, and the Fourier transform calculation process is easy and costs can be reduced. . Furthermore, the light-receiving surface of the solid-state image sensor includes at least the section from the image point at the maximum object height and maximum projection magnification to the image point at the minimum object height and maximum projection magnification, reducing the number of solid-state image sensors. This makes it possible to reduce the size and cost of the apparatus, and improves operability since there is no need to move the solid-state image sensor when changing the magnification or replacing the chart.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明を説明するための図、第3図
(a) (b)は固体撮像素子の一例を示す斜視図及び
その一部拡大図、第4図及び第5図は本発明の各実施例
の光学系を示す斜視図、第6図及び第7図は同実施例を
説明するための図である。 211211.112・・・自己走査型固体撮像素子つ
fEJ (C)xv−)4tp  aIILIL前丁FlさV−
7〉(−lト\□)↑X−1介Mtd)幻、7ト4を 
、1目4111L14□−MTF  −一どっ)、ノボ
〉\−、;こ)、2イ〉\−□te)−xy、yトa*
  LL1111J二L1− h丁r−、−一一一一一
一一)にヂ〉)ぐ+)ジグ)5Cr〒(−一〜−一1 ■70
1 and 2 are diagrams for explaining the present invention, FIGS. 3(a) and 3(b) are perspective views and partially enlarged views showing an example of a solid-state image sensor, and FIGS. 4 and 5. 6 is a perspective view showing an optical system of each embodiment of the present invention, and FIGS. 6 and 7 are diagrams for explaining the same embodiment. 211211.112...Self-scanning solid-state image sensor fEJ (C)xv-)4tp aIILILfrontFlsaV-
7〉(-lto\□)↑X-1 through Mtd) Phantom, 7to4
, 1st 4111L14□-MTF -1d), Nobo>\-,;ko), 2i>\-□te)-xy, ytoa*
LL1111J2L1- hcho r-, -111111) Niji〉)g+) Jig) 5Cr〒(-1~-11 ■70

Claims (1)

【特許請求の範囲】 スリットを被検レンズにより拡大投影しこのスリット像
の光強度分布を受光素子で測定してフーリエ変換しMT
Fを測定するMTF測定装置において、前記受光素子と
して複数のフォトエレメントが直線状に配列されている
自己走査型固体撮像素子を有し、前記フォトエレメント
の間隔Δlが被検レンズのカットオフ周波数Uc及び測
定最大周波数UM。 投影最小倍率IIII[l工。に対して2 Uo   
    2k UM        2UMを満足する
と共に、前記自己走査型固体撮像素子の有効受光面が少
なくとも最大物体高で最大投影倍率の像点から最小物体
高で最小投影倍率0.4点ま、での区間を含み、且つ前
記自己走査型固体撮像素子をフォトエレメント配列方向
に対して垂直な方向に走査する走置手段を備えたことを
特徴とするMTF測定装置。
[Claims] A slit is enlarged and projected by a test lens, and the light intensity distribution of this slit image is measured by a light receiving element and Fourier transformed.
The MTF measuring device for measuring F has a self-scanning solid-state image sensor in which a plurality of photo elements are linearly arranged as the light receiving element, and the interval Δl between the photo elements is equal to the cutoff frequency Uc of the lens to be tested. and the measured maximum frequency UM. Projection minimum magnification III [l engineering. 2 Uo for
2k UM 2UM is satisfied, and the effective light-receiving surface of the self-scanning solid-state image sensor includes at least an area from an image point at a maximum object height and a maximum projection magnification to a point at a minimum object height and a minimum projection magnification of 0.4. An MTF measuring device, comprising: a scanning means for scanning the self-scanning solid-state image sensor in a direction perpendicular to the photoelement arrangement direction.
JP9716282A 1982-06-07 1982-06-07 Mtf measuring apparatus Pending JPS58213226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9716282A JPS58213226A (en) 1982-06-07 1982-06-07 Mtf measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9716282A JPS58213226A (en) 1982-06-07 1982-06-07 Mtf measuring apparatus

Publications (1)

Publication Number Publication Date
JPS58213226A true JPS58213226A (en) 1983-12-12

Family

ID=14184868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9716282A Pending JPS58213226A (en) 1982-06-07 1982-06-07 Mtf measuring apparatus

Country Status (1)

Country Link
JP (1) JPS58213226A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562527A (en) * 1979-06-21 1981-01-12 Ricoh Co Ltd Mtf measuring instrument
JPS5861436A (en) * 1981-10-07 1983-04-12 Ricoh Co Ltd Photodetector of projection type mtf measuring instrument
JPS5861437A (en) * 1981-10-07 1983-04-12 Ricoh Co Ltd Sampling processing method for data of projection type mtf measuring instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562527A (en) * 1979-06-21 1981-01-12 Ricoh Co Ltd Mtf measuring instrument
JPS5861436A (en) * 1981-10-07 1983-04-12 Ricoh Co Ltd Photodetector of projection type mtf measuring instrument
JPS5861437A (en) * 1981-10-07 1983-04-12 Ricoh Co Ltd Sampling processing method for data of projection type mtf measuring instrument

Similar Documents

Publication Publication Date Title
US5757425A (en) Method and apparatus for independently calibrating light source and photosensor arrays
US5227888A (en) Still image pickup device with two-dimensionally displaceable image pickup surface
JPH0117523B2 (en)
JPS58225773A (en) Method and device for reading color picture
KR960008330A (en) Image quality inspection device and image compositing method
US5757518A (en) Image scanner
JP2003101738A (en) System for compensating for gap width of chip versus chip in a multiple chip photosensitive scanning array
Baltsavias On the performance of photogrammetric scanners
JPS58213226A (en) Mtf measuring apparatus
US5301042A (en) Imaging platform support to permit dithering motion
JPS63259511A (en) Image memory
JPS5861436A (en) Photodetector of projection type mtf measuring instrument
US4533828A (en) Arrangement for increasing the dynamic range of optical inspection devices to accommodate varying surface reflectivity characteristics
Baltsavias Photogrammetric scanners: survey, technological developments and requirements
JP2741212B2 (en) Image input device
JP2001242070A (en) Photographing device
JP3006853B2 (en) MTF measurement device
JP2522706B2 (en) Line sensor connection deviation detection method
JPS59221637A (en) Mtf measuring device
US5278676A (en) Method and apparatus for cyclic scanning of images
JP3190061B2 (en) Method and apparatus for processing electrical output of a photoelectric conversion device having pixels
JPS62176359A (en) Film image reader
JPS63205505A (en) Area measuring method by ccd area image sensor
JPH09126735A (en) Multiple image forming camera and shape measuring method using this camera
JPS6246362Y2 (en)