JPS5821225A - Light scanning device - Google Patents

Light scanning device

Info

Publication number
JPS5821225A
JPS5821225A JP56118487A JP11848781A JPS5821225A JP S5821225 A JPS5821225 A JP S5821225A JP 56118487 A JP56118487 A JP 56118487A JP 11848781 A JP11848781 A JP 11848781A JP S5821225 A JPS5821225 A JP S5821225A
Authority
JP
Japan
Prior art keywords
disk
hologram
light
scanning
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56118487A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Funato
広義 船戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP56118487A priority Critical patent/JPS5821225A/en
Publication of JPS5821225A publication Critical patent/JPS5821225A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/106Scanning systems having diffraction gratings as scanning elements, e.g. holographic scanners

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Fax Reproducing Arrangements (AREA)

Abstract

PURPOSE:To shorten the light path length of a light scanning device for scanning the reproduced light of a hologram disk on its scanning surface through a convex mirror to reduce the size of the disk by arranging a ftheta lens between the convex mirror and scanning surface. CONSTITUTION:Laser beam is divided into two coherent beams 10, 11 by a light divider and one beam 10 is vertically penetrated into a hologram recording element 13 as reference light. The other beam 11 is made a parallel beam perpendicular to a rotational axis 12, reflected by a spherical convex mirror 14 having its spherical center on the axis 12 to irradiate a disk 13 and made to interfere with the reference light 10 to form a hologram. A hologram disk 3 is obtained by repeating exposure while rotating the disk 13 intermittently. The reproduced light obtained by irradiating the reference light from the lower part of the disk 3 is reflected by the convex reflecting mirror 7 and an image is formed on a scanning surface P through a ftheta lens L1. Consequently the light path length is shortened by the lens L1 and the size of the device is reduced.

Description

【発明の詳細な説明】 この発明は′、ホログラムレンズを走査光線の偏向手段
として利用した光走査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical scanning device using a hologram lens as a means for deflecting a scanning beam.

レーザープリンタにおいては、レーザーよシ出射される
光線を情報信号に応じて変調(点滅)し、この光線で感
光体面を走査して前記情報信号に対応する画像を形成す
る。この場合、主走査は光線の方向を偏向させることに
よって行ない、副走査は感光体を送ることによって行な
われるのが普通である。上記の主走査のための走査光線
の偏向手段としては、従来ピラミッド形や角柱形の回転
多面鏡を情報信号と同期させ高速回転させて、走査光線
の反射方向を順次変化させることによシ偏向させるよう
にしていたが、この回転多面鏡の各鏡面を正確な方向に
炸裂することは極めて困難を伴い、精度に限界があると
同時にコストが非常に高くつく欠点が避けられなかった
In a laser printer, a light beam emitted by a laser is modulated (flashing) according to an information signal, and the light beam scans the surface of a photoreceptor to form an image corresponding to the information signal. In this case, main scanning is usually performed by deflecting the direction of the light beam, and sub-scanning is usually performed by sending the photoreceptor. Conventional means for deflecting the scanning beam for the main scanning described above is to rotate a pyramid-shaped or prismatic rotating polygon mirror at high speed in synchronization with an information signal, and to sequentially change the direction of reflection of the scanning beam. However, it was extremely difficult to make each mirror surface of this rotating polygon mirror explode in the correct direction, which inevitably led to limitations in accuracy and extremely high costs.

この欠点を除去した光走査装置として、ホログラムレン
ズを偏向手段に利用した装置が知られている。段階的に
格子間隔を変えた回折格子を設けたホロ15ムレンズを
一定方向に移動させながら、一定位置で該ホログラムレ
ンズに一定方向から光線を照射し続けると、光線は格子
間隔に応じて回折され、段階的に回折方向が変化する。
As an optical scanning device that eliminates this drawback, a device that uses a hologram lens as a deflecting means is known. When a hologram lens equipped with a diffraction grating with a stepwise change in grating spacing is moved in a fixed direction and a light beam continues to be irradiated onto the hologram lens from a fixed direction at a fixed position, the light beam will be diffracted according to the grating spacing. , the diffraction direction changes stepwise.

この原理を利用したレーザープリンタの偏向手段として
は、第1図に示す如く、平面円板l上に上述のホログラ
ムレンズ2を該円板の回転軸6を中心として環状に複数
個配設して成るボログラムディスク3が用いられ、第2
図に示す如く、該ディスク!ヲモータMの軸に同軸に取
付けて一定速度で回転させながら、上記ホログラムレン
ズ2に一定位置で、情報信号に応じて変調された平行光
線4を入射すればホログラムレンズ20回転にょシ回折
再生光5の出射方向は漸次変化し、各ポログラムレンズ
毎に所定の角度範囲の偏向が行なわれ、これで感光体表
面(走査面)Pを走査する。
As shown in FIG. 1, the deflection means of a laser printer using this principle consists of arranging a plurality of the above-mentioned hologram lenses 2 on a plane disk l in an annular shape around the rotation axis 6 of the disk. A bologram disk 3 consisting of the second
As shown in the figure, the disc! If a parallel light beam 4 modulated according to an information signal is incident on the hologram lens 2 at a fixed position while the motor M is attached coaxially to the shaft of the motor M and rotated at a constant speed, the hologram lens 20 will rotate and the diffracted reproduced light 5 will be generated. The emitting direction of the light changes gradually, and each porogram lens is deflected within a predetermined angle range, thereby scanning the photoreceptor surface (scanning surface) P.

一つのホログラムレンズ2にょシェラインの走査が行な
われ、副走査は感光体を副走査方向に連続送シして行な
われる。このようにホログラムディスク3を連続回転さ
せながら、情報信号にょシ変調された光線で一定位置を
照射し続けることにょシ、感光体上には情報信号に対応
した画像が形成される。
Scanning of a single hologram lens 2 is performed, and sub-scanning is performed by continuously feeding the photoreceptor in the sub-scanning direction. By continuously rotating the hologram disk 3 in this way and continuing to irradiate a fixed position with the light beam modulated by the information signal, an image corresponding to the information signal is formed on the photoreceptor.

しかし、ホログラムディスク3で偏向された光4I5に
より直接走査面を光走査すると、走査面上の走査線は弓
なシに曲シ都合が悪いので、これを避けるために、第2
図に示す如く、ホログラムディスク3の回転軸線6上の
点0に球心含有する球面の凸面鏡7t−上記の回折再生
光線の光路上に偏向範囲をカバーする如く設け、該凸面
鏡7による反射ビーム8により走査面Pを走査すること
により、走査線を直線化する方法が知られている。
However, if the scanning plane is directly optically scanned by the light 4I5 deflected by the hologram disk 3, the scanning line on the scanning plane will be curved in an arched manner, which is inconvenient.
As shown in the figure, a spherical convex mirror 7t whose spherical center is located at point 0 on the rotational axis 6 of the hologram disk 3 is provided so as to cover the deflection range on the optical path of the above-mentioned diffraction reproduction beam, and a reflected beam 8 by the convex mirror 7 is provided. There is a known method of straightening the scanning line by scanning the scanning plane P using .

第2図及び第3図に示す如く、凸面鏡7で反射されたビ
ーム8はホログラムディスク30面と平行な一つの平面
内を等角速度セ偏向し、走査面P上に一直線の走査線を
画くことができる〇しかしこの方法には [F] 走査面の像面湾曲 ■ 走査速度の非等速性 の2つの欠点がある。すなわち、この装置では凸面鏡7
による反射ビームの集束点の軌跡は第3図にP′で示す
如く円弧状に湾曲し走査面Pと一款しない0又走査速度
は上記の21面上では等速になるが、平面P上1は等速
とはならず、走査端へ行くほど走査速度が速くなる〇 この2つの欠点を改善するために従来はディスク3と走
査面Pの距離を長くとって像面湾曲量が焦点深度内に納
まるようにし、又経路長を長くとることにより等速性も
近似的に許容値を満足するようにしていた。
As shown in FIGS. 2 and 3, the beam 8 reflected by the convex mirror 7 is deflected at a constant angular velocity within a plane parallel to the surface of the hologram disk 30, thereby drawing a straight scanning line on the scanning plane P. However, this method has two drawbacks: [F] Curvature of field on the scanning surface ■ Non-uniform scanning speed. That is, in this device, the convex mirror 7
The locus of the convergence point of the reflected beam is curved in an arc shape as shown by P' in Fig. 3, and the scanning speed is constant on the 21 plane mentioned above, but on the plane P. 1 is not constant, and the scanning speed becomes faster toward the scanning end. In order to improve these two drawbacks, conventional methods have been to increase the distance between the disk 3 and the scanning surface P so that the amount of curvature of field can be adjusted to the depth of focus. By making the path length longer, the uniform velocity approximately satisfies the allowable value.

しかしこの方法では、経路長が長くな多走査装置のコン
パクト化の障害となり、又長い走査長をとることも困難
であった。
However, this method has a long path length, which hinders the miniaturization of a multi-scan device, and also makes it difficult to obtain a long scan length.

本発明は、従来のホログラムレンズを走査光線の偏向手
段に用いた光走査装置の上述の欠点を改善するとともに
、光線経路長を短かくすることによって小型化の可能な
光走査装置を提供することを目的とする。
An object of the present invention is to improve the above-mentioned drawbacks of an optical scanning device using a conventional hologram lens as a means for deflecting a scanning beam, and to provide an optical scanning device that can be miniaturized by shortening the optical path length. With the goal.

以下、本発明をその実施例を示す図面にもとづいて詳細
に説明する。
Hereinafter, the present invention will be explained in detail based on drawings showing embodiments thereof.

まず、本発明の光走査装置に使用されるホログラムディ
スクの仔馬方法を第4図により説明する。
First, a method for forming a hologram disk used in the optical scanning device of the present invention will be explained with reference to FIG.

図示せぬレーザーよシ射出されたレーザー光線は、図示
せぬ光線分割器により2つの互いにコヒーレントなビー
ム10.11に分割され、一方のビーム10は回転軸1
2に同軸に取付けられたホログラムディスクの材料とな
る円形平板状の銀塩その他のホログラム記録材料13に
垂直に入射し参照光となる。
A laser beam emitted by a laser (not shown) is split into two mutually coherent beams 10 and 11 by a beam splitter (not shown).
The light beam is perpendicularly incident on a hologram recording material 13, such as a circular flat plate of silver salt, which is the material of a hologram disk, which is coaxially attached to a hologram disk 2, and becomes a reference beam.

もう一方のビーム11は上記回転軸12に垂直な平行ビ
ームとした後、上記の軸12の軸線上に球心を有する球
面凸面球14に反射させ、反射後の発散光15を物体光
として上記の材料円板13ヲ照射し、前記の参照光lO
と干渉させて材料円板13に露光する。
The other beam 11 is made into a parallel beam perpendicular to the rotation axis 12, and then reflected by a spherical convex sphere 14 having a spherical center on the axis of the axis 12, and the reflected diverging light 15 is used as the object beam described above. The material disk 13 is irradiated with the reference light lO
The material disk 13 is exposed to light by causing interference with the light.

材料円板13ヲ回転軸12のまわりに間けつ的に送りな
がら一回転させ、その間に複数回露光し、現像、定着を
行なえば、さきに第1図によシ説明したホログラムレン
ズ2が複数個環状に配置されたホログラムディスク3が
得られる。
If the material disk 13 is rotated once while being fed intermittently around the rotating shaft 12, and exposed, developed, and fixed several times during that period, a plurality of hologram lenses 2 as described earlier in FIG. 1 can be formed. Hologram disks 3 arranged in a ring shape are obtained.

以上のようにして作製されたホログラムディスクを用い
ての光走査は既に第2図、第3図で説明したが、この場
合の情報光線の入射方向線、ホログラムディスク3を製
作するときの参照光とは共役な光#(すなわち第4図に
示す如く参M光がディスク3の上面に垂直に入射されて
ホログラムレンズが作られた場合はディスク3の下面(
裏面)から垂直に入射する光線)となるようにすること
が必要である。このような方向でホログラムディスクを
照射することによシ、ホログラムレンズ2よりホログラ
ム作製時の物体光と逆行する方向に進行する再生光が得
られる。これを凸面鏡7で反射させることにより回転軸
6に垂直方向に進行する平行ビームとなる。この平行ビ
ーム8はディスク3の回転につれて等角速で偏向される
が、第2図及び第3図に示した従来の装置では、像面湾
曲及び走査速度の非等速性の問題があることは前述の通
りであるO きて、第5図及び第6図に示す本発明の実施例において
は、この欠点を解決するために、凸面鏡7と走査面Pと
の間に下記に詳述する光学系L1が配設されている。
Optical scanning using the hologram disk manufactured as described above has already been explained in FIGS. is the conjugate light # (i.e., as shown in FIG.
It is necessary to ensure that the light rays enter perpendicularly from the rear surface). By irradiating the hologram disk in such a direction, reproduction light that travels through the hologram lens 2 in a direction opposite to the object light during hologram production can be obtained. By reflecting this by the convex mirror 7, it becomes a parallel beam that travels in a direction perpendicular to the rotation axis 6. This parallel beam 8 is deflected at a constant angular velocity as the disk 3 rotates, but the conventional apparatus shown in FIGS. 2 and 3 has problems with curvature of field and non-uniform scanning speed. As described above, in the embodiment of the present invention shown in FIGS. An optical system L1 is provided.

したがってディスク3の回転につれて凸面鏡7より等角
速度で偏向さ、れて反射する平行ビーム8は光学系LX
に入射する。  □ この光学系LXは通常の結像光学系と特性が若干異なる
0通常の結像光学系においては、焦点距離をf1人射角
をθとすると結像々高HはH”f  @ tanθ となる。
Therefore, as the disk 3 rotates, the parallel beam 8 is deflected at a constant angular velocity by the convex mirror 7 and reflected by the optical system LX.
incident on . □ This optical system LX has slightly different characteristics from a normal imaging optical system. In a normal imaging optical system, if the focal length is f1 and the angle of incidence is θ, the image height H is H"f @ tanθ. Become.

これに対して、本発明の装置に用いられる光学系Llは
、像高Hが H=f・θ となるような特性の光学系で、しばしばfθレンズと呼
ばれる。
On the other hand, the optical system Ll used in the apparatus of the present invention is an optical system having characteristics such that the image height H is H=f·θ, and is often called an fθ lens.

第7図にこの光学系L1の構成例を示す0この光学系は
図の九より順に凹レンズ20、凸レンズ22より構成さ
れている。凸面鏡7で反射後の偏向された平行ビームの
主光線がi′!!’x交わる点N(第5図、第6図参照
□)が存在するが、光学系LlはこのN点近傍が入射瞳
となるように配置されている。
FIG. 7 shows an example of the configuration of this optical system L1. This optical system is composed of a concave lens 20 and a convex lens 22 in order from 9 in the figure. The principal ray of the parallel beam deflected after being reflected by the convex mirror 7 is i'! ! There is a point N (see FIGS. 5 and 6 □) where 'x intersects, and the optical system Ll is arranged so that the vicinity of this N point becomes the entrance pupil.

−例として、焦点距離がf=100.Omの場合のこの
光学子の詳細を示せば次の通シである。
- As an example, if the focal length is f=100. The details of this optical element in the case of Om are as follows.

入射瞳位置 do=−12−2211IIC第1面より
】曲率半径(w、)  面間距離(■) 屈折率d、=
1.ss このような光学系Llで屈折された偏向ビームはレンズ
の第2主点から焦点距離fの位置に走査光を集束する。
Entrance pupil position do=-12-2211From the first surface of IIC] Radius of curvature (w,) Distance between surfaces (■) Refractive index d, =
1. ss The deflected beam refracted by such an optical system Ll focuses scanning light at a position at a focal length f from the second principal point of the lens.

この走査光は一平面上に走査スポットを結像するととも
に走査速度も走査面P上で等速となる。
This scanning light forms a scanning spot on one plane, and the scanning speed becomes constant on the scanning plane P.

以上の如く、本発明により、従来のポログラムディスク
を用いた光走査において困難とされていた平面走査及び
等速走査を可能にし、その結果光線の経路長を短縮でき
コンパクト化を実現できる。
As described above, the present invention makes it possible to perform plane scanning and uniform speed scanning, which were difficult in conventional optical scanning using a porogram disk, and as a result, the path length of the light beam can be shortened and compactness can be achieved.

上記実施例では、ホログラム作製時参照光としてディス
クに垂直入射する平行ビームを使用するものとしたが、
これに限らず回転軸上の点から発散する発散光を参照光
に用いてもよい。この場合は再生のときはディスクの反
対側からディスク族 9− 作詩の参照光の発散点に集束するような集束光でホログ
ラムを照明すればよい0 又、本発明は透過型ホログラムに限らず反射型ホログラ
ムにも適用することができる°0
In the above embodiment, a parallel beam that is perpendicularly incident on the disk is used as the reference light when producing the hologram.
The reference light is not limited to this, and a diverging light that diverges from a point on the rotation axis may be used as the reference light. In this case, during playback, the hologram can be illuminated with a focused light that focuses on the divergence point of the reference beam of the poem from the opposite side of the disk. Can also be applied to type holograms

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装置及びこの発明に使用されるホログラ
ムディスクの平面図、第2図は従来のホログラムを利用
した光走査装置の一例を示す側面図、第3図はその平面
図、第4図はホログラムディスクを作製する方法を説明
する側面図、第5図は本発明の実施例を示す側面図、第
6図はその平面図、第7図は本発明に使用する光学系の
1例を示す断面図である。 2・・・ホログラムレンズ 3・・・ホログラムディスク 4・・・情報光(再生照明光) 5・・・再生光 6・・・回転軸線 7・・・凸面鏡 P・・・走査面 Ll・・・光学系(f・θレンズ] 第4図 第6図 第7図
FIG. 1 is a plan view of a conventional device and a hologram disk used in the present invention, FIG. 2 is a side view showing an example of a conventional optical scanning device using a hologram, FIG. 3 is a plan view thereof, and FIG. The figure is a side view explaining the method for producing a hologram disk, FIG. 5 is a side view showing an embodiment of the present invention, FIG. 6 is a plan view thereof, and FIG. 7 is an example of an optical system used in the present invention. FIG. 2...Hologram lens 3...Hologram disk 4...Information light (reproduction illumination light) 5...Reproduction light 6...Rotation axis 7...Convex mirror P...Scanning surface Ll... Optical system (f/θ lens) Fig. 4 Fig. 6 Fig. 7

Claims (1)

【特許請求の範囲】[Claims] 複数個のホログラムレンズを円板上にその回転軸を中心
上して環状に配置して成るホログラムディスクをその回
転軸のまわりに回転させ、再生照明光を上記ホログラム
レンズに一定位置で入射すせ、ホログラムレンズよシ出
射される再生先金上記ディスクの回転軸線上に球心を有
する凸面鏡に入射させて上記ディスクの回転軸に垂直な
平面内で偏向する光線とし、これにょシ走査面を走査す
る光走査装置において1上記の凸面鏡と上記の走査面と
の間に入射角に比例した保菌を結ぶ光学系を配置したこ
とt%徴とする光走査装置。
A hologram disk consisting of a plurality of hologram lenses arranged annularly on a disk with its rotation axis as the center is rotated around its rotation axis, and reproduced illumination light is incident on the hologram lenses at a fixed position. The reproduction target emitted by the hologram lens is made incident on a convex mirror having a spherical center on the rotational axis of the disk, and is deflected in a plane perpendicular to the rotational axis of the disk, which scans the scanning surface. 1. An optical scanning device characterized in that an optical system is disposed between the above-mentioned convex mirror and the above-mentioned scanning surface to establish a retention proportional to the angle of incidence.
JP56118487A 1981-07-30 1981-07-30 Light scanning device Pending JPS5821225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56118487A JPS5821225A (en) 1981-07-30 1981-07-30 Light scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56118487A JPS5821225A (en) 1981-07-30 1981-07-30 Light scanning device

Publications (1)

Publication Number Publication Date
JPS5821225A true JPS5821225A (en) 1983-02-08

Family

ID=14737887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56118487A Pending JPS5821225A (en) 1981-07-30 1981-07-30 Light scanning device

Country Status (1)

Country Link
JP (1) JPS5821225A (en)

Similar Documents

Publication Publication Date Title
US3953105A (en) Holographic scanner utilizing auxiliary reflective surface
US4277128A (en) Anamorphic Fθ lens system
US3619033A (en) Three-dimensional light beam scanner utilizing tandemly arranged diffraction gratings
AU597971B2 (en) Scanning apparatus
CA1084314A (en) Holographic scanner for reconstructing a scanning light spot insensitive to a mechanical wobble
US4243293A (en) Holographic scanner insensitive to mechanical wobble
JPH09500217A (en) Holographic recording and scanning system and method
US5726433A (en) Optical scanning apparatus for generating a helical scanning pattern on an external (cylindrical) surface
US4337994A (en) Linear beam scanning apparatus especially suitable for recording data on light sensitive film
US4632503A (en) Optical scanning device
US4626062A (en) Light beam scanning apparatus
US4863225A (en) Reflection holograms formed by scanning
US4753503A (en) Laser scanning system
US4861144A (en) Field correction apparatus
US4632499A (en) Light beam scanning apparatus
JPS5821225A (en) Light scanning device
JPH04123016A (en) Phase shift element and laser device using the same
EP0435662B1 (en) Hologram scanner and method of recording and reproducing hologram in the hologram scanner
US4621891A (en) Light beam scanning apparatus
EP0111333A1 (en) Light beam scanning apparatus
JPH0311447B2 (en)
JPS5872121A (en) Optical scanning device
GB2094497A (en) Optical mechanical semiconductor laser scanning system
JPS5821226A (en) Light scanning device
JP2740665B2 (en) How to make a holographic fθ lens